Chemistry 206
Advanced Organic Chemistry
Handout–32B
The Aza-Cope Rearrangement. Background and
Application to Alkaloid Synthesis
Matthew D. Shair Monday ,
December 9, 2002
Review:
Heimgartner, H. In "Iminium Salts in Organic Chemistry";
Bohme, H., Viehe, H., Eds.; Wiley: New York, 1979; Part 2,
pp 655-732.
Mike Calter
Evans Group Seminar
March 26, 1991
The Aza-Cope Rearrangement
D. A. Evans, M. Calter
Chem 115
Review:Heimgartner, H. In "Iminium Salts in Organic Chemistry";Bohme, H., Viehe, H., Eds.; Wiley: New York, 1979; Part 2,pp 655-732.
The 3-aza-Cope Rearrangement:
[3,3]
Exothermic as written by ~7-10kcal/mole.
a73
Ammonium Variant:
[3,3]
+
+
Even more exothermic than the neutral version,since enamine lacks resonance and iminium salthas stronger p-Bond than imine does.
1
2
3
1
2
3
a73
Neutral Variant:
a73
2-aza-Cope Rearrangement:
3
2
1
+
[3,3]
+
1
2
In the simplest case, degenerate. Sterics or con-jugation, or selective trapping of a particularisomer, will drive equilibrium to one side. As withthe 3-aza-Cope, the cationic version goes undermuch milder conditions.
a73
1-aza-Cope Rearrangement:
3
2
1
3
2
1
[3,3]
The 3-aza-Cope rearrangement can be drivenin reverse by judicious choice of substrates(i.e., incorporating the imine into a strained ring orby making R an acyl group).
The 3-aza-Cope Rearrangement
First Neutral Case: Hill TL
1967
, 1421.
250
o
C,
1 hr
"Practically quantitative", no realyields given.
First Cationic Case: Elkik
Compt. Rend.
1968
,
267
, 623.
80
o
C,
2-3 hr
+
+
H
2
O
No yields given.
Good way to allylate aldehydes: Opitz
Angew. Chem.
1960
,
72
, 169.
?
+
H
2
O
+
+
+
-H
2
O
NN
R
R
N
N R
R
R
R
N R
N R
N
R
N
R
N
Me
Me
Me
N
Me
Me
Me
Me
N
Me
Me
N
Me
Me
Me
Me
Me
OHC
R'
Me
R
OHC
Me
N
H
R'
'
R''
R
R'
N
R'
'
R''
X
R'''
N
R'
'
R'
'
R'
R
R'''
R'''
R
OHC
R'''
R'
N
R'
'
R
R'
R'
'
32B-01
11/24/93
9:24 AM
N-Acyliminium Ion Rearrangements
Synthesis of (-)-hastanecine: Hart JOC
1985
, 50, 235.
1)MeC(OEt)
3
,
H
+
, 145
o
C
2)OH
-
3)SO
2
Cl
4)Curtius5)TFA 52%
+
81%
NaBH
4
,
MeOH,83%
HCO
2
H
++
MeOH,H
2
O, 89%
overall
1)H
2
, Pd/C
2)AcCl 90%
HgO,I
2
85%
1)Bu
3
SnH
2)LiAlH
4
82%
(-)-hastancine
2
is the sole product in 91% yield.
N-Acyliminium Ion Rearrangements: Hart JOC
1985
, 50, 235.
Hart observed an unusual product while trapping the intermediates of N-acyliminium olefin cyclizations.
TFA
+
No Et
3
SiH,
normal,well-precedentedreaction, 74% yield
Et
3
SiH,
73%
Expected product of iminium salt reduction.
3 : 5
+
Unexpected, must be productof 2-aza-Cope, followed byreduction.
3 and 4 substitution favors the rearrangement.
HCO
2
H
+
3
4
cycln.
