Chemistry 206
Advanced Organic Chemistry
Handout–36A
Intramolecular Enone-Olefin
Photocycloadditions Directed Toward Natural
Product Synthesis
Matthew D. Shair FridayDecember 20, 2002
Travis Dunn
Evans Group Seminar, March 31, 2000
DAE Group Friday Afternoon Seminar
March 31, 2000
Intramolecular Enone-Olefin Photocycloadditions
Directed Toward Natural Product Synthesis
Travis Dunn
DAE Group Friday Afternoon Seminar
March 31, 2000
O O
hν
Lead References:
a73 Intramolecular Enone-Olefin Photocycloaddition
Crimmins, M.T. Chem. Rev. 1988, 88, 1453-1473.
a73 Cycloaddition/Fragmentation Strategies in Synthesis
Winkler, J.D., et al. Chem. Rev. 1995, 95, 2003-2020.
a73 Mechanism of Enone-Olefin Photocycloaddition
Schuster, D.I., et al. Chem. Rev. 1993, 93, 3-22.
Introduction and Scope
I) Mechanistic considerations of the enone-olefin photocycloaddition
II) Selected synthetic examples:
A) The Oppolzer syntheses
B) The Pattenden syntheses
C) The Pirrung syntheses
D) One hit wonders
E) The Crimmins syntheses
F) The Winkler syntheses
The following will not be covered in this seminar:
I) Non-target motivated studies of the intramolecular photocycloaddition
II) Intramolecular Paterno-Büchi reactions
III) Intramolecular ketene cycloadditions
IV) Other intramolecular photocycloadditions (e.g. arene-olefin meta cycloadditions)
36A-01-Handout 3/31/00 1:29 PM
Mechanistic Considerations of the Enone-Olefin Photocycloaddition
Schuster, D.I., et al. Chem. Rev. 1993, 93, 3.
Enone
Enone
1
Enone
3
Alkene
1,4 Biradical
3
Adducts
1,4 Biradical
1
Adducts
Product
O
hν
Inter-
System
Crossing
Exciplex
Inter-
System
Crossing
Product
formation
Reversion
to starting
materials
O
1
O
3
O
X
X
O
X
O
X
3
3
O
X
O
X
1
1
+
+
O
X
Enone
O
Alkene
X
+
3
Decay
?
?
Possibility of alkene
isomerization
The source of light is usually a mercury lamp. A filter is usually
used to remove light below a certain wavelength. The two most
common are Pyrex glass, which allows light with λ > 290 nm to
pass, and "uranium" glass, which allows light with λ > 350 nm
wavelength to pass.
A note on light sources:
O
X
This product
can also arise
via similar
intermediates
(±) β-Bulnesene and Epi-β-bulnesene
O
OAc
Me
H
OMe
hν, Pyrex, c-Hex,
rt, 3 h
α:β 3.3: 1
Oppolzer, W., et al. Helv. Chim. Acta., 1980, 63, 1198.
OAc
H
Me
H
O
OAc
H
Me
H
O
H
Me
OAc
Me
MsO
OH
1) MeMgI, Et
2
O
Me
O
H Me
H
MeMe
HO
OH
Me
H Me
Me
Me
2) KOH, dioxane
67%
MsCl,
NEt
3
Ph
3
P=CMe
2
72%
α: 1-Epi-β-bulnesene
β: β-Bulnesene
Major Product
Stereochemical rationale (TBD)
Grob
76%
Unknown mixture
67%
Prepared in 5 steps and 23% yield
from 3-methyl-5-bromo-1-pentene
36A-02-Handout 3/31/00 1:30 PM
(+)-Longifolene and (+)-Sativene
Oppolzer, W., et al. J. Am. Chem. Soc. 1978, 100, 2583.
Oppolzer, W., et al. Helv. Chim. Acta. 1984, 67, 1154.
Three steps
77%
O
O
OBn
O
COOH
H
H
hν, Pyrex,
cyclohexane,
rt, 2 h
3:2 epimeric mixture
at starred carbon
95% ee
H
2
, Pd/C
AcOH
96%
O
OCO
2
Bn
O
OCO
2
Bn
H
H
O
H
O
H
H
Me
Me
Me
Me
Me
Me
(+)-Longifolene
(+)-Sativene
Six steps
47%
Ten steps
18%
85% ee
This intermediate could be
recrystallized to optical
purity in 56% yield.
