http://www.courses.fas.harvard.edu/~chem206/
R R
OM
R R
NM R
X
Me Me
A
X
Me Me
B
Chem 206D. A. Evans
Matthew D. Shair Monday, November 11, 2002
a73 Reading Assignment for this Week:
Carey & Sundberg: Part A; Chapter 7Carbanions & Other Nucleophilic Carbon Species
Enolates & Metalloenamines-2
Carey & Sundberg: Part B; Chapter 2Reactions of Carbon Nucleophiles with Carbonyl Compounds
a73 Assigned Journal Articles
Chemistry 206
Advanced Organic Chemistry
Lecture Number 23
Enolates & Metalloenamines-2
"Structure and Reactivity of Lithium Enolates. From Pinacolone to Selective C-Alkylations of Peptides. Difficulties and Opportunities
Afforded by Complex Structures". D. Seebach Angew. Chem. Int. Ed. Engl., 27, 1624 (1983). (handout)
"Stereoselective Alkylation Reactions of Chiral Metal Enolates". D. A. Evans Asymmetric Synthesis, 3, 1 (1984). (handout)
a73 Other Useful References
"Advances in Asymmetric Enolate Methodology" Arya, Qin, Tetrahedron 2000, 56, 917-947 (pdf)
"Recent Advances in Dianion Chemistry". C. M. Thompson and D. L. C. GreenTetrahedron, 47, 4223 (1991).
The Reactions of Dianions of Carboxylic Acids and Ester Enolates". N. Petragnani and M. Yonashiro Synthesis, 521 (1982).
"Generation of Simple Enols in Solution". Capon, Guo, Kwok, Siddhanta, and Zucco Acc. Chem. Res. 21, 121 (1988).
"Keto-Enol Equilibrium Constants of Simple Monofunctional Aldehydes andKetones in Aqueous Solution". Keeffe, Kresge, and Schepp JACS, 112, 4862
(1990).
"pKa and Keto-Enol Equilibrium Constant of Acetone in Aqueous Solution". Chiang, Kresge, and Tang JACS 106, 460 (1984).
a73 Introduction and General Trends
a73 Enolate Alkylation: Electronic & Steric Control Elements
a73 Enolate Alkylation: Unusual Cases
a73 Chiral Amide Enolates
a73 Chiral Ester Enolates
a73 Chiral Imide Enolates
a73 Chiral Metalloenamines
Explain why A is favored for X = O while B is favored for X = NNHR
base
X
Decreasing Nucleophilicity
De
cre
asi
ng
El
ect
rop
hil
icit
y
C C
OMe
C C
NR2
C C
O
C C
NR
NR
R-MgX
R C
O
Cl
C H
O
R
R C
O
R
Me I
C OR
O
R
O
H2C CH2
Me2CH I
R C
O
NR2
O
Me
Me
Me
Me
N R
N OH
R
H3O+
R
O
N RMetal
CH2N
Li
I Me
Me
Li-NR2
Li-NR2
OLi
N RMetal
NR
N Me
Enols, Enolates, Enamines & Metalloenamines: Reactivity Hierarchy Chem 206D. A. Evans
Nucleophile
Electrophile
Br2, O3 + + + +
+++
+ + +
+++
+ +
++
+ +
+
+
+
– –
a73 Metalloenamines:
Imines may be transformed into their conjugate bases (enolate counterparts) with strong bases:
The usual bases employed are either lithium amides (LDA) or Grignardreagents. Note that Grignard reagents do not add to the C=N pi-bond due to
the reduced dipole. With this functional group, deprotonation is observed to be the preferred reaction.
a73 When to use a metalloenamine:
Metalloenamines are significantly more nucleophilic than ketone or aldehyde enolates. They are used when less reactive electrophiles are under
consideration. For example:
no reaction
However:
good yield
Metalloenamines are reactive enough to open epoxides in good yield. Ketone enolates are only marginally reactive enough for this family of electrophiles.
a73 Nature uses enamines, "stabilized" enolates, and enol derivatives in C–C bond constructions extensively.
