AA + B A + B B
Si
A
Silicon-Tethered Reactions
B
Si
Duke M. Fitch
Evans' Group Seminar
March 15, 1996
Review:
Bols, M.; Skrydstrup, T. Chem. Rev. 1995, 95, 1253-1277.
I. Cycloadditions
A. 5-Atom Tether Ring
1. [4 + 2]
2. [2 + 2]
3. [5 + 2]
B. 6-Atom Tether Ring
C. 7-Atom Tether Ring
1. Type I and II Diels-Alder
D. 8-Atom and Larger Tether Rings
1. Type II Diels-Alder
II. Radical Reactions
A. 5-Exo- and 6-Endo- Ring Formations
1. Trig-Cyclizations
2. Dig-Cyclizations
B. 6-Exo- and 7-Endo- Ring Formations
C. Others
III. Silicon Addition to Double Bonds
A. Addition to C=C Bonds
1. Hydrosilylation
2. Bis-silylation
B. Addition to C=O Bonds
IV. Nucleophile Delivery
33A-01 3/14/96 11:15 PM
OH
SiR
2
Cl
O
Si
R
R
Si
O
R
R
Si
O
R
R
OH
SiR
2
Cl
O
Si
R
R
? Increased Reactivity
? High Regioselectivity
? Increased Stereoselectivity
? Functional Group Protection
? Facile Refunctionalization
H
O
Si
Why use a silicon tether?
- Intramolecularity offers reduced entropic factors
- Higher yields
- Certain reactions that could not be carried out intermolecularly are possible
- Function of tether length
- Certain cases offer route to opposite regioisomer obtained from intermolecular variant
- Function of tether length and steric bulk of alkyl substituents on silicon
- Serves as protecting group before and after reaction
- Protodesilylation, Tamao oxidation, allylsilane additions, and transmetallations are possible
Et
3
N
H
O
Si
160 - 170 °C
+
R = Me 2 : 1
R = Ph
R = t-Bu 1 : 4
Note: Bulkier substituent
favors exo-cyclization
Et
3
N
190 °C
+
R = Me 4 : 1
R = Ph
R = t-Bu >20 : 1
R
R
R
10 : 1
Sieburth, S. M.; Fensterbank, L. J. Org. Chem. 1992, 57, 5279.
1 : 1
R
Diels-Alder To Form 5-Atom Tether Ring:
33A-02 3/14/96 11:14 PM
O
H
H
Si
R
R
H
H
O
Si
R
R
Si
O
R
R
OH
OH
OH
OH
SiMe
3
O
SiMe
2
exo
SiMe
2
O
endo
Transition States:
Me
Me
OH
vs.
Further Transformations:
TBAF
TBAF or
KF then
H
2
O
2
MeLi
R = Me or Ph, 71-85% over 2 steps
Occurs with retention of configuration
O
SiMe
2Ph
R = Me, 75% over 2 steps
Ph
OH
Tamao oxidation: Organometallics 1983, 2, 1694.
R = Me, 75% over 2 steps
Occurs with retention of configuration
60:40 mixture of isomers
160 °C
80%
TBAF-DMF, 75 °C
65%
O
SiMe
2
Stereoselectivity and Regioselectivity:
OH
1. 160 °C 75%
2. TBAF-DMF 85%
1. 180 °C 80%
2. TBAF-DMF 85%
Ph
Stork, G.; Chan, T. Y.; Breault, G. A. J. Am. Chem. Soc. 1992, 114, 7578.
Ph
1 isomer
33A-03 3/14/96 5:30 PM
O
SiMe
2
CO
2
Et
SiMe
2
O
CO
2
Et
SiMe
2
O
CO
2
Et
O
SiMe
2
CO
2
Et
OH
CO
2
Et
OH
OH
CO
2
Et
OH
CO
2
Et
OH
CO
2
Et
OH
80 °C 90%
O
O
O
SiPh
2
O
O
H
Si
Ph
Ph
O
SiPh
2
O
H
H
O
OH
OH
H
Stork Delivers More:
TBAF-DMF
then H
2
O
2
80%
TBAF-DMF
then H
2
O
2
TBAF-DMF
60 °C 75%
O
SiMe
2
Note: Selectivity in each case results from endo-addition
with respect to the ester, even when the product
contains four contigous cis stereocenters. This
highly strained compound is epimerized by fluoride
ion in the course of desilylation.
