Chemistry 206
Advanced Organic Chemistry
Handout–22A
A Survey of "Soft Enolization" Techniques
Mark Bilodeau
Evans Group Seminar, March 10, 1993
Matthew D. Shair FridayNovember 8, 2002
Sasai, Suzuki, Arai, Arai, Shibasaki J. Am. Chem. Soc. 1992, 114, 4418-4420.
PhCHO +
Catalyst
THF
Ti(Ot-Bu)
4
- No coupling product
La
3
(Ot-Bu)
9
(3.3 mol%), -72° C, 30 h, 74% yield
Y
3
(Ot-Bu)
8
Cl (3.3 mol%), -43° C, 3.5 h, 50% yield
Zr(Ot-Bu)
4
(140 mol%), -50° C, 2.5 h, 86% yield
La
3
(Ot-Bu)
9
(3.3 mol%)
(S)-Binaphthol (15 mol%)
+
THF, rt
2 h
1
H NMR shows absence of a t-Butoxy
group on the catalyst
RCHO, 1 equiv
MeNO
2
, 10 equiv
LiCl, 20 mol%
H
2
O, 1 equiv
R = c-C
6
H
11
, 91% yield, 90% ee
R = i-Pr, 80% yield, 85% ee
R = PhCH
2
CH
2
CHO, 79% yield, 73% ee
a73 Catalytic Enantioselective Aldol Reactions of Nitroalkanes
Sasai, Itoh, Suzuki, Shibasaki Tetrahedron Lett. 1993, 34, 855-858.
Tetrahedron Lett. 1993, 34, 851-854.
1 equiv
+
MeNO
2
50 equiv
Catalyst
-50° C, 60 h
LaCl
3
?7H
2
O (10 mol%)
(R)-(+)-binaphthoxide (10 mol%)
NaOt-Bu (10 mol%)
H
2
O (10 mol%)
Catalyst prepared from:
80% yield
92% ee
Alkoxides of Lanthanum and Yttrium
Mark Bilodeau
Evans Group Meeting 3/10/93
A Survey of 'Soft' Enolization Techniques
D. Boron Enolates - Enolate Stereochemistry
I. Metal Alkoxides
II. Lewis Acid/ Amine Base Enolizations
A. Horner-Emmons Reactions
B. Glycine Enolates
C. Methods for General Carbonyl Substrates
M. Bilodeau, D.A. Evans Chem 115A Survey of 'Soft' Enolization Techniques
O
Me
Cl
Me
O
Ph
HO
Cl
NO
2
R
HO
α?NaphtO NO
2
OH
α?NaphtO CHO
22A-01 Ketone Acidity 11/1/01 3:41 PM
R
3
N ML
n
+
ML
n
R
3
N
a73 Many reactions surveyed here don't rely on complete enolization of
the carbonyl substrate. If the electrophile can withstand the reaction
conditions it can access an equilibrium concentration of the enolate.
pKa 19.2 (DMSO), K
+
counterion
pKa 12.2 (Diglyme), Li
+
counterion
LiCl, 1.2 equiv
Base, 1.0 equiv
i-PrCHO, 1 equiv
MeCN
rt
1.2 equiv
Horner-Wadsworth-Emmons Reaction.
Base = DBU, 5 min, 99%, >50:1 E:Z
Base = DIPEA, 7 h, 97%, >50:1 E:Z
Above conditions
using DIPEA
24 h, rt
85% + 10% recovered aldehyde
Conventional methods of deprotonation (NaH) resulted in epimerization
(Overman JACS 1978, 5179).
R= i-Pr, 40% yield
R= n-C
6
H
13
, 100% yield
1 equiv
MgBr
2
, 1.2 equiv
Et
3
N, 1.1 equiv
RCHO, 1 equiv
THF
rt
Rathke, Nowak J. Org. Chem. 1985, 50, 2624-2626.
El+
a73 Acidity of a-protons enhanced by coordination of Lewis acid.
a73 This allows the use of mild bases to depronate substrate.
a73 A critical issue in the success of procedure of enolization is the
reversible Lewis acid/amine base association.
