http://www.courses.fas.harvard.edu/~chem206/
R Me
O M O
H R R R
O
Me
OM
Chem 206D. A. Evans
Matthew D. Shair Friday, November 15, 2002
a73 Reading Assignment for this Week:
Carey & Sundberg: Part A; Chapter 7Carbanions & Other Nucleophilic Carbon Species
The Aldol Reaction–2
Carey & Sundberg: Part B; Chapter 2Reactions of Carbon Nucleophiles with Carbonyl Compounds
Chemistry 206
Advanced Organic Chemistry
Lecture Number 25
The Aldol Reaction–2
a73 Other Useful References
a73 (E) & (Z) Enolates: Felkin Selectivity
a73 Double Stereodifferentiating Aldol Reactions
a73 The Mukaiyama Aldol Reaction Variant
a73 Allylmetal Nucleophiles as Enolate Synthons
Evans, D. A., J. V. Nelson, et al. (1982). “Stereoselective Aldol Condensations.” Top. Stereochem. 13: 1.
Heathcock, C. H. (1984). The Aldol Addition Reaction. Asymmetric Synthesis. Stereodifferentiating Reactions, Part B. J. D. Morrison. New York, AP. 3: 111.
Oppolzer, W. (1987). “Camphor Derivatives as Chiral Auxiliaries in Asymmetric Synthesis.” Tetrahedron 43: 1969.
Heathcock, C. H. (1991). The Aldol Reaction: Acid and General Base Catalysis. Comprehensive Organic Synthesis. B. M. Trost and I. Fleming. Oxford,
Pergamon Press. 2: 133.
Heathcock, C. H. (1991). The Aldol Reaction: Group I and Group II Enolates. Comprehensive Organic Synthesis. B. M. Trost and I. Fleming. Oxford,
Pergamon Press. 2: 181.
Kim, B. M., S. F. Williams, et al. (1991). The Aldol Reaction: Group III Enolates. Comprehensive Organic Synthesis. B. M. Trost and I. Fleming. Oxford,
Pergamon Press. 2: 239.
Franklin, A. S. and I. Paterson (1994). “Recent Developments in Asymmetric Aldol Methodology.” Contemporary Organic Synthesis 1: 317-338.
Cowden, C. J. and I. Paterson (1997). “Asymmetric aldol reactions using boron enolates.” Org. React. (N.Y.) 51: 1-200.
Nelson, S. G. (1998). “Catalyzed enantioselective aldol additions of latent enolate equivalents.” Tetrahedron: Asymmetry 9(3): 357-389.
Mahrwald, R. (1999). “Diastereoselection in Lewis-acid-mediated aldol additions.” Chem. Rev. 99(5): 1095-1120.
a73 Assigned Reading
Stereoselective Aldol Reactionsw in the Synthesis of Polyketide natural Products, I. Paterson et al. in Modern Carbonyl Chemistry, pp 249-297, J.
Otera, Ed. Wiley VCH, 2000 (handout)
W. R. Roush, J. Org. Chem. 1991, 56, 4151-4157. (handout)
R
96 : 04 56 : 44
17 : 83
t-Bui-Pr
Me
20 : 21
94 : 06 75 : 25
40 : 60
20 : 21
O MLn
Me
R H RL
O
Me
Me
H
O OR
Me
Me
C HPO
R
Ha
C O–MH
Hb
R
Ha
C O–MH
Me H R
O
Me
H R
ORO
R
C
H
R L
Me
Me
H
H
O
LnM O
C
H
O MLn
OMe
H H
Me
R L
R
Me
H
O OR
Me
Me
Nu R
OH
Me
Nu R
OROH
R
Me
OH
Me
O
R L
R L
O
Me
OH
Me
R
MeMe
OB(Chx)2
Me
Me
OB(Chx)2
Me Me
O
H
OP
Me
iPr R
OTMS
BF3?OEt2–78 °C
Me
H
O OR
Me
Me
H
O
Me Me
OR
Me
R
O OH OP
Me
iPr
O
Me
OR
Me
OH
Me
MeMe
Me
OR
Me
O
MeMeMe
OH
Me
Me
R
O OH OP
Me
iPr
Carbonyl Addition Reactions: (E)-Enolate NucleophilesD. A. Evans Chem 206
Evans, Nelson, Taber, Topics in Stereochemistry 1982, 13, 1-115.
W. R. Roush, J. Org. Chem. 1991, 56, 4151-4157.
a73 The illustrated syn-pentane interaction disfavors the anti-Felkin pathway.