190 °C
retro-Diels-Alder
Bu
TBAF-DMF
60 °C
?
SiMe
2
O
hetero-Diels-Alder
1 isomer
Bu
KF, H
2
O
2
75%, 2 steps
Other Interesting Examples from Sieburth:
SiMe
2
O
190 °C
1:1 mixture of diastereomers
Bu
DDQ
46%, 2 steps
33A-04 3/14/96 11:31 PM
H
H
SiMe
2
(NMe
2
)
HO
Ph
Si
O
Ph
Ph
OMe
2
Si
Ph
OH OH
O
CO
2
Me
R
O
Si
Ph Ph
O
O
Si
CO
2
Me
H
R
Ph
Ph
O
O
Si
CO
2
Me
H
R
Ph
Ph
+ H-SiMe
2
(NEt
2
)
OO
BzO
OH
1 mol% Ni(acac)
2
2 mol% DIBAl-H
benzene, 50 °C
52%
Z:E = 94:6
+
Et
2
O, r.t.
10 h
OO
BzO
O
1 isomer
KF, H
2
O
2
75%, 3 steps
Silicon Connected to Diene:
xylene
SiMe
2
Tamao, K; Kobayashi, K; Ito, Y. J. Am. Chem.Soc. 1989, 111, 6478.
ClMe
2
Si
Photochemical [2+2]:
Crimmins, M. T.; Guise, L. E. Tet. Lett. 1994, 35, 1657.
O
O
SiMe
2
O
+
hν, >350 nm
70-80%
BzO
R = n-C
5
H
11
R = Me
R = Ph
H
90 : 10
85 : 15
>95 : 5
O
OH
O170 °C
Note: Similar results were obtained with a four
atom tether. Also, for the subsequent
Tamao oxidation, protection of the ketone
was necessary to prevent Baeyer-Villiger
oxidation.
BzO
1 isomer
Formal [5+2]:
KF
m-CPBA
OH
Et
3
N
78%, 3 steps
Rumbo, A.; Castedo, L.; Mourino, A.; Mascarenas, J. L. J. Org. Chem. 1993, 58, 5585.
Note: Intermolecular variant failed to react.
33A-05 3/14/96 5:33 PM
O
Si
R
R
Si
O
R
R
TMS
OH
OH
OH
O
Si
O
R
t-Bu t-Bu
CO
2
Et
OR
O
Si
EtO
2
C
O
O
Si
EtO
2
C
R
t-Bu
t-Bu
O
Si
O
R
CO
2
Et
t-Bu t-Bu
O
Si
O
R
CO
2
Et
t-Bu t-Bu
exception:
TMS
72%, 2 steps
75%, 2 steps
Shea, K. J.; Zandi, K. S.; Staab, A. J.; Carr. R. Tetrahedron Lett. 1990, 31, 5885.
O
Si
Me
Me
Si
O
Me
Me
OH
O
Si O
CO
2
Me
190 °C
R = Me or Ph
cis:trans = 1:1
Ph
Ph
MeLi
R = Me
KF, H
2
O
2
R = Ph
Note: In general, yields are good and
regioselectivity is absolute, but
stereoselectivity is poor.
O
Si O
Diels-Alder To Form 6-Atom Tether Ring:
?
?
Ph
Ph
CO
2
Me
H
vs.
xylene
160 °C
>90%
R = Me or H
R = H R = Me
90
10
>99
<1
O
Si O
: :
Gillard, J. W.; Fortin, R.; Grimm, E. L.; Maillard, M.; Tjepkema, M.;
Bernstein, M. A.; Glasser, R. Tetrahedron Lett. 1991, 32, 1145.
Ph
Ph
Toluene
190 °C
MeLi
O
Si O
ratio not determined
25%, 2 steps
Note: With monosilyl ether tether,
reaction is slow and poor
yielding in comparison to
shorter tether versions.
Ph
Ph
CO
2
Me
H
1 isomer
However:
Diels-Alder To Form 7-Atom Tether Ring:
175 °C
98%
175 °C
77%
1 isomer
CO
2
Me
Note: Intermolecular variant gives
1:1 ratio with opposite
regiochemistry.
Note: Yields are generally high and selectivities
good for 5-member silyl acetal tethers. In the
case of type II Diels-Alders, regioselectivity
and stereoselectivity are absolute.