+
+
2-aza-Cope
1
2
The Aza-Cope Rearrangement
D. A. Evans, M. Calter
Chem 115
N OH
O
C
3
H
7
C
3
H
7
O
N
N
O
C
3
H
7
CF
3
CO
2
N
O
C
3
H
7
C
3
H
7
O
N
Me
O
N
N
O
O
H
Me
Me
O
Me
N
O
A
N
O
Me
O
Me
Me
HCO
2
N
Me
Me
Me
Me
OBn
BnO
Me
OH
NH
2
O
O
O
AcO
N
O
O
BnO
OAc
OAc
BnO
OH
O
N
N
OAc
OBn
O
OAc
O
OBn
N
N
OAc
O
Me Me
HCO
2
HO
MeMe
O OH
N
N
OAcO
Me Me
HO
N
I
O OAc
N
OH
BnO
BnOAcO
AcO
HO
32B-10
11/24/93
10:26 AM
4)ClCO
2
Me
33%
The 1-aza-Cope Rearrangement
aspidospermine
t-BuOK72%
H
2
, Rh/C
81%
1-aza-Cope
Application to Aspidospermine Precursor
+
MeAlCl
2
,
47%
1)NH
2
OH
2)BH
3
3)
FVT,31%
H
+
As you can see, not the greatest reaction, but it has been used to make an aspidospermine precursor.
Me OMe 61% Me CO
2
Me 33%
Me Me 46% Me H 5% H H 0%
R R' yield of 1-aza-Cope product
The 1-aza-Cope Rearrangement
Fowler JOC
1988
, 53, 963; Fowler JOC
1988
, 53, 5998
[3,3]
The Basic Reaction
In order to reverse the 3-aza-Cope rearrangement,Fowler put an acyl group on the imine nitrogen.Since the imine has negligible interaction with thecarbonyl, the amide resonance energy should actto favor the enamine product.
500
o
C,
FVT
The Aza-Cope Rearrangement
D. A. Evans, M. Calter
Chem 115
O
R
O
NN
N
MeO
2
CO
CO
2
Me
N
CO
2
Me
MeO
2
CO
R'
R
R'
R
R
N R'CO
2
Me
NCO
2
Me
R
R'
EtOMe
O
H
Et
MeO
CHO
N
Cl
O
Cl
MeO
Et
NOCO
2
Me
O
Cl
Cl
O
N
Et
MeO
OMe
Et
Cl
O
Cl
O
N
Et
O
NO
Et
O
Cl
O
N
Et
O
N
O
Et
O
N
Et
N
Ac
MeO
32B-11
11/24/93
10:30 AM
+
2-aza-Cope, driven byconjugation
+
HCHO,H
+
, -H
2
O
Mechanism for Yohimbane Analog Formation:
+
MeOH
..
2-aza-Cope
Yohimbane
15-Methoxy-isoyohimbane
HCHO, MeOH,Cat. H
+
, 85%
1) POCl
3
2)NaBH
4,
20%
Equilibrium between
A
and
B
driven towards
B
by conjugation of iminium double bond
to the aromatic ring in
B
.
B
A
H
2
O
Yohimbine
Application to Yohimbine Analog Synthesis:
Winterfeldt
Chem. ber.
1968
,
101
, 2938.
+
PhCHO
+
+
HCHOHCOOH100
o
C, 2hr.
a73
First Reported Case:
Horowitz JACS
1950
,
72
, 1518.
The 2-aza-Cope Rearrangement
Chem 115
D. A. Evans, M. Calter
The Aza-Cope Rearrangement
NH
2
Ph
Ph
N H
N H
Ph
H
N
N
H
H
NH
O
H
2
N
N
H
N
NH
H
N
N
H
HO
M
e
H
N
N
H
OH
CO
2
Me
H
N
NH
H
N
N
N
H
N
N
H
H
O
N
H
H
Me
H
H
MeO
N
N
H
N
N
H
HO
M
e
32B-02
11/24/93
9:27 AM
The Tandem Cationic aza-Cope Rearrangement/Mannich Cyclization:
Overman JACS
1979
,
101
, 1310.
RCHO
+
+
Benzene,80
o
C, 24hr.
2-aza-Cope
+
..
Other Subtrates:
+
H
+
, Ag
+
,
or Cu
+
+
+
H
+
84-97%
+
H
+
Mannich
Winterfeldt
Chem. ber.
1968
,
101
, 2938.
Winterfeldt's Attempt at the Proper Oxidation Pattern for Yohimbine
?
+
+
a)
b)
a)
b)
MeOH HCHO,MeOH,H
+
2-aza-Cope
The product of path b) is the only product observed, in 64%yield.