H
*
H
(±)-Epiprecapnelladiene
Pattenden, G., et al. J. Chem. Soc., Perkin Trans. I 1983, 1913.
Pattenden, G., et al. J. Chem. Soc., Chem. Comm. 1980, 1195.
OMe
OMe
O
OBz
Me
Three steps
56%
O
Me
OBz
H
hν, Pyrex
hexane, rt, 6 h
98%
1) LiHMDS, MeI
2) KOH, DMSO
Me
H
H
Me
Me
O
O
36%
Me
H
Me
Me
Me
Six steps
28%
Stereochemical rationale (Pattenden)
O
OBz
H
Me
H
O
OBz
H
Me
Irradiation of the enol acetate resulted
in a 92:8 mixture, presumably due to
the smaller size of the acetate versus
benzoate.
One diastereomer
Epiprecapnelladiene
36A-03-Handout 3/31/00 1:32 PM
(±)-Isocomene
Pirrung, M.C. J. Am. Chem. Soc. 1979, 101, 7130.
Me
Me
O
Me
Me
O
Me
hν (350 nm), hexane,
rt, 24h
77%
Me
Me
Ph
3
P=CH
2
77%
Me
Me
Me
Me
TsOH, C
6
H
6
98%
One isomer
Isocomene
Me
Me
Pirrung, M.C. J. Am. Chem. Soc. 1981, 103, 82.
O
Me
OEt
Three steps
73%
(±)-Pentalenene
O
OTBS
Me Me
O
H
OTBS
Me Me
hν, Pyrex,
hexane, rt, 7h
81%
H
OTBS
Me Me
Me
3
CuLi
2
MeMe
H
Me
O
HF, H
2
O
THF
82%
73%
MeMe
H
Me
Me
MeMe
H
Me
Me
BF
3
?OEt
2
CH
2
Cl
2
42%
38%
"only product"
MeMe
H
Me
Me
30%
(±) Pentalenene
Pattenden, G., et al.Tetrahedron 1987, 43, 5637.
Me
OH
1) Ph
3
P=CH
2
2) RhCl
3
?3H
2
O
Pattenden, G., et al. Tetrahedron Lett. 1984, 25, 3021.
Prepared in eleven steps and 28%
yield from 2,2-dimethyl-4-pentenal
36A-04-Handout 3/31/00 1:33 PM
Me
(-)-Paeoniflorin
Hatakeyama, S., Takano, S., et al. J. Am. Chem. Soc. 1994, 116, 4081.
Me H
OO
O
O
O
COOMe
Me
Ten steps
47%
O
O
Me
MeOOC
Me
O
O
Me
MeOOC
Me
hν (350 nm), hexane,
64%
O
Me
MeOOC
Me
H
O
R
*
O
O
O
O
OH
BzO
O
OH
HO
HO
OH
H
1) NaBH
4
2)Acylation
3)Resolution
(-)-Paeoniflorin
Twelve steps
10%
47%
(±)-Pentalenolactone G Methyl Ester
Pirrung, M.C., et al. J. Org. Chem. 1988, 53, 227.
O
O
COOMe
Me
Me
O
H
O
O
O
Me
Me
O
O
Me
Me
O
O
Me
Me
Two steps
46%
H
O
O
Me
Me
H
MeO
O
hν, Pyrex,
CH
2
Cl
2
, rt
70%
Four steps
62%
O
O
Me
Me
MeO
O
H
O
LiBr, HMPA
C
6
H
6
95%
Nine steps
2%
Pentalenolactone G
Methyl Ester
Pirrung, M.C., et al.Tetrahedron Lett. 1986, 27, 2703.
Me
Mixture of anomers.
One anomer.
Stereochemistry
unknown.
36A-05-Handout 3/31/00 1:34 PM
H
(±)-Valeranone
Takeshita, H. et al. Bull. Chem. Soc. Jpn. 1993, 66, 2699.