33A-06 3/14/96 11:22 PM
O
O
Si
Me
Ph
Ph
CO
2
Me
R
O
SiO
H
H
R
CO
2
Me
Me
Ph
Ph
O
O
Si
Me
Ph
Ph
CO
2
Me
Me
O
SiO
H
H
Me
CO
2
Me
Me
Ph
Ph
Me
Me
O
SiO
H
H
Me
CO
2
Me
Me
Ph
Ph
Me
Si
O
R
2
R
1 O
Me
Me
Si
O
O
R
1
R
2
Me
Me
O
Si
O
O
O
Ph
Ph
O
Si
O
O
O
Ph
Ph
Me
CO
2
Me
H
CO
2
Me
O
Si
O
O
O
Ph
Ph
160 - 170 °C
R = H 64%
R = Me 100%
1 isomer
Silyl Acetal 7-Atom Tether Ring:
H
O
Si
O
O
O
170 °C
94%
Craig, D.; Reader, J. C. Tetrahedron Lett. 1992, 33, 6165.
Craig, D.; Reader, J. C. Tetrahedron Lett. 1990, 31, 6585.
Craig, D.; Reader, J. C. Tetrahedron Lett. 1992, 33, 4073.
1:1 mixture of diastereomers
Note: Intermolecular variant gives a mixture of 4 diastereomers.
1 : 1
Ph
Ph
1 isomer
115 - 200 °C
Me
+
R
1
R
2
Yield
H
O
Si
O
H
Me
H
H
Me
CN
H
H
Me
Ph
Me
Pr
Longer Tethers:
98%
88%
78%
93%
65%
53%
Ph
Ph
1 isomer
80 °C
90%
Me
Shea, K. J.; Staab, A. J.; Zandi, K. S. Tetrahedron Lett. 1991, 32, 2715.
O
O
Type II Diels-Alder To Form 8-Atom Tether Ring:
however:
+
70 : 30
33A-07 3/14/96 11:27 PM
Ph OH
Ph O
Si
Br
Me
Me
Si
O
Ph
Me
Me
Ph OAc
OH
Ph OH
OH
R
O
Si
MeMe
Br
R
Me
OH
OH
R
Me
OH
OH
R
OH
OH
Transition States:
O
R
Si
Me
Me
R
1
R
2
1) Ac
2
O, KF
2) H
2
O
2
O
Si
Me
R
Me
R
1
R
2
BrCH
2
SiMe
2
Cl
Me Ph
O
Si Br
Me Me
Me
O
KF, H
2
O
2
Si Br
Me Me
Note: The rate of 5-exo trig-cyclization is markedly slower when the radical
is α to silicon. Thus, 6-endo becomes a competing pathway. In the case
of phenyl substitution, the stabilized benzylic radical formed from 5-exo
cyclization precludes the formation of the 6-endo product.
1) n-Bu
3
SnH, AIBN
2) KF, H
2
O
2
80%, 3 steps
85%, 3 steps
+
Ph
n-Bu
3
SnH
AIBN
+
R = Me
R = i-Pr
R = t-Bu
R = vinyl
R = Ph
Me Ph
66%
74%
66%
52%
48%
14%
-
-
9%
4%
OH
OH
15%
16%
26%
24%
36%
Nishiyama, H.; Kitajima, T.; Matsumoto, K.; Itoh, K. J. Org. Chem. 1984, 49, 2298.
Me Ph
Radical Cyclizations to Form 1,3-Diols:
.
OH
OH
.
vs.
A
1,3
strain
Me Ph
Other Examples:
1) n-Bu
3
SnH, AIBN
2) KF, H
2
O
2
85%, 2 steps
OH
OH
1) n-Bu
3
SnH, AIBN
2) KF, H
2
O
2
94%, 2 steps
1 isomer
+
5 : 1
33A-08 3/14/96 11:36 PM
O
O
SiSi BrMe
Me
Me
Me
HO
OH
O
O
SiSi BrMe
Me
Me
Me
HO
OH
Me
Ot-Bu
H
Me
Ot-Bu
Me
Ot-Bu
H
HO
Me
Me
Ot-Bu
H
Me Me
Me
Me
Me
O
Si Br
Me
Me
Me Me
Me
Me
Me
HO
Me
H
Me
O
Si Br
Me
Me
Me
HO
Me
H
1) n-Bu
3
SnH, AIBN
2) KF, H
2
O
2
65%, 2 steps
O
SiBr
Me Me
OH OH
H
HO HO
H
H
O
SiBr
Me Me
H
OH
H
HO
H
O
SiBr
Me Me
H
OTMS
H
O
SiBr
Me Me
H
OH
O
O
HO
H
O
SiBr
Me Me
O
H
O
O
H
O
1) n-Bu
3
SnH, AIBN
2) KOt-Bu, DMSO
75%, 2 steps
Cyclic Allylic Alcohols:
Si
Me Me
H
O
Si
Me
Me
n-Bu
3
SnH
AIBN
KF, H
2
O
2
75%, 2 steps
n-Bu
3
SnH
AIBN
KF, H
2
O
2
88%, 2 steps
KOt-Bu, DMSO
60%, 2 steps
1) n-Bu
3
SnH, AIBN
2) KOt-Bu, DMSO
80%, 2 steps
H
Note: In all cases a single isomer is obtained, resulting
exclusively from 5-exo cyclization. This methodology
has been employed in the synthesis of branched sugars.