pKa~ 29-33
syn relationship
En
erg
y
Rxn Coordinate
O–
O
O–El
O
El
Me C
O
Cl
BMe I A
O–
B
O
A
Carey & Sundberg: Part A; Chapter 4, pp217-220for discussion of Hammond's Postulate
H +
Based upon the above discussion draw a detailed mechanism for the protonation of cyclohexanone enolate.
a73 As applied to the enolate-electrophile reaction, for very exothermic reactions, e.g. the reaction with acetyl chloride, the transition state for the
process will involve little enolate structural reorganization. Hence in this instance the electrophile heads for the site of highest electron density
Hammond Postulate
"For strongly exothermic reactions, the transition state T?
looks like reactant(s) e.g. B."
Strongly Exothermic Reactions
?H° > 20 kcal/mol
T?
a73 In attempting to grasp the Hammond Postulate, let's consider two extreme reactions, one which is strongly endothermic and one which is
strongly exothermic.
The Hammond Postulate is also relevant to this issue and is broadly used to make qualitative statements about transition state structure.
Since the X-ray data clearly support the picture that resonance structure 1 best represents the enolate structure, highly reactive electrophiles will
favor O-attack according to Hine's generalization.
2
1
The Principle of Least Motion: "As reactions become more exothermic, the favored reaction becomes
that path which results in the least structural (electronic) reorganization."
a73 The very reactive acid chloride gives almost exclusively the O-acylation product while the less reactive methyl iodide affords the alternate
C-alkylation product.
These results may be understood in the context of qualitative statements made by Hammond (The Hammond Postulate) and
Hine (The Principle of Least Motion)
>> 1
<< 1
C/O Rxn RatioEl(+)
El(+)
:–
a73 "As electrophile reactivity increases, the percentage of reaction at the enolate oxygen increases." For example, consider the reactions of cyclo-
hexanone enolate with the two electrophiles, methyl iodide and the much more reactive acetyl chloride:
Question: Why do we generally show enolates reacting with electrophiles at carbon as opposed to oxygen ?? Let's begin the the discussion with an
observation:
C versus O Enolate Reactivity & the Hammond Postulate Chem 206D. A. Evans
Hammond, JACS 1955, 77, 334
See Hine in Advances in Phys. Org. Chem. 1977, 15, 1-61
N
Boc
O Me
C COR
H
R
HM OM C
H
RC
R
ElHMe
3C
OR
C COR RHM
El
C COR
El
R
HM
Me3C
H
R
O
El El O
Me3C
H R
C C OLiR
H
Me3C
NO H
H
Me
H
O
RO
O
MeOH
H
H
Me
OO
Li CO2Me Me-I
Li Me CD3I
R–X
Me-I
N C C HLiO
Me
HBoc
R–X
N
Boc
O Me
R R–X
Allyl–Br
Bn–Br
LiO
MeOH
H
HR
H
O
MeOH
H
HR
H
Me
NO H
R
Me
H
O
RO
Me-I
path A
a73 Cyclohexanone Enolate:
Chair vs boat geometries not stongly reflected in diastereomeric TS?s. The
transition states is early and enolate-like.
83:17
Metal
70:30
Ratio, a:eElectrophileR-substituent
twist boat conformation
chair conformation
?
e
eEl(+)
El(+)
Issue: Degree of rehybridization
in TS??
a73 Alkylation: Forming C–El bond must overlap with pi? C–O in TS?
a73 Enolization: Breaking C–H bond must overlap with pi? C–O in TS?