(E) Enolates Exhibit Felkin Aldehyde Diastereoface Selection
Felkin
++
++
Anti-Felkin
Disfavored
Favored
Felkinmajor : Σ minors
Achiral (E) enolates preferentially add to the Felkin diastereoface
High anti:syn diastereoselectivity (≥ 97 : 3) is observed in all cases
99 : 1
93 : 7
(77% yield)
(84% yield)
R = TBS
R = PMB
Evans etal. JACS 1995, 117, 9073
major : Σ minors Felkin
94 : 6
74 : 26
(79% yield)
(82% yield)
R = TBS
R = PMB
both centersreinforcing
centersnon-reinforcing
Background Information: The influence of -OR substituents on RCHO
Evans, JACS 1996, 118, 4322-4343
Nu
Lewisacid
Nu
Lewisacid
α α
ββ
Felkin Selecton
1,3-selection
α β stereocentersreinforcing α
β
stereocentersnon-reinforcing
Nu: ?
Nu: ?
Therefore, one might conclude that:
20Felkin/1,3-syn 21anti-Felkin/1,3-anti
The Non-Reinforcing syn- RCHO is the most InterestingDependence of the Selectivity of Felkin-controlled Reactions on Nu Size
P = PMB P = TBS
196 P = PMBP = TBS
-substituent dominates for small Nu
-substituent dominates for Large Nu
O
iPr
Me
OH
iPr
Me
OPMB
MeiPr
O TiCln
O
iPr
Me
OH
iPr
Me
OPMB
MeiPr
O TiCln
R Me
O MLn
H RL
O
Me
LiO
R Me
OCH2OBn
Me
O
H R"
EtH
O
Me
OCH2OBn
OCH2OBn
Me
O
H CHMe2C6H11
Et
Et
C6H11
(R)
C
H
OLnM
O H
MeMe
H
R L
R
R
C
H
R L
H
H
Me
Me
O
MLnO
Me
O OCH2OBn
Me
OH
R"R R R"
OH
Me
OCH2OBnO
Me
R L
O
Me
OH
Me
R
R
Me
OH
Me
O
R L
R"H
O
Me
OLi CH2OBn
H
O
Me
OTBS
Me R Me
OM
OPMB
Me
O
iPrH
OPMB
Me
O
iPrH
O
Me
OH
Me
R Me
OTBS
TMSO Me
OLi
MeMe
O 9BBN
MePhS
Me
OH
Me
O
MeR
OTBS
Favored
Disfavored
Anti-Felkin
++
++
Felkin
(Z) Enolates Exhibit Anti-Felkin Aldehyde Diastereoface Selection
The illustrated syn-pentane interaction disfavors the Felkin pathway.
Evans, Nelson, Taber, Topics in Stereochemistry 1982, 13, 1-115.W. R. Roush, J. Org. Chem. 1991, 56, 4151-4157.
D. W. Brooks & Co-workers
Tetrahedron Lett. 1982, 23, 4991-4994.
anti-Felkin (Cram-Chelate)Felkin
Felkin : anti-Felkin
27 : 73
29 : 71
a73 The bulky OTBS group disfavors chelation. (see Keck, JACS 1986, 108, 3847.)
a73 The boron and lithium enolates display nearly equal levels of anti-Felkin selectivity.
Titanium enolates exhibit the same trend
Chem 206D. A. Evans Carbonyl Addition Reactions: (Z)-Enolate Nucleophiles
Si-face
An Early study rationalized results through chelated transition states:
Masamune JACS 1982, 104, 5526
Nu:
Anti-Felkin (Cram Chelate)
13 : 87
8 : 92
10 : 90
17 : 83
Felkin : Anti-Felkin(R")
Felkin anti-Felkin : Felkin 77 : 23 (78%)
Evans etal. JACS 1995, 117, 9073
anti-Felkin : Felkin 56 : 44 (84%)
Me
O
Me
Me
OM
Me
Me
O
H
H
O
Me
Me
O
Me
OH
Me
Me
O
HMe
OM
Me
Me
OM
Me H
O
Me
log [aldehyde ratio] log [enolate ratio] log [Product ratio] ~ +
Me
OH
Me
O
Me
Me
OM
Me Me
O
H
H
O
MeMe
OM
Me Me
Me
OH
Me
O
Me
Me
Me
OM
Me
Me
O
H Me
Me
OH
Me
O
Me
Me
O
Me
OH
Me
a69
a69a69
(–)
Me
O
El
Me
Me
OH
Nu
Me
OH
Me
Me
O
Me
The extrapolation:
The model reactions:
Can one reliably take the diastereoselectivites of the individual reaction partners and use this information in the illustrated
extrapolation:
The Issue:
a69a69??G? (rxn)
a69
Mismatched reactant pair: Stereo-induction from partners nonreinforcing
It is presumed that useful information can be obtained from related achiral enolate & RCHO addition reactions and that the free energy contributions will be additive:
a73 Hence, for the case at hand: [Product ratio] ~ [10] x [10] ~ 100
a73 The assumption: (Masamune, Heathcock)
a73 The double stereodifferentiating situation: Stereoselectivity?