Me
Me
O
Me
Me
O
O
O
Me
H
Me
O
O
Me
Me
O
Me
Me
O
O
TsOH
61%
hν, Pyrex,
MeCN/acetone (9:1),
0-15
o
C, 10h
H
O
O
Me
Me
OH
Me
Me
Me
Me
OO
1) DIBAL-H
2) TsOH
98%
50%
Seperable mixture
α:β 3:2
Me
Me
O
Four steps
74%
1:1 mixture of diastereomers.
Separated after photolysis.
4:1 mixture
Valeranone:7-Epi-valeranone
7
Studies toward Cytochalasin C
Fuchs, P.L., et al. J. Org Chem. 1982, 47, 3121.
O
EtO Me
O
O
Br
Seventeen
steps
17%
O
O
Me
S
O
Me
Me
Me
O
O
O
Me
Me
Me
Me
SO
2
O
HH
O
O
O
Me
Me
Me
Me
SO
2
O
HH
O
hν (254 nm), MeCN,
rt, 40 min
94%
Oxidation state crucial
O
O
Me
Me
Me
Me
SO
2
O
HH
O
Base
OO
3.7 : 1.0
Me
Me
OH
H
NH
H
Bn
Me
OH
O
Me
O
OAc
Cytochalasin C
36A-06-Handout 3/31/00 1:35 PM
(±)-Hibiscone C
Smith, A.B., III, et al. J. Am. Chem. Soc. 1984, 106, 2115.
OEtO
i-Pr
O
i-Pr
H
Six steps
60%
O
i-Pr
O
i-Pr
HH
hν, uranium glass,
hexane, rt, 24h
60%
O
O
i-Pr
H
O
3
; Ph
3
P
TsOH, C
6
H
6
50%
Four steps
7%
O
O
i-Pr
H
O
Me
O
i-Pr
H
CHO O
1.5 : 1.0
Not isolated
Smith, A.B., III, et al. J. Am. Chem. Soc. 1982, 104, 5568.
Hibiscone C
Studies toward Perhydrohistrionicotoxin
Smith, A.B., III, et al. J. Org. Chem. 1984, 49, 832.
O
n-C
4
H
9
OEt
O
n-C
4
H
9
Three steps
42%
O
n-C
4
H
9
1) NaBH
4
2) O
3
; Ph
3
P
3) Ac
2
O, DMAP
OAc
O
n-C
4
H
9
CHO
OAc
O
n-C
4
H
9
CHO
hν, uranium glass,
MeOH,NaOAc
rt, 2 d
Photoadduct not
isolable
17%9%
OAc
O
n-C
4
H
9
H
Wilkinson's
catalyst
OH
n-C
4
H
9
H
H
N
n-C
5
H
11
Perhydrohistrionicotoxin
36A-07-Handout 3/31/00 1:36 PM
Me
(±)-Hirsutene
O
O
O
O
C
6
H
6
90%
O
O
HH
Me
H
OO
hν, Pyrex, EtOAc,
rt, 30 min
85%
Flash
Vacuum
Pyrolysis
500
o
C
"Quantitative"
Seven steps
8%
Formal syntheses of capnellene and coriolin were reported
using a similar photoaddition/fragmentation reaction.
Me
Me
Hirsutene
Mehta, G., et al. J. Am. Chem. Soc. 1986, 108, 3443.
Me
Me
Me
Me
O
O
Me
Me
HH
Me
H
Me
Me
Mehta, G., et al. J. Chem. Soc., Chem. Comm. 1981, 756.
H
(±)-Pentalenene, (±)-Pentalenic Acid and
Crimmins, M.T., et al. J. Am. Chem. Soc. 1986, 108, 800.
(±)-Deoxypentalenic Acid from a Common Precursor.
COOEt
O
Me
Me
COOMe
Me
O
Me
Me
Me
COOMe
COOEt
H
hν, uranium glass
hexane, rt, 36 h
73%
9
Me
O
COOR
Me
Me
COOEt
H
Me
O
C
O
O
R
Me
Me
COOEt
HH
Consistent with predominant stereochemistry at C-9
Stereochemical rationale (Crimmins)
Crimmins, M.T., et al. J. Org. Chem. 1984, 49, 2076.
R C-9 dr
Me
Et
i-Pr
13:1
17:1
>20:1
O
Me
Me
Me
COOMe
COOEt
H
9
1 : 13
+
COOMe
COOMe
Me
Me
Three steps
44%
Varying the size of the
indicated alkyl group
influenced the
stereoselectivity
The stereochemistry at the starred carbon was
not determined, but the products were isolated
as a mixture.