Lewis Acid - Tertiary Amine Enolizations
ML
n
+
R'
3
N
R'
3
N-ML
n
R'
3
N
-
+
Chem 115M. Bilodeau, D.A. Evans A Survey of 'Soft' Enolization Techniques
R
O
Me Me
O
R
ML
n
O
ML
n-1
R
Me
O
R
Me
El
O
OEt
(EtO)
2
P
O
ROEt
O
O
OEt
(EtO)
2
P
O
OEt
O
Me
Me
NHCbz
CHO
Me
Me
NHCbz
OEt
O
22A-02 Ketone Acidity 11/1/01 3:41 PM
M. Bilodeau, D.A. Evans
A Survey of 'Soft' Enolization Techniques
Chem 115
77% yield, single isomer
1 equiv
1 equiv
+
LiBr, 1.1 equiv
DBU, 1.0 equiv
THF, rt
NaI, MgBr
2
?OEt
2
, ZnI
2
, Et
2
AlCl employed in related reactions
(Bull. Chem. Soc. Jpn. 1989, 62, 869-874).
82% yield
AgOAc, THF, 90% yield, 1:>9
ZnBr
2
, THF, 90% yield, 1:2.7
Formation of Glycine Enolates.
Tsuge, Kanemasa, Yoshioka J. Org. Chem. 1988, 53, 1384-1391.
Kanemasa, Tatsukawa, Wada, Tsuge Chem. Lett. 1989, 1301-1304.
Kanemasa, Uchida, Wada J. Org. Chem. 1990, 55, 4411-4417.
LiBr, 1.5 equiv
Et
3
N, 1.2 equiv
THF, rt
+
+
Grigg et al Tetrahedron 1988, 44, 557-570; 1989, 45, 4649-4668.
Tetrahedron Lett. 1989, 30, 4727-4730; 1990, 31, 6569-6572.
1 equiv
1 equiv
1 equiv
2 equiv
Ti(Oi-Pr)
3
Cl, 1.5 equiv
Et
3
N, 1 equiv
CH
2
Cl
2
, rt
80% yield
1.2:1 R=Me/R=i-Pr
Note: Regiochemistry of addition opposite to that above.
+
+
Lewis Acid
Et
3
N
Solvent
rt
LiBr, MeCN, 89% yield, 1:6
Related reactions have been conducted with MnBr
2
, MgBr
2
?OEt
2
, TlNO
3
, CoCl
2
? Cu(I) catalyzes the reaction but with no enantioselectivity. This has been rationalized on
the basis of Cu(I)'s strong preference for N coordination.
? Ag(I) has recently been optimised to provide moderate-to-good enantioselectivity .
Hayashi, Ito et. al. Tet. Lett. 1991, 32, 2799-2802.
CH
2
Cl
2,
25 °C
[Au(c-HexNC)
2
]
+
BF
4
-
/ 1 (1 mol%)
i-PrCHO +
1a : R=Et
1b : R=Me
Ito, Sawamura, Hayashi J. Am. Chem. Soc., 1986, 108, 6405-6406.
(R)-(S)
Ito Tet. Lett. 1985, 5781.
+ RCHO
CuCl, 5 mol%
Et
3
N, 5 mol%
THF, RT
? When only Et
3
N is employed - complex mixtures, low yields
R= Me, 100% yield, 2:1 trans/cis
R=Et
2
CH, 75% yield, trans only
99% yield, 98:2 trans/cis
92% ee
Glycine Enolates
NCO
2
MePh
CO
2
Me
H
N
Ph CO
2
Me
MeO
2
C
N
OOMe
O
Li
MeO
Ph
CO
2
Me
N
CO
2
Me
Ph N CO
2
Me
CO
2
Me
CO
2
RPh
H
N
Ph
Me
CO
2
Me
MeO
2
CMeO
2
C
CO
2
MePh
H
N
H
N
Ph CO
2
Me
MeO
2
C CO
2
Me
CO
2
Me
Me
Me
Me
Me
Me
N
Me
t-Bu CO
2
Me
CO
2
Me
Me
CO
2
Me
t-Bu N CO
2
Me
CN
O
Fe
OMe
O
PPh
2
N
PPh
2
NCH
2
CH
2
NR
2
Me
H
Me
i-Pr CO
2
Me
CN CO
2
Me
ON
CO
2
MeR
22A-03 Ketone Acidity 11/1/01 3:41 PM
Rathke
A Survey of 'Soft' Enolization Techniques
M. Bilodeau, D.A. Evans Chem 115
16:1 ratio of isomers
3M LiClO
4
Et
3
N
Et
2
O
Harmata, Elahmad Tetrahedron Lett. 1993, 34, 789-792.
70% yield
+
LiClO
4
Et
3
N
Et
2
O
Kaiser, Fohlisch Helv. Chim. Acta. 1990, 73, 1504-1514.
"Reaction can be brought about with less than 1 equiv of LiI."