The reference reactions:
[enolate prod ratio] = 10/1
[aldehyde prod ratio] = 10/1
a69
[Product ratio] ~ [enolate prod ratio] x [aldehyde prod ratio]
??G? (Rxn) ~ ??G? (enolate) + ??G? (RCHO)
a69
??G? (rxn)
Masamune, Angew. Chem. Int. Ed. 1985, 24, 1-76
??G? (rxn) = ?
??G? (Rxn) ~ ??G? (enolate) – ??G? (RCHO)
Matched reactant pair: Stereo-induction from both partners reinforcing
??G? (enolate)
??G? (aldehyde)
El (+)
Nu (–)
Enolate facial bias Aldehyde facial bias
Product Stereochemistry
Enolate geometry
Stereochemical Control Elements
a69
Double Stereodifferentiating Aldol Bond Constructions
a69
Chem 206D. A. Evans Double Stereodifferentiating Bond Constructions-1
O
MeMe
Me
B(c-hex)2
Me
OTBS
Me
Me
O OH
Me
Me
Me
Me
Me
Me
OM Me
OHO
Me
MeX
OPMB
Me Me
OPMB
X Me
Me
O OH
Me
Me
Me
TBSO
Me
O
Me
H
O
Me
OTBS
Me
Me
Me
Me
TBSO
Me
Me
O
MeMe
OH
Me
O
Me
TBSO
Me
Me
Me
Me
OR
Me
O
H
OR
R
OH
Me Me
O
Me
TBSO
R
Me
O
Me
TBSO
Me
Me
BR2
H
O
Me
OR
Me
Me
Me
Me
TBSO
Me
O
MeMe
OH OR
Me
Me
BR2O
Me
Me
TBSO
Me Me R
TBSO
Me
O
MeMe
OH
R
OR
Me
Me
OPMB
Me
O
H
TiClnO
Me
Me
TBSO
Me
Me
Me
Me
OTBS
Me
O
H
R
TBSO
Me
O
MeMe
OH
R
OTBS
TiClnO
Me
Me
TBSO
Me
Me
Me
Me
OTBS
Me
O
H
R
TBSO
Me
O
MeMe
OH
R
OTBS
R-CHO
R-CHO
OH
Me Me
O
Me
Me
TBSO
Me
Me
OTBS
R
OH
Me Me
O
Me
TBSO
R
OTBS
R
OH
Me Me
O
Me
TBSO
R
Double Stereodifferentiating Bond Constructions-2D. A. Evans Chem 206
The Masamune-Heathcock generalizations hold to a point:
(E)-Boron Enolates: The reference reactions
diastereoselection 94 : 6
diastereoselection 96 : 4
(c-hex)2BCl, Et3N
diastereoselection: anti : Σ others
R = PMB: >99 : 1 (84% yield)
R = TBS: >99 : 1 (85% yield)
(E)-Boron Enolates: The matched cases
R = TBS: 52 : 48 (83% yield)
R = PMB: 81 : 19 (79% yield)
(E)-Boron Enolates: The mismatched cases
-center on RCHO can play a significant role in this marginal situation
(Z)-Titanium Enolates: The reference reactions
TiCl4, EtN-iPr2
diastereoselection 96 : 4
+
+
8% anti
21% anti
syn: 21: 71
M = B(9-BBN)
M = TiCl4
syn: 10: 69
(Z)-Titanium Enolates: The matched cases
(Z)-Titanium Enolates: The mismatched cases
diastereoselection 62 : 38 (87%)
R = TBS: 87 : 13 (76%)
"Double Stereodifferentiating Aldol Reactions. The Documentation of "Partially Matched" Aldol Bond Constructions". Evans, D. A.; Dart, M. J.; Duffy, J. L.;
Rieger, D. L. JACS 1995, 117, 9073-9074.