36A-08-Handout 3/31/00 1:37 PM
R=H, R'=Me, Pentalenene,
nine steps, 27%
R=OH, R'=COOH, Pentalenic acid,
eight steps, 42%
R=H, R'=COOH, Deoxypentalenic acid,
eleven steps, 22%
R
Me
Me
Me
H
R'
H
O
Me
Me
Me
O
H
Three steps
89%
Me
Me
OH
COOMe
COOEt
Me
Li, NH
3
, THF
90%
Reduction performed on mixture of photoadducts.
Diastereomers separated after reduction.
O
Me
Me
Me
COOMe
COOEt
H
9
O
Me
Me
Me
COOMe
COOEt
H
9
1 : 13
+
(±)-Pentalenene, (±)-Pentalenic Acid and
(±)-Deoxypentalenic Acid from a Common Precursor.
Steps
Crimmins, M.T., et al. J. Am. Chem. Soc. 1986, 108, 800.
Crimmins, M.T., et al. J. Org. Chem. 1984, 49, 2076.
(±)-Silphinene
Crimmins, M.T., et al. J. Am. Chem. Soc. 1986, 108, 3435.
Me
Me
H
Me
Me
Me
Me
Me
O
Me
Me
Me
O
H
Me
Me
H
Me
CH
2
I
O
Me
Me
O
Crimmins, M.T., et al. Tetrahedron Lett. 1985, 26, 997.
Seven steps
46%
hν, uranium glass
hexane, rt, 4 h
94%
Me
Me
H
Me
Me
O
TMSI
MeCN
reflux
89%
Bu
3
SnH, C
6
H
6
98%
63%
Silphinene
2) Li, MeNH
2
1) LDA, THF
(EtO)
2
POCl
Plus a 14% yield of
isosilphinene
36A-09-Handout 3/31/00 1:38 PM
(±)-Laurenene
Crimmins, M.T., et al. J. Am. Chem. Soc. 1987, 109, 6199.
Me
Me
Me
O
Me
COOMe
Me
Me
Me
H
Me
Me
Me
Me
Me
H
Me
COOEt
O
Me
Me
Me
H
Me
O
COOEt
Me
Me
Me
H
Me
O
COOMe
H
H
Me
Me
Me
H
O
COOMe
H
Me H
hν, uranium glass
100
o
C, PhCl
87%
1.5:1 α:β at starred carbon
*
Crimmins, M.T., et al. Tetrahedron Lett. 1985, 26, 997.
*
Three steps
89%
1) Na, NH
3
, Et
2
O
2) H
2
, Pd/C
80%
Eight steps
7%
Prepared in twelve steps
and 27% yield from
4,4-Dimethyl-cyclopenteneone
Laurene
O
O
O
COOMe
Me
MeMe
Me
O
O
Me
Me
Me
H
Me
H
O
E
O
O
Me
Me
Me
H
Me
H
O
E
For E=Me, MM2 calculations
suggest that 1 should be
more stable than 2 by 1.1
kcal/mol.
1
2
O
O
E
O
MeMe
Me
Me
O
O
E
O
MeMe
Me
Me
H
3
4
hν
97%
H
H
(±)-Lubiminol
O
O
O
Me
MeMe
Me
H
H
O
O
O
Me
MeMe
Me
H
H
H
COOMe
3
COOMe
483:17
Crimmins, M.T., et al. J. Am. Chem. Soc. 1998, 120, 1747.
Crimmins, M.T., et al. Tetrahedron Lett. 1996, 37, 8703.
36A-10-Handout 3/31/00 1:39 PM
Me
O
O
O
COOMe
Me
MeMe
Me
(±)-Lubiminol
O
O
H
H
O
O
E
H
O
MeMe
Me
Me
O
O
E
H
O
MeMe
Me
Me
H
7
8
Me
Me
Me
E
O
Me
O
O
H
HMe
Me
Me
O
E
5
6
H
H
O
O
O
Me
MeMe
Me
H
H
For E=Me, MM2 calculations
suggest that 5 should be
more stable than 6 by 1.5
kcal/mol.