Chem 115
D. A. Evans, M. Calter
The Aza-Cope Rearrangement
N
NH
H
OMe
OMe
N
N
H
HO
M
e
N
OMe
N
H
OMe
NH
N
H
N
N
H
OMe
N
N
H
OMe
HO
M
e
N
N
H
H
H
H
O
Me
O
H
N
H
H
N
H
R''
NH
2
R'
R'''O
R
N R'
R''
R'''O
N R'
R
R'
'
O
N
O
Me
R
R
HO
N
Me
H
H
R
R
R
N R'
R''
R'''O
O
Me
R
N H
R
MeO
NH
Me
OMe
Me
N
MeO
OH
N Me
CN
Ph
Ph N Me
OH
N Me
O
Ph
OMe
N
Me
O
32B-03
11/24/93
9:30 AM
Homo-chrial
achiral
The iminium-enol derived from the 2-aza-Cope is an achiral compound in a chiral conformation. It can be racemized by two rotations around single bonds. If the Mannich reaction is slow compared to these bond rotations(activation energy for bond rotation ~3-5 kcal/mol), then the compound will racemize before cyclization and the product will be racemic. Since the intermediates in the Pinacol mechanism are all chiral, the product should be chiral if it is formed by that mechanism. The product formed was racemic, so this is further evidence for the 2-aza-Cope/Mannich mechanism.
+
Mannich
Pinacol
chiral
+
:
2-aza-Cope
cyclization
+
CSA, 60
o
C,
1.5 hr, 79%
a73
2-aza-Cope vs. Pinacol:
The fact that 3 and 5 rearranged under the same conditions, even though there is an approximately seventeen orders of magnitude difference in their ability to stabilize an adjacent positive charge, argues strongly against mechanism b(assuming that the cyclization step is rate limiting).
4 OEt 37%5 SO
2
Ph 20%
3 SPh 76% 2 H 64% 1 Me 78%
Compound R Yield
AgNO
3
, EtOH,
1 hr., rt
Path C discarded because no fragmentation products ever found in the rxn mixtures.To test for a) vs. b), substrates 1-5 were prepared and subjected to the rxn conditions.
c)
b)
a)
[3 + 2] Pinacol
Mannich
frgmt.
cycln.
[3,3]
+
+
-
+
+
+
Mechanism:
Overman JACS
1988
,
110
, 4329; Overman JOC
1988
,
53
, 685.
Mechanism and Stereochemistry:
Chem 115
D. A. Evans, M. Calter
The Aza-Cope Rearrangement
N
R
R'
HOR'
'
R
R'
'
HO
NR'NR'
HOR'
'
R R
R'
'
HO
NR'
NR'
OHC
R
R'
'
N
HO
H
RMe
CN
O
N
Me
H
R
ON
Me
Me
Ph
Ph
N PhMe
Ph
OH
Me
Me
OH
Ph
NMe Ph
N
Me
Me
Ph
N
Me
OH
Ph
Ph
Ph
O
Me
OH
Ph
NMe Ph
Ph
OH
Me
N
Ph
Me
Me
32B-04
11/24/93
9:37 AM
Addition of vinyllithium usually occurs from side opposite nitrogen group in good yields. Rearrangement of trans-aminoalcohol is less selective than that of cis.
(CH
2
)
n
(CH
2
)
n
(CH
2
)
n
Normal Preparation of Amino Alcohol Substrates:
Works for n=2 to 4
(CH
2
)
n
+
(CH
2
)
n
(CH
2
)
n
+
+
(CH
2
)
n
R'CHO,H
+
(CH
2
)
n
Overman TL
1982
,
23
, 2733 and 2737.
Overman JOC
1983
,
48
, 3393.
Overman JOC
1985
,
50
, 2403.
Fused Pyrrolidines:
Stereochemistry: Overman JOC
1988
, 53, 685.
a73
What does the transition state look like?
HCl, 65
o
C
+
chair
boat
+
+
+
+
Chair Product
Boat Product
The reaction gives a 90% yield of a 93:7 mix of the Chair Product to the Boat Product.
+
Chair
Boat
This rxn gives a 77% yield of a 74:26 mixture of the Chair Product to the Boat Product. The chair tranistion state for the Z-olefin is destabilized relative to the chair transition state for the E-olefin by a syn-pentane interaction between the Me and the ring, leading to lower chair selectivity.