M
R1
O
Me
Me R1
O
Me Me
OH
R2
Me
H R2
O
Me
H
OOMe
Me
O
Me
O
HO
Me
OH
Me
OH
Me
NO Me
O O
Me
O
Bn
OMe
Me
O
Me
O
HO
Me
OH
Me
OH
Me
NO Me
O O
Me
O
Bn
α α' α α'
11 11
Me
OO
XP
Me
O
Me
MeMe
Me
OO
XP
Me
OH
Me
Me
OH
Me
XP
O O
Me
O O
Me Me
MeMe
OHO O
Me
OMeMe
Me
OMe
Me
OHMe
O O
O
Me
Me O O
OMeMe Me
OMe
Me
Me OH
HHH
H
O O O
Me Me Me
MeMe
Sn(OTf)2
Sn(OTf)2
Et3N
Et3N
Me
O
H
A
A
H R
O
Me
OR
Me
2A
R R
OR O
MeMe
OR
Me Me
OH
Me
OR
Me
R R
OH OH
MeMe
OR
Me Me
OH
Me
OH
Me
R
OR O
MeMe
OR
Me Me
2K
T1BT1A
R R
OH O
MeMe
OR
Me Me
OR
Me
OR
Me
Synthesis of Polyketide chains
Chem 206D. A. Evans Introduction to Complex Aldol Bond Constructions
Given a polyprpionate chain of alternating Me & OH substitutents,
select a disconnection point sectioning the fragments into
subunits of comparable complexity by adding C=O as illustrated.
Focusing on the =O FG, there are 2
1st-order aldol disconnections
highlighted. Let's proceed forward with
T1B. Carry out the dissconnection to
subunits 2K and 2A.
αβ α' β'
aldol
αβ α' β'
α center important
β center ignore Both centers important
a20
a20
a24a20
a20
a20
(1)
Stereochemical Determinants M = BR2 M = SiR3
enolate facial bias
aldehyde facial bias
pericyclic transition state
For substituted enolate and enolsilane-based processes, there are at least three
identifiable stereochemical determinants that influence reaction diastereoselectivity
(eq 1). Two of these determinants are associated with the local chirality of theindividual reaction partners. For example, enolate (enolsilane) chirality influences the
absolute stereochemistry of the forming methyl-bearing stereocenter, and in a similar
fashion, aldehyde chirality controls the absolute stereochemical outcome of the
incipient hydroxyl-bearing stereocenter. The third determinant, the pericyclictransition state, imposes a relative stereochemical relationship between the
developing stereocenters. This important control element is present in the aldol
reactions of metal enolates (M = BR 2 , TiX 3 , Li, etc.), but is absent in the Lewis acid
catalyzed (Mukaiyama) enolsilanes aldol variants that proceed via open transitionstates.
The Lonomycin Synthesis: An example of polypropionate assembage
Evans, Ratz, Huff, Sheppard JACS 1995, 117, 3448
C1–C11 Assemblage
1 3 5 7 9
Swern
86%
LiBH4, EtOH
1. NaBH(OAc)3
2. (MeO)2CMe2, H+
(85%) Diastereoselection95 : 5
5
5
9
95
5
9
77
9
1 3 5 7 9
BH3 Transform: See Lecture No. 8
93%
1 3
51 9
Anti-Felkin Adduct Diastereoselection >95 : 5 (86%)
The Sn(OTf)2 aldol reaction of A: seethis lecture + JACS, 1990, 112, 866
JACS, 1990, 112, 866
Stereochemically Matched aldol addition
OO
MeO
O
H
O
O
HOH
O
Me
AcO H
OH
O
O
OHMe
Me
H
OAc
Me
OH
H OH
O
H OH
Me
HO
H
X
H
H
H
H
H
H
H
H
O
Me
TBSO O O
Me
Et
Me
OB(c-Hex)2
O
OTESO H
OTBS
Me
TESO
Me
H
O
H
OO
MeO
HOTBSHTrO
H
Me
O M
O
OTESO H
OTBS
TESO
Me
OO
MeO
HOTBSHTrO
H
O
Me
OH
Me
H
OO
MeO
HOTBSHTrO
H
Me
O B(c-Hex)
2
Me
Me
H
O
OO
MeO
HOTBSHTrO
H
O
Me
Me
Me
OH
Me
H
O OR
iPr
iPr
OB(Chx)2
Me
iPr
BR2O
OO
MeO
HOTBSHTrO
H
O
Me
B(cHex)2
O
OTESO H
OTBS
TESO
Me
OO
MeO
HOTBSHTrO
H
O
Me
OH
Me
H
iPr
OH
iPr
O OR
Me
O
Me
OR
Me
OH
iPriPr
OH
Me
TBSO O O
MeEt
Me
O
O
OTESO H
OTBS
Me
TESO
Me
H
O
H
Chem 206D. A. Evans Introduction to Complex Aldol Bond Constructions
The Altohyrtin Synthesis: An example of polypropionate assembage
Evans, Trotter, Coleman, C?té, Dias, Rajapakse, Tetrahedron 1999, 55, 8671-8726.