COOMe
7
Only isolated product
hν
98%
Crimmins, M.T., et al. J. Am. Chem. Soc. 1998, 120, 1747.
Crimmins, M.T., et al. Tetrahedron Lett. 1996, 37, 8703.
(±)-Lubiminol
Crimmins, M.T., et al. J. Am. Chem. Soc. 1998, 120, 1747.
EtO
OOH
Five steps
48%
O
O
O
COOMe
Me
MeMe
Me
H
H
O
O
H
COOMe
H
O
Me
Me
Me
Me
hν, uranium glass
hexane/CH
2
Cl
2
rt, 15 h
98%
OH
O
H
COOMe
H
O
Me
Me
77%
imid
S
2) (imid)
2
C=S,
O
COOMe
OH
OH
H
COOMe
O
Me
Me
H
H
Bu
3
SnH
AIBN
92%
OH
CH
2
OHMe
α:β 2:3
Dowd-
Beckwith
Eleven steps
12%
Lubiminol
1) TsOH, H
2
O
DMAP
Crimmins, M.T., et al. Tetrahedron Lett. 1996, 37, 8703.
36A-11-Handout 3/31/00 1:39 PM
(±)-Bilobalide
O
O
X
TMSO
t-BuY
O
O
TMSO
t-Bu
Y
X
O
O
COOEt
TMSO
O
O
TMSO
COOEt
O
O
COOEt
O
O
COOEt
hν, uranium glass
hexane/CH
2
Cl
2
rt, 6 h
78%
one diastereomer
hν, uranium glass
hexane/CH
2
Cl
2
rt, 5 h
100%
O
O
COOEt
1.5 1.0
t-Bu
t-Bu t-Bu
Crimmins, M.T., et al. J. Am. Chem. Soc. 1993, 115, 3146.
Crimmins, M.T., et al. J. Am. Chem. Soc. 1992, 114, 5445.
t-Bu
OH
O
O
O
O
O
O
OH
Bilobalide
(±)-Bilobalide
O
COOEt
OTMSO
O
TMSO
O
EtOOC
O
COOEt
O
O
O
EtOOC
t-Bu
t-Bu
O
COOEt
OTMSO
O
TMSO
O
COOEt
O
TMSO
O
EtOOC
O
TMSO
O
COOEt
O
COOEt
O
O
O
EtOOC
t-Bu
t-Bu
O
O
COOEt
O
O
COOEt
t-Bu
t-Bu
1
2
3
4
Desired
Undesired
Desired
Undesired
MM2 calculations suggested that 1 was more favored than 2 by approximately 1.6 kcal/mol, while there was almost no
difference in energy between 3 and 4 (0.2 kcal/mol).
Crimmins, M.T., et al. J. Am. Chem. Soc. 1993, 115, 3146.
Crimmins, M.T., et al. J. Am. Chem. Soc. 1992, 114, 5445.
36A-12-Handout 3/31/00 1:41 PM
OH
(±)-Bilobalide
O
OHC
Seven steps
20%
O
O
OPiv
TMSO
t-BuHO
O
O
TMSO
t-Bu
OH
OPiv
O
O
TMSO t-Bu
OH
OPiv
O
O
TMSO
t-Bu
OH
OPiv
hν, uranium glass
hexane, rt, 18 h
80%
5%
25%
50%
MeOOC O
t-Bu
OH
OPiv
O
MeO
O
OPiv
OTMSO
t-Bu
OH
O
OPiv
OTMSO
t-Bu
LDA, MoOPH
76%
2) MeOH, TsOH
92%
O
O
TMSO
t-Bu
OH
OPiv
HO
1) Pb(OAc)
4
, MeOH
Crimmins, M.T., et al. J. Am. Chem. Soc. 1993, 115, 3146.
Crimmins, M.T., et al. J. Am. Chem. Soc. 1992, 114, 5445.
(±)-Bilobalide
MeOOC O
t-Bu
OH
OPiv
O
MeO
O
t-Bu
OH
O
MeO
O
1) LiAlH
4
2) Pb(OAc)
4
80%
t-Bu
OH
O
MeO
O
O
O
m-CPBA
94%
t-Bu
OH
O
O
O
O
O
t-Bu
OH
O
O
O
O
O
O
OH
Jones
reagent
99%
1) dimethyldioxirane
2) Jones reagent
81%
Bilobalide
Crimmins, M.T., et al. J. Am. Chem. Soc. 1993, 115, 3146.