O
Si
CH
3
CH
3
Stork, G.; Sofia, M. J. J. Am. Chem. Soc. 1986, 108, 6826.
1) n-Bu
3
SnH, AIBN
2) KF, H
2
O
2
91%, 2 steps
3.7 : 1
+
n-Bu
3
SnH
AIBN (100%)
1) n-Bu
3
SnH, AIBN (100%)
2) KF, H
2
O
2
(45%)
H
H
H
O
Si
CH
3
H
3
C
n-Bu
3
SnH, AIBN
"Poor Yield"
3 : 2
+
Stork, G.; Mah, R. Tetrahedron Lett., 1989, 30, 3609.
?
.
Introduction of Angular Functionality:
.
?
Lejeune, J.; Lallemand, J. Y. Tetrahedron Lett. 1992, 33, 2977.
33A-09 3/14/96 5:42 PM
Me
Me
O
Me
Si
Br
Me Me
Me
Si
O
Me
Me
Me
Me
Me
OH
Me
Me
Me
OH
Me
Me
TMS
Me
OH
Me
Me
O
Me
OH
Me
Me
Br
Me
Me
O
Me
Si
Br
Me Me
Me
Si
O
Me
Me
Me
Me
n-C
6
H
13 n-C6H13
Me
OH
Me
Me
O
n-C
6
H
13
Me
OH
Me
Me
n-C
6
H
13
O
SiR
Me
Me
H
H
H
O
Si
Me
Me
H
H
H
R
n-Bu
3
SnH
AIBN
MeLi 52%, 2 steps
KF, H
2
O
2
KOt-Bu,
DMSO/H
2
O
62%, 2steps
30%, 2 steps
62%, 2 steps
NBS, DMF
Selective Hydrovinylation/Hydroacylation:
KOt-Bu
DMSO/H
2
O
33%, 2 steps
KF, H
2
O
2
50%, 2 steps
n-Bu
3
SnH
AIBN
Tamao, K.; Maeda, K.; Yamaguchi, T.; Ito, Y. J. Am. Chem. Soc. 1989, 111, 4984.
.
E:Z = 1:9
E Only
.
1 isomer
Dig-Cyclizations:
O
Me
Me
Si Br
MeMe
Si
O
Me
Me
Me
Me
HO
Me
Me
HO
O
Me
Si Br
MeMe
Si
O
Me
Me
Me
HO
Me
HO
O
Me
Me
Si Br
MeMe
Si
O
Me
Me
Me
Me
HO
Me
Me
TMS
OTHP
OTHP OTHP
C
4
H
9 C
4
H
9
C
4
H
9
O
Ph
Me
Me
Si Br
MeMe
HO
HO
Ph
O
TMS
Me
Me
E:Z = 95:5
Ph
3
SnH
AIBN
Ph
3
SnH
AIBN
Si Br
MeMe
Ph
3
SnH
AIBN
MeLi
60%, 2 steps
KF, H
2
O
2
65%, 2 steps
E Only
KF, H
2
O
2
70%, 2 steps
1) Ph
3
SnH, AIBN
2) KF, H
2
O
2
85%, 2 steps
HO
HO
TMS
E:Z = 25:75
E Only
1) Ph
3
SnH, AIBN
2) KF, H
2
O
2
84%, 2 steps
E:Z = 35:65
Journet, M.; Malacria, M. J. Org. Chem. 1992, 57, 3085.