Aldol Reaction?
The stereochemical determinants from each fragment were evaluated
pentane, -78 °C
2:1 mixture of diastereomers
Diastereoselection 97:3
-78 °C
14
Model Studies
major : Σ others
R = TBS
R = PMB
99 : 1
93 : 7
R = PMB 69:31
Background
Model Studies
Diastereoselection 90:10 (70%)
The Aldol Fragment Coupling
Bafilomycin A1
Me
O
Me
O
Me
O Si
tButBu
Me
Me
O
Me
O
Me
O Si
tButBu
Me
O
O
OMeMe
OMeMe
Me
TMSO
Me
OH
Me
Me
Me
O
Me
O
Me
O Si
tButBu
Si
tButBu
O O
Me
O
Me
Me
Me
OH
Me
Me
Me
TBSO
O
O
OMeMe
OMeMe
Me
HO
Me
OHOH
MeOH
Me
Me
Me
Me
O
O
O
OMeMe
OMeMe
Me
TMSO
Me
H
O
Me
Me
Me H
TBSO
Me
O
Me
Me
O
Me
O
Me
O Si
tButBu
O OTBS
Me
OTES
Me
Me
Me
Me
Me
OR
Me
OR
Me
O
O
O
OMeMe
OMeMe
Me
HO
Me
OROH
MeOH
Me
Me
Me
Me
O
Me2CHCHO
Me2CHCHO
O
O
OMeMe
OMeMe
Me
RO
Me
H
O
Me
O O
Me
O
Me
Me
Si tBu
Me
Me
OH
Me
tBu
O OTBS
Me
OTES
Me
MeMe
Me
OH
Me
Chem 206D. A. Evans Introduction to Complex Aldol Bond Constructions
Bafilomycin A1 Synthesis: An example of polypropionate assembage
Critical Aldol Disconnection
Enolization Conditions: PhBCl2, i-Pr2NEt, CH2Cl2, -78oC.
diastereoselection >99:1
diastereoselection
62:38 9
diastereoselection >99:1
Aldol Model Studies
The Critical Observation
Enolization Conditions: PhBCl2, i-Pr2NEt, CH2Cl2, -78oC.
diastereoselection >95:560%
Critical Aldol Disconnection
Required: Syn aldol addition
Aldehyde Fragment: Target contains syn aldol retron wilth anti-Felkin relationship at 1 & 2
Enolate Fragment: Can the needed enolate facial bias be built into the reaction??
1
2
Evans, Calter, Tetrahedron Lett. 1993, 34, 6871
94%
Bafilomycin A1
HF.pyridine, THF, 25oC.
O M O M
M M
H R2 H R2
X R2
O O
R1
M
H–B–M
H R2
O
X R2
O OH
R1
X R2
O O
R1
MTMS
X R2
O O
R1
TMS
R OTMSC
C RR
R
TMSO C C
R
RO
C O
MH
L
L
R2
X
Me
H
X R2
O O
R1
M
TMS–X
X
B–M
H R2
O M
X
O
R1
M
H R2
O
X
O
R1
X
O
R1
TMS
Chem 206The Mukayama Aldol Reaction-1D. A. Evans
Type I Aldol Reaction: Metal Aldol Process
This reaction may be run with either a stoichiometric or catalytic amount
of base.
Type II Aldol Reaction: Mukaiyama Aldol Process
This reaction may be run with either a stoichiometric or catalytic amount
of Lewis acid.
Catalytic Version: Slow step in the catalytic variant is protonation of
the intermediate metal aldolate
Recent Reviews
R. Mahrwald, Diatereoselection in Lewis Acid Mediated Aldol Additions, Chem. Rev. 1999, 99, 1095-1120
S. G. Nelson, Catalyzed enantioselective aldol additions of latent enolate equivalents Tetrahedron: Asymmetry 1998, 9, 357-389.