Crimmins, M.T., et al. J. Am. Chem. Soc. 1992, 114, 5445.
36A-13-Handout 3/31/00 1:42 PM
Crimmins, M.T. et al. J. Am. Chem. Soc. 1999, 121, 10249.
(±)-Ginkgolide B
Eight steps
71%
O
O
COOEt
TESO
O
O
TESO
COOEt
hν, uranium glass
hexane, rt, 18 h
100%
t-Bu
O
EtOOC
t-Bu
Crimmins, M.T. et al. Tetrahedron Lett. 1989, 30, 5997.
O
O
t-Bu
O
O
Four steps
49%
O
O
t-Bu
O
O
OH
OMe
OMe
O
O
O
O
O
O
O
t-Bu
H
OH
HO
H
Me
HO
dimethyldioxirane
2) MeOH, TsOH,
89%
1) H
2
O, TsOH
CH(OMe)
3
Twelve steps
11%
Ginkgolide B
One isomer
Synthesis of the Core of the Ingenane Diterpenes
Winkler, J.D., et al. J. Am. Chem. Soc. 1987, 109, 2850.
O
O
O
O
Me
Me
H
Three steps
40%
O
O
O
Me
Me
H
H
H
O
COOH
hν, Pyrex
MeCN, Acetone (9:1)
0
o
C, 90 min
83%
KOH
MeOH
83%
O
O
O
Me
Me
H
H
One isomer
H
HO
O
CH
2
OH
Me
Me
H
H
Me
HO
HO
Ingenol
Stereochemical rationale (Winkler)
Ingenane Core
36A-14-Handout 3/31/00 1:44 PM
Synthetic Studies Toward the Taxane Core
Winkler, J.D., et al.Tetrahedron Lett. 1986, 27, 5959.
OO
Me
H
O
Me Me
OMe
H
OH
O
Me
H
OMe
H
O
O
Me
Me
HO
OH
H
Me
OMe
EHO
H
hν, Pyrex
MeCN/Acetone (9:1)
rt, 30 min
75%
1) KOH, MeOH
2) CH
2
N
2
82%
Winkler, J.D., et al. J. Org. Chem. 1989, 54, 4491.
Winkler, J.D., et al.Tetrahedron 1992, 48, 7049.
E=COOMe
O
HO
Me
O
H
Me
Me
O
AcO
OH
AcO
Me
Ph
NHBz
OH
O
Taxol
O
O
Me
HH
O
Me
Me
hν, Pyrex
MeCN/Acetone (9:1)
rt
Me
HH
O
O
O
Me
Me
None of the desired photoadduct
could be isolated.
One isomer
(-)-Perhydrohistrionicotoxin
Winkler, J.D., et al. J. Am .Chem. Soc. 1989, 111, 4852.
HN
O
Br
O
H
N
n-C
5
H
11
OO
O
Me Me
Six steps
34%
O
HN
O
O
O
Me
Me
n-C
5
H
11
HH
N
OO
O
H
C
5
H
11
H
O
Me Me
N
H
C
5
H
11
H
O
O
O
O
Me
Me
H
H
HN
O
O
n-C
5
H
11
O
1) NaBH
4
2) NaH, THF
63%
hν, Pyrex, MeCN,
0
o
C, 30 min
95%
Derived from
glutamic acid
HN
n-C
4
H
9
n-C
5
H
11
15:1 ratio of epimers at starred
carbon. Major isomer shown.
Minor isomer epimerizes to major
upon chromatography.
Seven steps
43%
OH
Stereochemical rationale (Winkler)
*
Perhydrohistrionicotoxin
Winkler, J.D., et al. Tetrahedron Lett. 1986, 27, 5177.
36A-15-Handout 3/31/00 1:45 PM
Formal Synthesis of Vindorosine
Winkler, J. D., et al. J. Am. Chem. Soc. 1990 112, 8971.