76%, 60:40 ratio of diastereomers
LiI
TMSCl, Et
3
N
Et
2
O, reflux
PhCHO
R= Ph, 77%
R= n-C
6
H
11
, 85%
slow addn of:
RCHO
Et
2
O
reflux
4 equiv
LiI+
1 equiv
Lithium Halide Enolizations
Kelleher, McKervey, Vibuljan Chem. Comm. 1980, 486-488.
-
Evans, Bilodeau unpublished results.
73% yield, 93:7 diastereomer ratio
Magnesium Enolates
Deuterium quench indicates 25% enolization of N-propionyloxazolidinone
MgBr
2
?OEt
2
Et
3
N
CH
2
Cl
2
, 0° C
75% yield
MVK
EtOH
MgCl
2
, 2 equiv
Et
3
N, 4 equiv
CO
2
MeCN
rt
70 % yield
MgCl
2
, 2 equiv
NaI, 2 equiv
Et
3
N, 4 equiv
CO
2
MeCN
rt
Ketone Carboxylation
85% yield
MgCl
2
, 1 equiv
Et
3
N, 2 equiv
MeCN, rt
Diethylmalonate acylations
J. Org. Chem. 1985, 50, 2622-2624.
J. Org. Chem. 1985, 50, 4877-4879.
Syn. Comm. 1986, 16, 1133-1139.
Me
O
Me
Me
O
R
Me
O
Me
Me
O
Me
Ph
OH
O
O
Cl
Cl
Cl
O
O
O
O
Cl
O
O
Cl
O
O
O
EtO
O
OEt
Me
O
Cl
OEt
O
EtO
O
OMe
O
O
COOH
O
O
O
O
Mg
O
Me
O
ON
Bn
O
Me
O
CO
2
Me
O
Me
N
O
Bn
O
CO
2
Me
22A-04 Ketone Acidity 11/1/01 3:42 PM
A Survey of 'Soft' Enolization Techniques
M. Bilodeau, D.A. Evans
Chem 115
70% enolization (Deuterium Quench)
AlCl
3
Et
3
N
CH
2
Cl
2
, 0° C
Miscellaneous Metals
Nelson, Howells, DeLullo, Landen J. Org. Chem. 1980, 45, 1246-1249.
90% yield
Ni(acac)
2
(1 mol%)
dioxane
85° C, 19 h
+
a73 Bis(2,4-pentanedionato)nickel(II)
- Employing TMSCl and Et
3
N alone provide no enol ether.
68% yield
ZnCl
2
, 3 mol %
Et
3
N
TMSCl
C
6
H
6
, 40° C
Danishefsky, Kiahara J. Am. Chem. Soc. 1974, 96, 7807-7808.
a73 Zinc chloride
a73 Dialkylaluminumphenoxide
Tsuji, Yamada, Kaito, Mandai Tetrahedron Lett. 1979, 2257-2260.
i-Bu
2
AlOPh
Pyridine
THF
reflux
85%
a73 Aluminum trichloride
Evans, Bilodeau unpublished results.
Mukaiyama, Iwasawa Chem. Lett. 1982, 1903.
95% yield, >97:3 syn/anti
i-PrCHO
Sn(OTf)
2
N-ethylpiperidine
CH
2
Cl
2
, -78° C
a73 Methyl ketones readily self-condense (Chem. Lett. 1982, 1459).
a73 Amine and Sn(OTf)
2
are pre-mixed followed by addition of carbonyl substrate.
This indicates that Lewis acid-amine association is reversible.
Tin(II) triflate
Mukaiyama, Stevens, Iwasawa Chem. Lett. 1982, 353.
Sn(OTf)
2
R
3
N
CH
2
Cl
2
, -45° C
Ph(CH
2
)
2
CHO
Base = Et
3
N, 50% yield (15% self-condensation)
N-Methylmorpholine, 22% yield (65%)
N-Ethylpiperidine, 80% (trace)
Pyridine, 0%
DBU, 0%
Sn(OTf)
2
N-ethylpiperidine
CH
2
Cl
2
, -78° C
i-PrCHO
R = Et, 73% yield, 93:7 syn/anti
R =Ph, 80% yield, 91:9 syn/anti
a73 Cannot quantitatively enolize simple esters or amides. However, using standard
enolization protocol on esters in the presence of PhCHO resulted in a "good" yield
of aldol adduct. Employing enolizable aldehydes provides polymerized product.
There is some equilibrium enolization of esters.
? Sn(OTf)
2
unsuitable for enolization of N-propionyloxazolidinone (Evans, Weber).