El(+)
base
Stereoelectronic Issues
D. A. Evans Enolate Alkylation: Stereoelectronic Control Elements Chem 206
a
Evans, D. A. Stereoselective Alkylation Reactions of Chiral Metal Enolates.; Morrison, J. D., Ed.; AP: New York, 1984; Vol. 3, pp 1-110.Review
path E
LDA ratio
>99:1
93:7
Pilli, Tetrahedron, 1999, 55, 13321
Examples where stereoelectronic factors are dominant
good illustration of the impact of allylic strain
Li/NH3
(90%) one isomer
The C19 Angular Methyl Group in the steroid nucleus
The enolate (Chem 3D)
LDA
favored
disfavored
Me
CO2Me
OLi
OMe
Me3C
H
Me
CO2Me
Ph3COCH2 O
O
H
Me H
H
O
O
MeI
MeI
MeI
Me
Me
CO2Me
CO2Me
Me
Me
H
Me3C
CO2Me
El
Me
O
O
H
HMe
H
O
OPh3COCH2
C3H5
Me
Me
CO2Me
CO2MeMe
Me
Me-I
n-Bu-Br
CO2Me
El
Me3C
H A
Li
R
Me
LiO H
O
Me
R
Me
CN
O H
HO CO
2Me
MeOTHP
–H
–H
R
NaH
Me-I
Me-I
LiNH2
R
HEl MeO
Et-I
Et-I
CD3I
CD3I
NC H
O
Me
Me
OTHPMe
CO2Me
O H
Me
O
ElMe H
R
Chem 206Enolate Alkylation: Steric Control ElementsD. A. Evans
El(+) Ratio
95:05
83:17
07:93
>5:95
Cases with Opposed steric & electronic effects
+
Li/NH3
El(+)
–Me
–Me
The enolate R = Me (Chem 3D)
DominantControl element
stereoelectronic
stereoelectronic
steric
steric
Based on above data, this case is reasonable:
(58%) >90 : 10
(67%) 93 : 7
However
diastereoselectivity depends stongly on O-protecting group
LDA Ratio, >97 : 3
Ratio, >97 : 3allyl-BrLDA
LDA Ratio, 90 : 10
Ratio, 80 : 20LDA
Representative cases
-78 °C
Electrophile Ratio, E:A
84:16
87:13
In this case, both e and a paths are stereoelectronically
equivalent. Diastereoselectivity is now determined by the
differential steric effects encountered in the two TS?s.
a
e
El(+)
El(+)
Steric Effects
E
Cases which do not appear to give the expected product based on the analysis of steric effects
RMe
CO2MeMe O
O O
O R C3H5
H
CO2Me
Me
Me O
Nt-Bu
O H
OLi
OMe
O
OMe CO2Me
Me CO2Me Me
Me
H
CO2Me
O CO2Me
O OH
Me Me Me
MeO2C
Me O
O
O
O
MeMe
H
HO2C
(+)-menthyl–O2C
Me X
HO2C
Me CO
2R CO2R
Me
HO2C
OH
Me
CMe2
S-t-Bu
OLi
t-Bu
O
O
O
Ot-Bu
OLi
OMe
Me
Me
OMe
OLi
t-Bu
O
O
Me
O
OSiR3
R3SiO
EtO
Li
R-Br
R-Cl
X
THF-HMPA
-78→-20 °C
MeI
MeI
BnBrMeI
BzCl
HgI2
OSiR3
OSiR3
EtO2C
Me
Me
O
Ot-Bu
CO2Me
Me
CO2MeMe
Me
t-Bu
O
O
R
CO2Me
HO
Nt-Bu
O
R
O
Ot-Bu
COS-t-Bu
Here is another example of a contrasteric alkylation
K. Yamada, Organic Synthesis Past Present, and Future, p 525
(+)-menthol 02:9880:20
THF, 23 °C
Ratioconditions
LDA, conditions
ratio, 80 : 20
acetone
LDA
a73 However: Ladner, Angew. Chem. Int. Ed 1982, 21, 449
LDA
R = Me, Et, CO2Me
Seebach, Angew. Chem. Int. Ed 1981, 20, 1030
allyl-Br
88 : 12
Chem 206Enolate Alkylation: Unusual CasesD. A. Evans
The enolate (MM-2)
Ladner, Chem. Ber. 1983, 116, 3413-3426.
Seebach, Helv. Chim. Acta 1987, 70, 1194.
Seebach, Helv. Chim. Acta 1987, 70, 1194.
>95 : 5
70 : 30
>95%ds60% ds
95%ds
MeODBnBr
acetone
97% ds>98% ds
>95% ds
Sterically Expected Results:
Contrasteric relatives:
Danishefsky J. Org. Chem. 1991, 56, 387
>94 : 6
Those factors defining olefin face selection are currently being defined: Would you have predicted the outcome of the following
reaction?