33A-10 3/11/96 6:00 PM
Me
O
C
5
H
11
Si
Br
Me
Me
CN
Me
O
C
5
H
11
Si
Me
Me
Me
O
Si
C
5
H
11
Me
Me
O
Si
Me
Me Me
C
5
H
11
CN
O
Si
Me
Me Me
C
5
H
11
CN
O
Si
Me
C
5
H
11
CN
Me Me
O
Si
Me
C
5
H
11
CN
Me Me
HO
Me
C
5
H
11
CN
HO
O
Si
C
5
H
11
H
Me
Me
H
Me
O
Si
C
5
H
11
H
Me
Me
H Me
H
H
O
Si
C
5
H
11
H
Me
Me
Me
O
Si
C
5
H
11
H
Me
Me
Me
O
BnO
BnO
BnO
O
SiMe
Me
Ph
SePh
O
BnO
BnO
BnO
O
Si
Me
Me
Ph
O
BnO
BnO
BnO
HO
Ph
O
BnO
BnO
BnO
SePh
O
BnO
BnO
BnO
O
Si
Ph
Me Me
Si
O
Me
Me
Ph
O
BnO
BnO
BnO
OH Ph
O
BnO
BnO
BnO
O
SiMe
Me
R
S
N
O
O
O
BnO
BnO
BnO
HO
.
.
.
.
Ph
3
SnH, AIBN
R
.
1 isomer
Journet, M.; Malacria, M. J. Org. Chem. 1992, 57, 3085.
E:Z >50:1
76% R = Ph
78% R = TMS
1) SmI
2
2) TBAF
O
BnO
BnO
BnO
KF, H
2
O
2
51%, 2 steps
Authors' Explanation:
..
O
Si
Ph
Tandem Cyclizations:
Syn-Pentane
A
1,3
Me Me
.
Campos' Explanation:
O
BnO
BnO
BnO
E:Z = 10:1
Synthesis of C-Glycosides:
TBAF
83%, 2 steps
n-Bu
3
SnH,
AIBN
OH
Note: Similar yields were obtained
with the furanose series,
however, E/Z selectivity was
slightly lower.
R
n-Bu
3
SnH,
AIBN
SO
O
N
.
E:Z = 10:1
TBAF
69%, 2 steps
1) SmI
2
2) TBAF
E:Z = 10:1
64% R = Ph
61% R = TMS
Stork, G.; Suh, H. S.; Kim, G. J. Am. Chem. Soc. 1991, 113, 7054.
Mazeas, D.; Skrydstrup, T.; Doumeix, O.; Beau, J. M.
Angew. Chem., Int. Ed. Engl. 1994, 33, 1383.
33A-11 3/14/96 11:39 PM
O
Si Br
Me Me
Si
O
Me Me
OH
OH
O
Si Br
Me Me
Si
O
Me
Me
OHOH
Me
OMe
Me
O
Me
Si Br
Me Me
R
OH
OH
Me
Me
OMe
Me
O
Me
Si Br
Me Me
R
OH
OH
Me
Si
O
R
R
2
R
1
Me
Me
Si
O
R
Me
Me
Si
O
R
H
H
Me
Me
R
2
R
1
O
O
O
Me
Me
TBSO
AcHN
O
O
CbzHN
BOMO O
Si
O
Me Me
O
HO OH
N
NBOC
O
O
SePh
O
O
O
Me
Me
TBSO
AcHN
O
O
CbzHN
BOMO OH
O
HO OH
N
NBOC
O
O
HO
H
O
O
O
Me
Me
N
H
O
OTBS
O
CbzHN
BOMO
O
Si
Me
O
Me
O
HH
N
NBOC
O
O
6-Exo vs. 7-Endo
n-Bu
3
SnH
AIBN
H
2
O
2
77%, 2 steps
n-Bu
3
SnH
AIBN
Me
O
H
2
O
2
80%, 2 steps
OOH
1) n-Bu
3
SnH, AIBN
2) H
2
O
2
83%, 2 steps
1) n-Bu
3
SnH, AIBN
2) H
2
O
2
83%, 2 steps
H
Note: Substituted olefins give exclusively 6-exo products with complete
selectivity for the syn-isomer. Terminal olefins give exclusively
7-endo products.
?
vs.
Koreeda, M.; Hamann, L. G. J. Am. Chem. Soc. 1990, 112, 8175.
.
.
.