N
Me
N
Et
OAc
COOMe
OHH
N
H
COOH
NHCbz
N
Cbz
HN
O
O
O
Me
Me
O
Five steps
48%
N
Cbz
NH
(RO)
3
C
H
Me
O
H
N
Cbz
N
(RO)
3
C
H
Me
O
N
Me
NAc
H
O
hν, Pyrex, MeCN,
0
o
C, 65 min
91%
One diastereomer
Eight steps
20%
NC(OR)
3
H
N
O
Me
H
Cbz
H
Stereochemical rationale (Winkler)
Intermediate in Büchi's
racemic synthesis
Büchi, G., et al. J. Am. Chem. Soc. 1971, 93, 3299.
Büchi
L-Tryptophan
>97%ee
C(OR)
3
=
O
O
O
Me
Vindorosine
Eight steps
3%
(±)-Manzamine A
Winkler, J.D., et al. Tetrahedron Lett. 1993, 34, 6509.
N
N
N
H
N
H
H
OH
H
PN
N
O
H
H
H
PN
N
O
H
H
YY
PN
N
H
H
Y
H
O
N
H
Y
Manzamine A
O
PN
Winkler, J.D., et al. Isr. J. Chem. 1997, 37, 47.
Winkler, J.D., et al.Tetrahedron 1998, 54, 7045.
Winkler, J.D., et al. J. Am. Chem. Soc. 1998, 120, 6425.
PN O
N
H
H
H
Y
RR
RR
R
For an analysis of the total synthesis of Manzamine A, see
the Evans Group Seminar "Approaches the the Total
Synthesis of the Manzamine Alkaloids," Hemaka
Rajapakse, Jan. 21, 2000.
36A-16-Handout 3/31/00 1:46 PM
(±)-Manzamine A
MeN
N
H
H
H
Me
O
N
H
Me
O
MeN MeN O
N
H
H
H
Me
Model system: Saturated ring
Wrong relative
stereochemistry at
three new centers.
hν, Pyrex
benzene, rt, 90 min
100%
Possible solution: Epimerize after cyclization
N
H
Me
O
MeOOCN
O
hν, Pyrex
MeCN, rt, 1h
25% N
Me
MeOOCN
O
N
Me
O
MeOOCN
O
Only isolable product is from
photochemical cleavage,
rearrangement.
PN
N
O
H
H
H
Manzamine Core
Winkler, J.D., et al. Tetrahedron Lett. 1993, 34, 6509.
Winkler, J.D., et al. Isr. J. Chem. 1997, 37, 47.
Winkler, J.D., et al.Tetrahedron 1998, 54, 7045.
Winkler, J.D., et al. J. Am. Chem. Soc. 1998, 120, 6425.
(±)-Manzamine A
N
H
Me
O
MeOOCN
HO
MeOOCN
N
O
H
H
H
HO
1) hν, Pyrex
MeCN, 0
o
C,
2) NEt
3
?HCl
3) DMAP
12 h
41%
Solution to the solution: Mask the ketone
as an easily accessible alcohol
MeOOCN
N
O
H
H
H
O
PN
N
O
H
H
H
Manzamine Core
dr 2.3:1.0
Major
Swern
Readily available by L-Selectride
reduction of the ketone
MeOOCN
N
O
H
H
H
HO
MeOOCN
N
O
H
H
H
O
Minor
Swern
Again, the predominant product has
the wrong stereochemistry and
cannot be isomerized to the correct
stereochemistry.
1
2
1
NaOMe
MeOH
Ent-2
Winkler, J.D., et al. Tetrahedron Lett. 1993, 34, 6509.
Winkler, J.D., et al. Isr. J. Chem. 1997, 37, 47.
Winkler, J.D., et al.Tetrahedron 1998, 54, 7045.
Winkler, J.D., et al. J. Am. Chem. Soc. 1998, 120, 6425.
36A-17-Handout 3/31/00 1:47 PM
(±)-Manzamine A
N
H
Me
O
MeOOCN
HO
MeOOCN
N
O
H
H
H
HO
1) hν, Pyrex
MeCN, 0
o
C,
2) NEt
3
?HCl
3) DMAP
3 h
50%
PN
N
O
H
H
H
Manzamine Core
dr 2.5:1.0
Minor
Minor diastereomer of ketone
reduction with NaBH
4
.