NR
R
H H N
Li
OMe
Et
Et
NR
R
H Me N
Li O
H
Et
Et
O O
O O
C
El
Me H
C
H
Me H
N RR
N RR
C
H
El Me
C
H
H Me
N RR
N RR
RX
O
Me
XC R
O
RO R
O
El
-S-t-Bu
OLi
RX
Me
XC R
OM
XC R
O
El
RX Me
OLi
s-BuLi (THF)
N
O
MeEt
Et
Me N
O CH2OH 2 LiNR
2 O
N
OM
Me
Li
OLi
N
Me
Et
Et
N Me
OLi
Et
Et
Me N
O CH2OH
El
Chem 206Chiral Enolate Enolate Alkylation Circa 1978D. A. Evans
Chiral Enolate Design Requirements Circa 1978
El(+)
enolization
hydrolysis
a73 Enolization selectivity
a73 Enolate-electrophile face selectivity
a73 Racemization attendant with Xc removal
Overall enantioselection will be the sum total of the defects introduced through:
a73 Enolization selectivity: Ester-based chiral controllers XC limited by
enolization selectivity (Lecture 22)
25 : 75
0 : 100LDA (THF)
Base Ratio, (E):(Z)
(E) (Z)
+
95 : 5LDA (THF)
LDA (THF)
Base
95 : 5-OMe, O-t-Bu
Ratio, (E):(Z)R-Substituent
LM–NR2
(E) (Z)
+
a73 Enolization selectivity: Amide-based controllers XC limited by
enolization selectivity (Lecture 22)
LM–NR2
? ?
favoreddisfavored
El(+)
With Takacs,Tetrahedron Lett. 1980, 4233 diastereoselection Ca 95 %
a73 Amide Based Chiral Auxiliaries
Allylic Strain Prevents Product Enolization:
strongly favored strongly
disfavored
Allylic Strain controls Enolate Geometry:
strongly favored strongly
disfavored
Ph
Me
IPh N
O
MeMe
CH2OH
Me
R O
H2N
O
Me2HC
OO
N OMe
Li
Me N O
O O
Me2HC
+
14 12
14
HOH2C O
Me
N M-NR2
O
M
MeN
Li
O
R–X
R–X
Br
BrMe
Me
Li
N Me
OH
Me
Me
O
R–X
R
HOH2C O
MeN
R
N Me
OHOH2C
Li
Li
Me
R OH
O
CH2OHO
NR
Me
H+
PhCH=CHCH2Br
N
OC
O H
H
H
R
OH
O
N
R
HO
H2O
H Me H MeOH
MeOO
MeMeMe
O
Me OH
OHMe
O
Me
O
O
Me
Ca
Ph
Me
N O
O O
Me2HC
O
HN
OR
Me
Me N
OLiO
K
14
14
JACS 1990, 112, 5290-5313
Applications in Ionomycin synthesis
HCO3-
H2O, 5 min
Amide Hydrolysis
intramoleclar general base catalysis
1
9
17
Ionomycin Calcium Complex
1214
83%
84% 14
LDA
diastereoselection 97:3
diastereoselection 99:1
Chiral Amide Enolates
Evans, Takacs, Tet. Lett. 1980, 21, 4233-4236
Chem 3D model
98:2 (84%)
(minor)
(major)
96:4 (98%)
Chem 206Enolate Alkylation: Chiral Amide EnolatesD. A. Evans
The nature of enolate chelation is ambiguous. Nitrogen chelation is a real possibility.
Myers, JACS 1997, 119, 6496
Me N
O
O
O
Me2CH
R1 R2
R
O
N O
O
MO O
N OR
PhMe
Me2CH
R
O
N O
O M
N O
OO
Me2CH
Et
Me
O
CH3I
CH3CH2I
ArCH2Br
ArCH2OCH2Br
CH2C=CHCH2Br
R X
C
O
El
El
O
XCR
SO2N3
CHMe2
CHMe2
Me2HC
R N
O
O
O
Me Ph
N OR
O O
Bn
M
BocN=NBoc
O
PhHC NSO2Ph
N OR
O O
BnNBocBocHN
N3 Bn
OO
R N O
R Cl
O
Me3C-
MeO2CCH2CH2CH2-
PhCH2-
Na-N(TMS)2
CH2=CHCH2-
Li–NR2
PhMe
O
N O
O
R
OH
For all indicated rxns, as the R on the enolate grp increases in size enolate-El face selectivity increases. Explain.