Me
TMSO
OMe
OMe
O
O
Me n-C
6
H
11
O
n-C
6
H
11
Me
n-C
5
H
11
Me Me
OO
Me
O
OO
MeMe
Me
O
ON
Bn
O
Me
O
Ph
O
Me
O
Ph
Me
OH
Ph
Me
O
R
R
O
Me
OH
Me
Me
SN
S
Me
O
O
N
S
S
Me
MeMe
OH
22A-05 Ketone Acidity 11/1/01 3:42 PM
The Early Literature
10-15:1 Z/E
TiCl
4
DIPEA
THF
-40° C
a73 Brocchini, Eberle, Lawton J. Am. Chem. Soc. 1988, 110, 5211-5212.
91% yield
95:5 syn/anti
TiCl
4
Et
3
N
CH
2
Cl
2
, 0° C
30 min
PhCHO+
Ketone and aldehyde combined followed
by sequential addn of TiCl
4
and then amine
a73 Harrison, C. R. Tetrahedron Lett. 1987, 28, 4135-4138.
75% yield
TiCl
4
Pyridine
THF
Titanium Enolates
a73 Lehnert, W. Tetrahedron Lett. 1970, 4723-4724.
No diamine: 60% yield, 61:39 syn/anti
Diamine= TMEDA, 65% yield, 9:91 anti/syn
i-PrCHO
Sn(OTf)
2
N-ethylpiperidine
[Diamine]
Evans, Clark, Metternich, Novack, Sheppard J. Am. Chem. Soc. 1990, 112, 866.
1. Sn(OTf)
2
Et
3
N
2. i-PrCHO
Evans, Weber J. Am. Chem. Soc. 1986, 108, 6757.
i-PrCHO
Sn(OTf)
2
N-ethylpiperidine
CH
2
Cl
2
, -78° C
Tin Enolates
Chem 115
M. Bilodeau, D.A. Evans
A Survey of 'Soft' Enolization Techniques
79%
Diastereoselection
>95:5
Sn(OTf)
2
Et
3
N
Evans, Sheppard J. Org. Chem. 1990, 55, 5192.
ON
O
O
NCS
Bn
Bn
O
N
O
O
Me
O
Me
Me
O
ON
O
Bn
HN
O
N
O
O
O
O
H
Me
Me
O
Bn
Me
MeMe
OH
SN
S
OBn
O
O
N
S
S
Me
MeBnO
OH
Et Et
O
EtO OEt
OO
O
OEtEtO
O
EtEt
Ph
Me
O
Ph Ph
O
Me
OH
NO
2
O
S
OH
CHO
N
S
O
NO
2
OH
O
Me
OH
Me
Me
H
O
MeMe
Me
O
CH
2
Me
X
P
OO
Me
CH
2
OO
OO
Me
O
Me Me
MeMe
Bn
O
Me
22A-06 Ketone Acidity 11/1/01 3:42 PM
A Survey of 'Soft' Enolization Techniques
M. Bilodeau, D.A. Evans Chem 115
R=Ar, R<i-Pr
a73 Substrates Which present problems:
a73 Enolizable substrates:
Titanium Enolates
Irreversible Complexation
-+
R
3
N-TiCl
4
TiCl
4
+R
3
N
a73 Order of addition of reagents is important for TiCl
4
.
a73 For Titanium: Enolization process not responsive to tertiary amine structure
a73 DIPEA, Et
3
N, N-Ethylpiperidine all suitable bases .
a73 DBU and tetramethylguanidine do not provide enolate.
a73 CH
2
Cl
2
is the only suitable solvent for these enolizations.
a73 Order of addition of reagents is not important for i-PrOTiCl
3
or (i-PrO)
2
TiCl
2
.
R
3
N
+ i-PrOTiCl
3
-+
R
3
N-TiCl
3
(OiPr) Reversible Complexation
TiCl
4 R
3
N
N-Propionyloxazolidone (1)
Lewis Acid % Enolization
TiCl
4
i-PrOTiCl
3
(i-PrO)
2
TiCl
2
(i-PrO)
3
TiCl
100
100
70
~10
80TiCl
4
?2THF
Ethylisopropylketone
Lewis Acid % Enolization
TiCl
4
i-PrOTiCl
3
(i-PrO)
2
TiCl
2
100
80
50
Reactions of Titanium Enolates
1. TiCl
4
DIPEA
2. i-PrCHO
Evans, Clark, Metternich, Novack, Sheppard J. Am. Chem. Soc. 1990, 112, 866.