Application of 7-Endo Cyclization:
1) n-Bu
3
SnH, Et
3
B
2) KF
H
H
7.5:1
60% isolated yield of desired
diastereomer, 2 steps
H
Proposed Transition State:
(+)-Tunicamycin-V
Note: Attempts at cyclization with the highlighted hydroxyl
protected as the TBS ether afforded only the undesired
isomer at C5'. Also, cyclization of the free hydroxyl substrate
in methanol led to an erosion in selectivity (1.6:1).
5'
Myers, A. G.; Gin, D. Y.; Rogers, D. H. J. Am. Chem. Soc. 1994, 116, 4697.
.
33A-12 3/14/96 5:50 PM
Si
Br
O
Me Me
CO
2
Et
Si
O
Me Me
CO
2
Et
H
H
OSiMe
2
Ph
CO
2
Et
H
OSiMe
2
Ph
CO
2
Et
Br
Si
O
Me Me
Me
Me
Me
Me
Me Me
HO
Me
Me
Me Me
HO
Me
Me
Me Me
HO
Me
Me
Me Me
HO
Me
Me
Me
H
Me
Me Me
OSiMe
2
PhMe
Me
OSiMe
2
Ph
H
Me
Me
Intramolecular Hydrosilylation:
Ph
O
Si
H
MeMe
O
Si
Ph
Me
Me
Me
Ph
OH OH
R
O
Si
H
MeMe
Me
Me
R
OH OH
n-Pent
O
Si
H
MeMe
1) n-Bu
3
SnH, AIBN
2) TBAF
65%, 2 steps
n-Bu
n-Pent n-Pent
OH OH
cis:trans = 1:1.1
Curran, D. P.; Kim, D.; Liu, H. T.; Shen, W. J. Am. Chem. Soc. 1988, 110, 5900.
n-Bu
3
SnH
AIBN
61%
.
.
+
+
1
O
3.5
Si
H
MeMe
.
:
:
4.8
Tandem Cyclizations:
Me
OH OH
?
Schwartz, C. E.; Curran, D. P. J. Am. Chem. Soc. 1990, 112, 9272.
H
2
PtCl
6
?6H
2
O
Me
Me
1
.
Syn-Pentane
O
5.7:1
Si
H
MeMe
1) H
2
PtCl
6
?6H
2
O
2) H
2
O
2
63-95%
5.3:1 (72% from alcohol)
3.5:1 (33% from alcohol)
3.3:1 (53% from alcohol)
R = n-Pent
R = i-Pr
R = Ph
1) H
2
PtCl
6
?6H
2
O
2) H
2
O
2
1) H
2
PtCl
6
?6H
2
O
2) H
2
O
2
67%
OH OH
1) H
2
PtCl
6
?6H
2
O
2) H
2
O
2
40%
1.6:1 6.1:1
Me
Me
H
2
O
2
71% from alcohol
E or Z
Me Me
Intramolecular 1,5-Hydrogen Transfer:
A
1,3
Strain:
Me
1:1
Tamao, K.; Nakajima, T.; Sumiya, R.; Arai, H.; Higuchi,
N.; Ito, Y. J. Am. Chem. Soc. 1986, 108, 6090.
33A-13 3/14/96 5:52 PM
O
OBn
Me
Si
H
Me Me
Me
Si
O
OBn
Me
Me
Me
Me
Si
O
Me
Me
Me
Me
O
N
Me
OMe
N
O
Me
OMeOH
OSi
HO
Me
Me
Me
Me
N
O
Me
OMeOMe
OSi
TrO
Me
Me
Me
Me
N
O
Me
OMeOMe
TrO
Me
Me
OH
O
Si
Me
Me
O
Me
H
Me
H
R
A
1,2
Strain:
R
O
Me
Si
H
Me Me
R
OHOH
Me
Me
R
O
H
Si
Me
Me
H
OH
Me
O Si
Me
Me
Me
OHHO
Me
Pt cat.
98%
4:1
OTBSSi O
Me Me
1) H
2
, Pd/C (100%)
2) Swern
3) Horner-Emmons
(70%, 2 steps)
cat. OsO
4
NMO
80%
94:6
1) Tr?pyr
+
BF
4
-
2) MeI, NaH
88%, 2 steps
C27-C33 Segment of Rapamycin
Me
Me
TBAF
88%
Proposed "hypervalent" siloxane complex:
Me
OTBSOH
Me
δ
-
Application of A
1,3
Strain Methodology:
Hale, M. R.; Hoveyda, A. H. J. Org. Chem. 1992, 57, 1643.