Chem 206Enolate Alkylation: Chiral Imide EnolatesD. A. Evans
El(+)
Alkyl Halide
50-120 : 1
Ratio
50 : 1
50 : 1
25 : 1
13 : 1
M = Li, THF < 0 °C
M = Na, THF -78 to 0 °C
JACS. 1982,104, 1737.
El(+)
LDA
or NaNTMS2
enolization selectivity >100:1
Alkali Metal enolates:
marginal reaction Enolate Hydroxylation
94 : 6
Enolate Amination
Yield *RatioImide (R)
Ph-
JACS. 1985,107, 4346.
86 %
91 %
68 %
77 %
94 %
95 : 5
96 : 4
90 : 10
>99 : 1
Na enolate is required.Why?
Trisyl-N3 JACS 1987,109, 6881.
HOAc
diastereoselection 91-99+ %
diastereoselection 97-99+ %
JACS 1986,108, 3695.
M = K
M = Li
JACS 1990,112, 4012-4030
(Trisyl-N3)
Tet. 1988, 44, 5525-40
Diastereoselection ~ 97 : 3
JACS 1984, 106, 1154.
Enolate Acylation
New stereocenter not lost through enolization
authenticX-ray structure
Li N
Me Me
(LiCHIPA)
THF
N
H
SO2Ph
O
LiO
Me
Me
Me
Me
Me
H
Me
SO2Ph
N
O
O
Me
Me
Me
Me
Me
R
H
LiCHIPA
O
Me
Me
Me
Me
Me
LiO
Me
N
SO2Ph
H
H
El
SO2Ph
N X
O
O
Me
Me
Me
Me
H
H
O
Me
Me
Me
Me
Me
O
N
SO2Ph
Br
NH
OMe
OMe2HC
CO2t-Bu
H
El
O
Me
Me
Me
O
N X
SO2Ph
Me
KO-t-Bu
Me2HC N O
OMe
Li
ORO
H
O
Me
Me
Me
O
N X
SO2Ph
H
H
THF
CO2t-Bu
Me2HC N O
OMe
El
HMPT
Me–I
Me–I
OLi
Me
Me Me
N O
A
ElN
OMe
OMe2HC
CO2t-Bu
Bn-Br
THF
Bn-Br
HMPT
t-BuLi
THF
B
ON
MeMe
Me
O
HMPT
O
Me
Me Me
N O
Me
D. A. Evans Enolate Alkylation: Chiral Ester Enolates Chem 206
Koga, JACS 1984, 106, 2718-2719
Chiral Ester Enolates
THF, HMPA4:1
Helmchen, Angew. Chem. Int.Ed. 1981, 20, 207-208
(E)-enolate (Z)-enolate
(E)
enolate El(+) Ratio
98.5:1.5n-C14H29–I
n-C14H29–I 06:94(Z) enolate contamination
Helmchen, Angew. Chem. Int.Ed. 1984, 23, 60-61
Helmchen,Tet. Lett. 1983, 24, 1235-1238
Helmchen,Tet. Lett. 1983, 24, 3213-3216
Helmchen,Tet. Lett. 1985, 26, 3319-3322
Ratio, 93:7 (74%)
Chiral β-Keto Ester Enolates
LDA
toluene
01:99
Ratio (A:B)El(+) Yield
63%
addend
57%
96:04
99:01
77%
48%
15:85
Rationalize the effect of HMPA on the stereochemical outcome of reaction.
Chiral β-Keto Ester Dienolates
Major diastereomer
El(+) El(+)
El(+)
E(+) = Me–I, Et–I, Bn–Br
diastereoselection 98%
Rationalize the stereochemical outcome of reaction.