MeOOCN
N
O
H
H
H
HO
Major
The correct stereochemistry is
obtained as the major product, but
this substrate is synthetically
inaccessible in high yield.
Partial solution: The opposite diastereomer
provides the desired stereochemistry
Winkler, J.D., et al. Tetrahedron Lett. 1993, 34, 6509.
Winkler, J.D., et al. Isr. J. Chem. 1997, 37, 47.
Winkler, J.D., et al.Tetrahedron 1998, 54, 7045.
Winkler, J.D., et al. J. Am. Chem. Soc. 1998, 120, 6425.
(±)-Manzamine A
N
H
O
BocN
1) hν, Pyrex
MeCN, rt,
2) Pyr?AcOH
6 h
20%
BocN O
N
H
H
HR
BocN
N
O
H
H
H
R
R
R=
OH
Ultimate solution: The olefinic linkage in the natural product
provides for the correct stereoinduction
N
N
N
H
N
H
H
OH
H
Manzamine A
Steps
One diastereomer
Stereochemistry not
determined
See Rajapakse seminar
Winkler, J.D., et al. Tetrahedron Lett. 1993, 34, 6509.
Winkler, J.D., et al. Isr. J. Chem. 1997, 37, 47.
Winkler, J.D., et al.Tetrahedron 1998, 54, 7045.
Winkler, J.D., et al. J. Am. Chem. Soc. 1998, 120, 6425.
36A-18-Handout 3/31/00 1:47 PM
Me
Me
(±)-Saudin
Winkler, J.D., et al. J. Am. Chem. Soc. 1999, 121, 7425.
O
O
O
O
Me
Me
O
Me
O
O
H
Winkler, J.D., et al. Tetrahedron Lett. 1998, 39, 2253.
O
O
O
Me
O
X
Me
Me
O
Me
Me
Y
O
O
O
Me
Me
O
O
Y
Me
Me
X
Me
Me
OO
O
O
O
Me Me
Me
H
Me
O
Me
O
O
O
Me
H
O
Me
Me
Me
O
O
H
O
O
O
Me Me
H
Me
Me
OO
O
O
O
Me Me
H
1
3
2
4
MM2 calculations
suggest that 1 should
be approximately 1.6
kcal/mol more stable
than 3.
Irradiation of the substrate
(Pyrex, MeCN/Acetone
(9:1), 0
o
C, 2 h) led to the
formation of a 2.5:1
epimeric mixture of 2 in
97% yield.
Saudin
Me
Me
*
O
Me
(±)-Saudin
O
O
O
O
Me
Me
O
Me
O
O
H
O
O
O
O
O
Me
OMe
H
Me
Me
OO
O
O
O
Me Me
O
O
Me
Me
Me
OO
O
O
O
Me Me
O
O
Me
H
Me
Me
OO
O
O
O
Me Me
O
Me
H
O
Me
COOH
O
O
O
O
Me
Me
H
O
Saudin
hν, Pyrex
MeCN/acetone (9:1)
0
o
C, 30 min
80%
One diastereomer
1) n-BuLi, THF, TMEDA,
2) (3-furyl)SnBu
3
, LiCl,
-95
o
C; Tf
2
O
Pd(AsPh
3
)
4
, THF, reflux
77%
LiOH
MeOH
PPTS, C
6
H
6
52%
16%
Eleven steps
O
O
Me
OH
Winkler, J.D., et al. J. Am. Chem. Soc. 1999, 121, 7425.
Winkler, J.D., et al. Tetrahedron Lett. 1998, 39, 2253.
36A-19-Handout 3/31/00 1:48 PM
Conclusions
a73 Intramolecular enone-olefin photocycloaddition is useful for the
stereoselective contruction of carbocycles, especially five membered rings.
a73 Multiple quaternary and congested centers can be
constructed in a single operation.
a73 Stereoinduction from existing stereocenters is usually explicable
in a rational and satisfying manner.
a73 Molecular modeling simulations have proven useful in predicting the
stereoselectivity of several photocycloadditions.
a73 Great creativity is possible in the fragmentation of the derived
cyclobutane to access useful synthetic intermediates.
a73 A lack of complete mechanistic understanding has not prevented the successful
application of the enone-olefin photocycloaddition to a great many synthetic challenges.
36A-20-Handout 3/31/00 1:49 PM