Mukaiyama Aldol Reaction, E. Carreira In Comprehensive Asymmetric Catalysis, Jacobsen, E. N.; Pfaltz, A.; and Yamamoto, H.
Editors; Springer Verlag: Heidelberg, 1999; Vol III, 998-1059.
Reaction Mechanism: "Closed" versus "Open" Transition States
anti-periplanar TS"Open" synclinal TS"Open"Metal aldolate TS
"Closed"
The Mukaiyama aldol reaction proceeds through an "open" transition
state. The two illustrated competing TS orientations do not differ
significantly in energy. For most reactions in this family there is not a
good understanding of reactans-pair orientation. There is a prevalent
view that the anti-periplanar TS is favored on the basis of electrostatic
effects.
The minimalist mechanism: MX = Lewis acid
Other events are also taking place: Carreira Tet. Lett 1994, 35, 4323
slow
slow
Silyl transfer is not necessarily intramolecular
O
XM
O MX
H
H
H O M
Ph
Me
CHO OTMS
OTMS
H
Me
OHO Me
Me
OTMS
Me
Me Me
Me
OTMS
PhCHO
BF3?OEt2
BF3?OEt2
Me
OHO
OTMS
H
SS?
AP? AP
TiCl4 21:79
SnCl4 18:82
BF3?OEt2 29:71
TrClO4 27:73
SnCl2 78:22
Me3C
OTMS
Me BF3?OEt2 R
O
Me
Ph
OTMS
R
O
Me
Ph
OTMS
R
O
Me
Ph
OTMS
Me3C OTMSC
C MeH
R
O
Me
Ph
OTMS
R
O
Me
Ph
OTMS
Chem 206The Mukayama Aldol Reaction-2D. A. Evans
synclinal
antiperiplanar
?
?
Denmark has designed a nice substrate to distinguish between synclinal and anntiperiplanat transition states:
Denmark, J. Org. Chem. 1994, 59, 707-709
Lewis Acid syn:anti
conclusion: there is a modestpreference for the antiperiplanar TS
Syn-Anti Aldol Diastereoselection
56:44
56:44
These reactions "exhibit little simple diastereoselection except in special cases."....Heathcock
Heathcock: J. Org. Chem 1986, 51, 3027
>95:5
The transition state?
The effectice size of the enol substituents are probably dominant.
OTMS
Me
Me
Me
OTMS
Me
Me
Me
RH
O
Me
OTBS
RH
O
Me
OTBS
RH
O
Me
OTBS
BF3?OEt2
BF3?OEt2
BF3?OEt2
R
O
Me
OH
R
Me
OTBS
R
O
Me
OH
R
Me
OTBS
R
O
Me
OH
R
Me
OTBS
R
O
Me
OH
R
Me
OTBS
Me
R
O OH
R
Me
OTBS
R
O
Me
OH
R
Me
OTBS Me
Me
OTMS
R
TBSO
MeMe
OTMS
R
TBSO
RH
O
Me
OTBS
CC C
H
Me
RL
Me
HO TMS
Me
R
O OH
R
Me
OTBS
R
O
Me
OH
R
Me
OTBS
RH
O
Me
OTBS
BF3?OEt2 MeMe
OTMS
R
TBSO
RH
O
Me
OTBS
Me
O
Me
OH
R
TBSO
R
Me
O
Me
OH
R
TBSO
R
R
Me
O
Me
OH
Me
OTBS
R
TBSO
R
Me
O
Me
OH
Me
OTBS
R
TBSO
Me
O
Me
OH
R
TBSO
R
Me
O
Me
OH
R
TBSO
R
Chem 206The Mukayama Aldol Reaction-3D. A. Evans
Merged Syn-Anti & Felkin Diastereoselection
Evans: JACS 1995, 117, 9598
Felkin : anti-Felkin 99 : 1
Felkin : anti-Felkin > 99 : 1
95 : 5 (95%)
70 : 30 (89%)
R = iPr
87 : 13 (68%)
91 : 9 (75%)
Felkin : anti-Felkin > 99 : 1
Felkin : anti-Felkin 87 : 13