+
developing syn-pentane
Chem 115
D. A. Evans, M. Calter
The Aza-Cope Rearrangement
Me
N
OH
NH
OMe
OMe
OH
N
Me
Me
HO
HO
Me
N
OH
N
H
Me
N H
Me
CHO
CHO
N
HO
Me
HN
HO
N
Me
Me
N
CHO
Me
HN
H
Me
CHO
HO
Me
N
H
H
NH R'
H
R
HO
HO
NR
H
R'
N R'
H
R
HO
HO
NR
H
R'
NR
R''
R''
R''
R''
O
H
R'
HO
Li
R'
NR
2
O
H
R'NR
2
NH R'
H
R
HO
32B-05
11/24/93
9:48 AM
6 steps,11% overall
+
2-aza-Cope
79%, 3:2 ratio of diastereomers
+
TsOH
, NaBH
4
, 92%
1:1
1)Ph
3
P=C(H)CHO
2)MeOH, H
+
3)H
2
, Pd/C
45% overall
(±)-Gephyrotoxin: Overman JACS
1980
, 102, 1454.
(± )-Perhdrogephyrotoxin
Fused Pyrrolidines: Stereochemical Issues
Overman TL
1982
,
23
, 2733 and 2737.
Overman JOC
1983
,
48
, 3393.
Overman JOC
1985
,
50
, 2403.
The rearrangement procedes through a chair giving the expected stereochemistry.
+
+
+
When an aliphatic aldehyde is used instead of formaldehyde, the R group ends up syn to the newly expanded ring.
+
+
+
The trans aminoalcohols give the same products as the cis, although usually in lower selectivity. This can be rationalized by the fact that the trans compound can access the boat transition state. However, the amount of slippage into the boat transition state is usually small.
+
+
+
+
+
Boat
Chair
Chem 115
D. A. Evans, M. Calter
The Aza-Cope Rearrangement
N R'
H
HO
R
OH
N
O
R
H
OH
N
R
R'
N
R
R'
R'
NR
HO
H
R'
R''
N
OH
R'
R
R''
R''
OH
N
R
R'
R'
H
N
R
O
R''
R''
N R'
H
HO
R
N
R'
HO
R
H
N
R
HO
R'
H
R''
R''
R''
N
R
HO
R'
H
R''
N
R
HO
R'
H
R''
N
O
R
H
R'
R'
H
N
R
O
R''
CHONHCbz
BnO
BnO
NH
2
OMe
OMe
OMe
OMe
NH
2
BnO
Me
OMe
OHC
Me
OMe
OMe
Me
N
BnO
N
BnO
Me
OMe
N
BnO
O
N
C
5
H
11
HO
32B-06
11/24/93
9:54 AM
The Aza-Cope Rearrangement
D. A. Evans, M. Calter
Chem 115
(±)-16-methoxytabersonine
1)LDA2)MeOCOCl 31%
110
o
C,
6 hr, 90%
1)Ph
3
P=CH
2
,
2)40% KOH, 93%
80%
+
1)MCPBA2)CaCO
3
,
44%
1)NaI2)NH
3
3)MeOCOCl,68%
ZnBr
2
,
84%
+
(±)-16-methoxytabersonine: Overman JOC
1983
, 48, 2685.
This iminium-enol intermediate
undergoes the intermolecular
Mannich reaction before losing
chirality due to ring flips, so product
is enantiomerically pure. Experiments
with R=Bn give the same results.
5 steps,21% overall
Pd/C,Cyclohexene,80%
+
+
Mannich
2-aza-Cope
AgNO
3
, 80%
91%
+
Swern,95%
HCHO,KCN92%
1:1 mixture of diastereomers,45% yield of (1R,2R) afterseperation
(1R,2R)
(1S,2S)
+
+
(-)-Crinine: Overman Helv. Chim. Acta
1985
, 68, 745.