Schlessinger,Tet. Lett. 1988, 29, 1489-1492
CO2Me
Me
RO2C O
O
H
EtO Me
O
n-C4H9
OTs
H
EtO
O
n-C4H9 H
Br
LiNR2
LiNR2
MeI
LiNR2
Hn-C4H9
O Me
EtO
EtO
MeO
n-C4H9 H
H
O O
RO2C
Me
CO2Me
H
NN
Me O
Bn S
Boc
S
Me3Si OBn
Ph O
OMPh
OMeMe3Si
R
LiNR2
Sn(OTf)2
Me–CHO
O
OMeMe
OLi
O-t-BuR
CO2Et
I
H
CH2
TBSOCH2 Me
CO2Me CO2Me
Me
TBSOCH2
H
CH2
H
Me
Me
PhMe2Si OEt
R OOMR
OEtPhMe2Si
(MeS)3C–Li
KOt-Bu
Me–I
R–CHO
MeI
LiNR2
MeI
NH4Cl
OMe
OMe
MeSMeS
MeMeS
OPh
OBnMe3Si
Me
H
OH
H
H CO
2Et
CO2-t-Bu
R
S
N
Boc
N SBn
OMe
OHR
H
R
Me3Si OMe
Ph O
Allylic Strain & Enolate Diastereoface SelectionD. A. Evans Chem 206
Y. Yamaguchi & Co-workers, Tetrahedron Letters 1985, 26,1723.
R = Me: > 15 :1
R = H: one isomer
THF -78 °C
diastereoselection 90:10 at C3
one isomer at C2
71% yield
I. Fleming & Co-workers, Chem. Commun. 1986, 1198.
86%
diastereoselection 99:1
K. Koga & Co-workers, Tetrahedron Letters 1985, 26, 3031.
T. Mukaiyama & Co-workers, Chem. Letters 1986, 637
diastereoselection >95%
91-95%
Y. Yamamoto & Co-workers, Chem. Commun. 1984, 904.
major diastereomer opposite to that shown40:60
80:20
87:13
R = CHMe2
R = Et
R = Me
R-substituent diastereoselection
I. Fleming & Co-workers, Chem. Commun. 1985, 318.
R = Ph: diastereoselection 97:3
R = Me: diastereoselection 99:1
I. Fleming & Co-workers, Chem. Commun. 1984, 28.
D. Kim & Co-workers, Tetrahedron Lett. 1986, 27, 943.
diastereoselection 98:2
G. Stork & Co-workers, Tetrahedron Lett. 1987, 28, 2088.
"one isomer"
95% yield
"one isomer"
T. Money & Co-workers, Chem. Commun. 1986, 288.
diastereoselection 89:11
N R
Me
N
Et–MgCl
N R
Me N CMe3
N RM
NR M
N R
El
El
NR
Me
N R
Me Me
N R
N
Me
Bn–Br
Et–MgCl
?
H3O+
Et–MgCl
n-Bu–Br
Me2CH–I
H3O+
H3O+
H3O+
H3O+
Me Me
N
Me
–NMe2
R
R
Bu
O
Bn
Me
O
Me
Me
O
Me
H
O
Me
Me
s-BuLi
s-BuLi
s-BuLi
s-BuLi
H3O+
O
MeBu
Bn
Me
O
Me
Me
O
MeMe
+ 1 equiv HMPA 100:0–cyclohexyl
ratio
–cyclohexyl 74:26
base
base
100:0
base
10:90–cyclohexyl
ratio
+Me–I
base
a73 Nature of N-substituent, base, and solvent additive can play a role in
deprotonation regioselectivity: Hosomi, JACS, 1982, 104, 2081-2082
Stork & Dowd, JACS, 1963, 85, 2178-2180
Me–I 83% overall
60% overall
60% overallconditions:
base + R-X in refluxing THF
a73 Representative Reactions:
nonbonding N-lone pair may be stabilized by delocalizatin into
antibonding orbital of C=C.