1) H
2
PtCl
6
?6H
2
O
2) H
2
O
2
HO
R = n-Bu
R = i-Pr
R = t-Bu
R = Ph
2.4:1 (73% from alcohol)
24:1 (66% from alcohol)
>100:1 (52% from alcohol)
6.7:1 (55% from alcohol)
anti
M
minimizes A
1,2
strain
1) (HMe
2
Si)
2
NH
2) H
2
PtCl
6
?6H
2
O
78%
OH
13:1
Enantioselective variant:
Me
O Si
Me
1) TBSCl
2) (HMe
2
Si)
2
NH
3) H
2
PtCl
6
?6H
2
O
62%
10:1
KF
H
2
O
2
91%
KF
H
2
O
2
74%
Tamao, K.; Nakajima, T.; Sumiya, R.; Arai, H.; Higuchi,
N.; Ito, Y. J. Am. Chem. Soc. 1986, 108, 6090.
OHHO
Me
93% e.e.
syn:anti >99:1
Application to Polypropionate Synthesis:
1) (Me
2
Ph)
2
SiHCl, NH
3
2) [RhCl(CH
2
=CH
2
)
2
]
2
(R,R)-DIOP
KF, H
2
O
2
66%, 3 steps
Tamao, K.; Tohma, T.; Inui, N.; Nakayama, O.; Ito,
Y. Tetrahedron Lett. 1990, 31, 7333.
33A-14 3/14/96 5:54 PM
PhMe
2
Si
Si
O
Me
Me
Me
NC
Si O
Me
PhMe
2
Si
Me
Me
PhMe
2
Si
Si
O
MeO
2
C
Me
Me
NC
Si O
CO
2
Me
PhMe
2
Si
Me
Me
Si
O
Pd
L
Si
R
PhMe
2
Si
Si
O
Me
Me
NC
Si O
PhMe
2
Si
Me
Me
PhMe
2
Si
Si
O
Me
Me
NC
Si O
PhMe
2
Si
Me
Me
Si
O
Pd
L
Si
Me
i-Pr
Me
i-Pr
R
PhMe
2
Si
Si
O
Me
Me
Me
NC
Si O
Me
PhMe
2
Si
Me
Me
PhMe
2
Si
Si
O
Me
Me
NC
Si O
PhMe
2
Si
Me
Me
Me
Me
Me
Me
Me
Me
PhMe
2
Si
Si
O
Me
Me
NC
Si O
PhMe
2
Si
Me
Me
Me
Me
Me
OH
NC
OSi
PhMe
2
Si
Me
Me
PhMe
2
Si
OHPhMe
2
Si
NC
SiO
SiMe
2
PhPhMe
2
Si
Me
MePhMe2Si
OAcAcO
OAc OAc OAc
O
Et
Si
PhMe
2
Si
Me
Me
Intramolecular Bis-Silylation:
cat. Pd(OAc)
2
NC
95%
Si
O
PhMe
2
Si Me Me
Et
93:7
cat. Pd(OAc)
2
85%
>99:1
cat. Pd(OAc)
2
90%
93:7
cat. Pd(OAc)
2
Si
O
PhMe
2
Si Me Me
Et
cat. Pd(OAc)
2
94%
96:4
98%
93:7
cat. Pd(OAc)
2
96%
cat. Pd(OAc)
2
96:4
Murakami, M.; Suginome, M.; Fujimoto, K.; Nakamura, H.; Andersson,
P. G.; Ito, Y J. Am. Chem. Soc. 1993, 115, 6487.
1) PhMe
2
SiSiMe
2
Cl
Et
3
N
2) 1 mol% Pd(OAc)
2
O
Et
Si
PhMe
2
Si
Me
Me
82:18
97%
H
2
, Pd/C
Application to Polyacetate Synthesis:
NC
94%
Si
O
PhMe
2
Si Me Me
Et
92:8
1) PhMe
2
SiSiMe
2
Cl
Et
3
N
2) 1 mol% Pd(OAc)
2 85%, 2 steps
83%, 2 steps
93:7
PhLi
89%
Pd(OAc)
2
Si
O
PhMe
2
Si Me Me
Et
96%
Bis-Silylation of Alkynes:
Pd(OAc)
2
1) TFA
2) KF, H
2
O
2
3) Ac
2
O, Et
3
N
DMAP
44%, 3 steps
Murakami, M.; Suginome, M.; Fujimoto, K.; Nakamura, H.; Andersson, P.