R = iPr
Conclusions: Moderate to Good syn diastereoselectlion
Excellent Felkin diastereoselectlion
Conclusions: Moderate to Good syn diastereoselectlion
Excellent Felkin diastereoselectlion
R = iPr
Enolsilane Face Selectivity 90 : 10
95 : 5 (80%)
iPrCHO
iPrCHO
59 : 41 (82%)
Enolsilane Face Selectivity 95 : 5
Enolslane Face Selection
favored
A(1-3) control is good for the (E) enolsilane
R = iPr
98 : 2 (83%)
98 : 2 (72%)
Double Stereodifferentiating Syn Aldol Rxns with Enolsilanes
Me
MeMe
MsN
O B
Me
MeMe
O
Ph
O B
R
BR
R
BR
R
Me
BR
R
Me
RCHO
RCHO
RCHO
EtCHO
R
OH
R
OH
Me
R
OH
Me
Me
OH
R
Et
OH
BnN
BnN
O
B
O
O
O
O
O BiPrO2C
iPrO2C
O
O BiPrO2C
iPrO2C
Me
O
O B MeiPrO2C
iPrO2C
O
O B SiMe2(OChex)iPrO2C
iPrO2C
H
O
H
O
H
O
Chex
OH
OH
Chex
OH
Me
Chex
OH
Me
Chex
OH
Chex
OH
Chex
OH
(OChex)Me2Si
93% Yield72% ee
W. Roush, Tetrahedron Lett. 1990, 31, 7563-7566.
H2O2, KF, KHCO3
a73 The General Reactions
a73 A Reagent for the Generation of Anti-1,2-Diols
W. Roush, J. Am. Chem. Soc. 1988, 110, 3979-3982.
Yield = 40%ee = 97%
W. Roush, J. Am. Chem. Soc. 1985, 107, 8186-8190.Tetrahedron Lett. 1988, 29, 5579-5582.
Yield = 90%ee = 83%
Yield = 100%ee = 91%
Yield = 72%ee = 87%
a73 The Tartrate-derived Allylboronic Esters
M. Reetz Chem. Ind. (London) 1988, 663-664.
R. Hoffman Tetrahedron Lett. 1979, 4653-4656.ACIEE, 1978, 17, 768-769.
R = Me: Yield = 93%ee = 60-70%
R = H: Yield = 92%ee = 65%
1) CH3CHO
2) N(CH2CH2OH)3
Chem 206Allyl and Crotylmetal Species–1 : BoronD. A. Evans, D. M. Barnes
a73 General Reviews of Allyl Metal Reagents:Comprehensive Organic Synthesis, 1991;Vol. 2.
a73 The Hoffman Chiral Allylboronic Esters
Yield = 92%ee = 92%
Ph Me
OH O
B
O
O
CH2C
iPrO2C
iPrO2C
H2C C CHB(OH)2
N
N BPh
Ph Ts
Ts
N
N BPh
Ph Ts
Ts
H
O
H
O
Ph Me
O OB
C CH2
HO
R
OH
R
OH
HO Me OH
Chex
OH
H2C C
O BO
Ph
Me OH
Me
B
Me
H
Me
B
Me
R1
R2
Me
B
Me
B
Me
Me Me
B Me
Me
Me
CH3CHO
CH3CHO
MeH
O
Me
H2N OH
Me
OH
Me
OH
R1R2
Me
OHH
Me
Me
OH
Me
Me
Me
OH
Me
70%
76%
H. C. Brown, J. Am. Chem. Soc. 1983, 105, 2092-2093.J. Org. Chem. 1991, 56, 401-404.
J. Org. Chem. 1992, 57, 6614.
> 99% ee
a73 The Brown IPC Controller
a73 The Corey Stein Controller
D. A. Evans, D. M. Barnes Chem 206
a73 The Masamune Borolane
96:497% ee
96:493% ee
S. Masamune, J. Org. Chem. 1987, 52, 4831-4832.
98% ee
98% ee
E. J. Corey, J. Am. Chem. Soc. 1989, 111, 5495-5496.J. Am. Chem. Soc. 1990, 112, 878-879.
a73 Allenylboronic Esters: Tartrate-derived Controllers and Internal Delivery
Yield = 56%ee = 92%
95% Yield>99:1H. Yamamoto, J. Am. Chem. Soc. 1982, 104, 7667-7669Tetrahedron Lett. 1986, 27, 1175-1178.