Remember, (Z) geometry also favored for enol ethers
a73 Geometry Rationalization:
a73 Seminal Paper: Stork & Dowd, JACS, 1963, 85, 2178-2180
Enders in Asymmetric Synthesis, 1984; Vol 3, Chapter 4, pp 275-339
a203 Anion geometry is (Z)a203 For M = Li, anion is delocalized
rather than localized as pictured Collum, JACS 1993, 115, 789-790Collum, JACS 1986, 108, 3415-3422
Collum, JACS 1985, 107, 2078-2082
X-ray structure reveals the following: Collum, JACS 1984, 106, 4865-4869
a73 Solid State & Solution Structure:
a73 Generation & Structure:
Fraser, Chem. Commun. 1979, 47
Fraser, JACS 1978, 100, 7999Kinetic product geometry strongly favors
the syn isomer (>99%) (Fraser)
(E) anion
(Z) anion
El(+) anti product
syn productEl(+)
The base: R–Li; RMgX; R
2N–Li
base
Bregbreiter in Asymmetric Synthesis, 1983; Vol 2, Chapter 9, pp 243-273
Whitesell Synthesis, 1983, 517-535
Martin in Comprehensive Organic Synthesis, 1991; Vol 2, Chapter 1.16, pp 475-502
a73 Reviews:
D. A. Evans Metalloenamines-1 Chem 206
Acidity Measurements: (Streitwiser, JOC 1991, 56, 1989; Fraser, ibid. 1985, 50, 3234):
pKa~ 29-33
N Bn
CMe3
H NBn
Me3C
H Me
MeI
CMe3
N BnLi
MeI
MeHMe
3C
XH
Me
H
MeHMe
3C
XH
Me
H
H X
Me3C
H Me
HHMe
3C
XMe
N R1
O
R2
N N
CH2OMe
MeO
BnN
CMe3
NNMe2
CN CN
NNMe2Me
H
Me
H
Me3C
H
Me
NC NNMe2
MeMe
3C
H
NNMe2
Me H
NNMe2Me
H
Me
Me
H
Me NNMe2
H
MeI
X
MeI
R–X
O
R2
R1N
M
H3O+
Et–I
Me–I
R–X
n-Pr–I
CH2OMe
NN
R
El
O
N R
El
Enders in Asymmetric Synthesis, 1984; Vol 3, Chapter 4, pp 275-339
LDA
Chiral Metallated Hydrazones
Meyers, J. Am. Chem. Soc 1981, 103, 3081
LDA El(+)
full papers:
Meyers, J. Am. Chem. Soc 1981, 103, 3088
Meyers, J. Am. Chem. Soc 1981, 103, 3081
Meyers, J. Org. Chem 1978, 43, 892
Meyers, J. Am. Chem. Soc 1976, 98, 3032
Whitesell, J. Org. Chem. 1978, 42, 377-378early papers:
Major Product
El(+)
Ratio, 90:10
LDA
Chem 206Metalloenamines-2D. A. Evans
Chiral Metalloenamines:
base
The base: R–Li; RMgX; R
2N–Li
Stereoelectronic Issues:
LDA
Ratio, 97:3
Fraser, JACS 1978, 100, 7999
Tendency for axial-chair alkylation is significantly greater that for ketones
LDA
Ratio
94:06X = N-Bn
X = O 60:40
Fraser, JACS 1978, 100, 7999
87
ee
94
99Collum, JACS 1984, 106, 4865-4869
LDA
N
H
Li N Me
Me
N
H
Li
D. A. Evans, K. Scheidt Chem 206Metalloenamine X-ray Structures
Collum & Clardy, JACS 1984, 106, 4865
LI
LI
LI
LI
LI
LILi
N N
CH2OMe
N RN
Li
RH
O Me
A (Enders)
N NLi
OMe
R–X
N RN
Li
RH
O Me
B
NN
R
MeO
Li
Li
D. A. Evans Chem 206SAMP-Metalloenamine X-ray Structure
For a review of this methodology see Enders, D. in Asymmetric Synthesis.; Morrison, J. D., Ed.; AP: New York, 1984; Vol. 3, p 275-339.
diastereotopic face attacked by El(+)
LDA
Chiral Metallated Hydrazones
THF deleted
Which of the reactive chelate conformations are we to begin our analysis from?
diastereotopic face attacked by El(+)