G.; Ito, Y J. Am. Chem. Soc. 1993, 115, 6487.
93%
Et
" HN=NH "
Et
97%
89:11
Et
85:15
Murakami, M.; Oike, H.; Sugawara, M.; Suginome, M.;
Ito, Y Tetrahedron 1993, 49, 3933.
33A-15 3/14/96 11:44 PM
OO
Si H
OO
Si
OH OH
OO
Si H
OH OH
OO
Si H
OH OH
OO
Si H
OH OH
Me
Me
OO
Si H
OH OH
Me
Me
O
Si
i-Pr
R
1
R
2
O
i-Pr
i-Pr
H
i-Pr
Cl
4
Sn
O
Si
i-Pr
R
1
R
2
i-Pr
i-Pr
i-Pr
H
O
Cl
4
Sn
Me O
O
Si
Me Me
OH OH
Me O
O
Si
Me Me
anti:syn
OH OH
10 mol% SnCl
4
-80 °C
120:1
HF aq.
MeCN
Si
O
Me
O
Me
Me
Ti
67%, 2 steps
1) 10 mol% SnCl
4
, -80 °C
2) HF aq., MeCN
H
67%, 2 steps
50:1
Intramolecular Reduction of Ketones:
1) 10 mol% SnCl
4
, -80 °C
2) HF aq., MeCN
69%, 2 steps
40:1
Cl
Cl
Cl
Cl
Anwar, S.; Davis, A. P. Tetrahedron 1988, 44, 3761.
1) 10 mol% SnCl
4
, -80 °C
2) HF aq., MeCN
90%, 2 steps
250:1
O
O
Si
Me Me
Intramolecular Allylation:
TiCl
4
70%
58%, 2 steps
300:1
Anwar, S.; Bradley, G.; Davis, A. P. J. Chem. Soc., Perkin Trans. I 1991, 1383.
Me
1) 10 mol% SnCl
4
, -80 °C
2) HF aq., MeCN
syn:anti
92:8
SnCl
4
70%
OH OH
anti:syn
92:8
EtAlCl
2
92%
1,2-Asymmetric Induction:
Me
anti:syn
85:15
Reetz, M. T.; Jung, A.; Bolm, C. Tetrahedron 1988, 44, 3889.
For application to the synthesis of C-glycosides see:
Martin, O. R.; Rao, S. P.; Kurz, K. G.; El-Shenawy,
H. A. J. Am. Chem. Soc. 1988, 110, 8698.
33A-16 3/14/96 5:58 PM
O
BnO
BnO
BnO
O
Si
O
MeMe
Sugar
O
BnO
BnO
BnO
O
Si
O
Me
Me
Sugar
N
O
BnO
BnO
BnO
O
OH
O
OBn
OMe
BnO
BnO
O
AcO
AcO
AcO
SPh
OSi
Me
Me
O
O
OMe
BnO
BnO
BnO
O
AcO
AcO
AcO
HO
O
O
OMe
BnO
BnO
BnO
Intramolecular Anodic Olefin Coupling:
O
Si
Me
Me
MeO
Me Me
OSiMe
2
OMe
MeO
MeO
Me
Me
O
Si
MeO
Me
Me
Me
Me
Synthesis of Disaccharides via Intramolecular Nucleophile Delivery:
+
+
Tf
2
O
workup
68%
Only β-Mannoside
O
Si
Me
MeO
1 isomer
Stork, G.; Kim, G. J. Am. Chem. Soc. 1992, 114, 1087.
Note: Intermolecular variant gives exclusively α-Mannoside.
NIS, MeNO
2
74%
Me Me
RVC anode
0.4N LiClO
4
in
50% MeOH/THF
Constant current
2.0 F/mole
2,6-lutidine
Bols, M. Tetrahedron 1993, 49, 10049.
RVC anode
0.4N LiClO
4
in
50% MeOH/THF
Constant current
2.0 F/mole
2,6-lutidine
OSiMe
2
OMe
MeO
MeO
Me
+
.
E:Z
3:2
72%
1 isomer
33%
Only α-Glucoside
E:Z = 50:1
Moeller, K. D.; Hudson, C. M.; Tinao-Wooldridge, L. V. J. Org. Chem. 1993, 58, 3478.
O
BnO
BnO
BnO
O
Si
O
OMe
BnO
BnO
BnO
MeMe
SPh
O
O
33A-17 3/14/96 11:54 PM