R1 = Me, R2 = H: ee = 90%
R1 = H, R2 = Me: ee = 90%
R1 = H, R2 = OMe: ee = 90%
H. C. Brown, J. Am. Chem. Soc. 1988, 110, 1535-1538.See also: Tetrahedron Lett. 1990, 31, 455-458.
1) THF, RT
2) CH3CHO
3)
H. C. Brown, J. Chem. Soc., Perkin Trans. 1, 1991, 2633.
+ ee = 94%
Allyl and Crotylmetal Species–2 : Boron
TiR*O
R*O
Me B
Me
Me
BO
Me
MeH
Me
H
R H
B
O
H
Me
H
R Me
MeH
O
O
HO
O
O
O
Me
Me
MeMe
H
H
HO
Me
R
Me
OH
HO
Me
R
R
Me
HO
R
Me
HO
O
O B R
Me
Cl
Me
Me
Me
O
O B
Chex
Chex
Me Me
Ti
O
O
O
O
PhPh
Ph Ph
O B O
O
Ph
H
Cl
H
MeMe
R
Me
Me
PhCHO
PhCHO
PhCHO
Ph
Cl
OH
R
Ph
OH
Me
Me
Ph
OH
O B O
O
Ph
H
H
Me
Chex
Chex
Me
Duthaler Chem. Rev. 1992, 92, 807
The favored transition states
R. Hoffman, Chem. Ber. 1986, 119, 2013-2024.Chem. Ber. 1988, 121, 1501-1507.
ACIEE, 1986, 25, 1028-1030.
68% Yield99% ee
R = H: 92% eeR = Me: 98% ee
Chiral -Substituted Allyl Metal Reagents: Boron
M. Riediker, R. Duthaler, ACIEE, 1989, 28, 494-495.
In Organic Synthesis via Organometallics, 1991, 285-309.J. Am. Chem. Soc. 1992, 114, 2321-2336.
R*OH =
ee = 85 - 94%RCHOR = alkyl, aryl
An Enantioselective Allyltitanium Reagent
Allyl and Crotylmetal Species–3D. A. Evans, D. M. Barnes Chem 206
The Allylboron Reagents Add to Carbonyl Compounds via a Zimmerman-Traxler Transition State Another Enantioselective Allyltitanium Reagent
R. Duthaler, J. Am. Chem. Soc. 1992, 114, 2321-2336.
95% ee
favored
+ RCHO anti:syn, 96:4
favored
enantioselection: 95-97%
disfavored
Masamune, Sato, Kim, Wollmann J. Org. Chem. 1987, 52, 4831
Me SiMe3
Me
SnBu3
COOH
iPrO
OiPr
O
OH
COOH
O
O Ti
Cl
Cl
n-C7H15
OH
Ph
Me OH
Me OHOH
OH
OH
SnBu3
H
O
O
O Ti
OiPr
OiPr
O
O Ti
O
O
R
OH
Pb: S. Torii, Chem. Lett. 1986, 1461-1462.Mo: J. Faller, Tetrahedron Lett. 1991, 32, 1271-1274.
Cr: Y. Kishi, Tetrahedron Lett. 1982, 23, 2343-2346. P. Knochel, J. Org. Chem. 1992, 57, 6384-6386.
Sb: Y. Butsugan, Tetrahedron Lett. 1987, 28, 3707-3708.
Mn: T. Hiyama, Organometallics, 1982, 1, 1249-1251.Zn: T. Shono, Chem. Lett. 1990, 449-452.
Ba: H. Yamamoto, J. Am. Chem. Soc. 1991, 113, 8955-8956.
a73 Many Other Metals Have Been Employed in the Allylation Reaction ...
Allyl and Crotylmetal Species–4: Catalytic SystemsD. A. Evans, D. M. Barnes
a73 Three Catalytic Asymmetric Allylations of Aldehydes are Known
+ BH3-THF BLn*
E/Z = 61/39
+ PhCHO 20 mol % BLn*
H. Yamamoto, Synlett 1991, 561-562.
n-C7H15CHO
+
81% yield97.4% ee
63% yield90% ee
E. Tagliavini, A. Umani-Ronchi J. Am. Chem. Soc. 1993, 115, 7001-7002.
G. Keck J. Am. Chem. Soc. 1993, 115, 8467-8468.
20 mol %
Ti(OiPr)4, 4? sieves
Ti(OiPr)4, 4? sieves
CF3COOH or TfOH
1
2
1 or 2 (10 mol %), RCHO
R
Ph
Chex
Catalyst
12
12
12
Yield (%)
8898
6695
4278
ee (%)
9592
9492
8977
Chem 206