OTMSEt
SPh
SPh
Cl
Cl
O
Et
Cl
N CO
2
Me
Et
NSPh CO
2
Me
Et
O
H
OMe
NBOC Li
TMSO
CN
Li
N
Et
O
O
O
NHBOC
OMe
OMe
NH
2
HO
O
Et
HN
N
Et
N
Et
N
MeO
NH
2
MeO
MeO
N
Et
NCO
2
Me
H
O
N
Me
Ph
Me
2
Al
H
OHNH
Ph
Me
NH
Me
Ph
OH
N
Me
Ph
OH
CN
O
O
CN
N O
Ph
Me
N
Me
Ph
CN
HO
Li
O
O
N
OH
Ar
R
N
R
Ar
H
OH
Ar
N
Bn
O
H
N
H
O
O
O
O
O
HO
H
N
32B-07
11/24/93
10:01 AM
(±)-Crinine Overman JACS
1981
, 103, 5579.
62%
NaCNBH
3
,
88%
HCHO, H
+
,
DMSO
+
65%
Pd/C,cyclohexene,95%
Intermediate A
HCHO,H
+
, 79%
4 steps,26% overall
(±)-crinine
Alternative Routes to Intermediate A:
+
72%
74%
AgNO
3
,
93%
++
+
+
Mannich
2-aza-Cope
Pd/C,Cyclohexene,95%
Intermediate A
Chem 115
D. A. Evans, M. Calter
The Aza-Cope Rearrangement
ON
N
HO
Ph
Ph
Ph
Ph
O
O
O
O
Li
H
H
O
O
NHC(H)Ph
2
HO
HO
NC(H)Ph
2 O
O
H
N
Ar
HO
R
H
N
R
HO
Ar
H
N
Ar
O
R
H
N
O
C(H)Ph
2
O
O
H
H
O
O
N
H
O
N
H
O
O
O
O
O
HO
H
N
OTMSOTMS
N
H
Bn
CN
NBn
CN
O
Li
O
O
HO
NBn
O
O
H
CN
N
OH
Ar
R
N
R
Ar
H
OH
Ar
N
Bn
O
N
O
H
ArH
32B-08
11/24/93
10:00 AM
D
C
B
A
E
D
C
B
A
Akuammicine
E-ring willnot close(manysubstratestried)
CSA,110
o
C,
20 min., 100%
1)HCHO2)TBSCl 95%
1)Ph
3
P=CH
2
,
2)40% KOH, 95%
70%
+
Swern,87%
1)DIBAL-H2)TIPSCl3)BnN(AlMe
2
)H
4)PhOCOCl 47%
MCPBA,92%
The last two steps tie into Danishefsky'ssynthesis of (±)-6a-epipretazettine.Danishefsky JACS
1982
,
104
, 7591.
1)HC(OMe)
3
,
H
+
2)H
3
O
+
73%
1)MCPBA2)Ms
2
O,MeOH
3)TBAF 15%
1)TMSOTf2)DIBAL-H3)PhSeCl 60%
H
2
O
2
,
KF, 76%
+
+
Cu(OTf)
2
94%
41%
+
(±)-6a-epipretazettine: Overman JACS
1979
, 101, 1310.
Akuammicine: Overman JOC
1985
, 50, 4021.
D-ring has to assume boat conformation inorder for E-ring to close.
The Aza-Cope Rearrangement
D. A. Evans, M. Calter
Chem 115
CO
2
Et
Me
Me
CO
2
Et
O
HO
N
PhO
2
C
Me
OTIPS
Bn
N Bn
OTIPS
Me
PhO
2
C
HO
N
NBOC Li
TMSO
CN
Li
Me
OTIPS
O
Bn
O
O
BOCHN
H
2
N
HO
N
HN
Bn
OH
Me
Me
TBSO
BnO
H
2
N
N
N
TBSO
Bn
NCO
2
Me
N
H
N
NR
X
Me
H
O
N
O
O
Cl
2
Ce
SiMe
2
Ph
Me
CN
SiMe
2
Ph
O
O
N
HO
Me
NC
N
Me
O
H
O
O
SiMe
2
Ph
N
Ar
SiMe
2
Ph
OH
OH
SiMe
2
Ph
Ar
N
Me
Me
N
OH
Me
HO
O
O
SiMe
2
Ph
N
H Ar
O
N
Me
Me
HO
ArH
OTMS
PhSe
HO
OH
H Ar
N
Me
HO
N
Me
H
O
O
O
OH
32B-09
11/24/93
10:21 AM