86% yield, >99:1
99%, >99:1
BOMCl
93%, 97:3
PhSCH
2
Cl
89%, 97:3
ClCH
2
NHCOPh
MeOCH
2
NHCbz
91%, 96:4
93%, 99:1
HC(OMe)
3
99%, >99:1
88%, >99:1
78%, 98:2
H
2
C=CHCOEt
H
2
C=CHCO
2
Me
J. Am. Chem. Soc. 1990, 112, 8215-8216.; J. Org. Chem. 1991, 56, 5750-5752.
1
Reactions with Representative Electrophiles
MeO
OMe
O
R
O
Me
PhS
O
t-Bu Me
Me
O
MeO
O
Me
O
RMe
O
O
Me
N
O
Bn
O ON
Bn
O
Me
O O
Me
N
O
Bn
O
Ti
Cl
Cl
Cl Cl
Ti
Cl
n
Bn
O
N
O
O
Me
O
Me
Me
O
ON
O
O
Bn
Me
Me
OH
Me
O
Me
N
O
Bn
O
Ti
Cl
n
X
p
CH
2
OBn
O
Me
Me
O
CH
2
SPh
X
p
X
p
CH
2
NHCOPh
O
Me
Me
O
CH
2
NHCBz
X
p
X
p
CH
2
OH
O
Me
O
OO
Me
O
CH(OMe)
2
X
p
X
p
(CH
2
)
2
COEt
O
Me
OMe
O
Me
O
X
p
22A-07 Ketone Acidity 11/1/01 3:42 PM
M. Bilodeau, D.A. Evans
A Survey of 'Soft' Enolization Techniques
Chem 115
96% yield, 96:4 diastereomer ratio
1. TiCl
4
DIPEA
CH
2
Cl
2
, -78° C
2. i-PrCHO
R = Et, 95% yield, 92:8 syn/anti
R = i-Pr, 95%, 93:7 syn/anti
1. TiCl
4
DIPEA
CH
2
Cl
2
, -78° C
2. i-PrCHO
Aldol Reactions of Titanium Enolates
J. Am. Chem. Soc. 1991, 113, 1047-1049.
? Order of addition is crucial, Lewis acid and amine irreversibly associate.
? Including PhCHO in reaction solution affords no aldol product.
72% yield
TiCl
2
(OTf)
2
, 1.5 equiv
Et
3
N, 2.2 equiv
CH
2
Cl
2
, 0° C
4? M.S.
Tanabe, Mukaiyama Chem. Lett. 1984, 1867-1870.
Titanium Enolization of Esters
Xiang, Olivier, Ouimet Tetrahedron Lett. 1992, 33, 457-460.
TiCl
4
(1.05 equiv)
Et
3
N (2.1 equiv)
PhCHO
CH
2
Cl
2
, -40° C
70:30 ratio of diastereomers
94% combined yield
When PhCHO is pre-complexed with an equimolar amount of TiCl
4
a syn diastereomer predominates (90:10).
Tanabe Bull. Chem. Soc. Jpn. 1989, 62, 1917-1924.
Cinquini, Cozzi et. al. Tetrahedron 1991, 47, 8767-8774.
1991, 47, 7897-7910.
65% yield, 89:11 syn/anti
1. TiCl
4
, 1 equiv
Et
3
N, 1 equiv
CH
2
Cl
2
, -78° C
2. i-PrCHO
64% yield, 84:16 syn/anti
Titanium Enolates of Thioesters
80% yield, >96% de
2 equiv
1 equiv
TiCl
4
, 2 equiv
Et
3
N, 2 equiv
CH
2
Cl
2
, -78° C
R = Bn, 95% yield, 98:2 syn/anti
R = TBS, 98% yield, 10:90 syn/anti
i-PrCHO, 1 equiv
TiCl
4
, 2 equiv
Et
3
N, 2 equiv
CH
2
Cl
2
, -78° C
2 equiv
Cinquini, Cozzi et. al. J. Org. Chem. 1992, 57, 4155-4162.
1992, 57, 6339-6342.
OTsHN
Me
O
Me Ph
O
X
c
Ph
Me
OH
Me
O
OEt
OEt
O
Me
O
Me
R
O
Me
O
R
Me
MeMe
OH
OH
Me Me
Me
O
Me
O
Me
Me Me
TBSO
Me
Me
HO
Me
PhS
O
Me
O
PhS
Me
MeMe
OH
SPh
O
EtO
OH
PhS Me
Me
EtO
O
PhS
O
OR
PhS
O
Me
MeRO
OH
Me
O
PhS
Me
N
Me
PMP
OBn
NPMP
O
Me
OBn
Me
Me
22A-08 Ketone Acidity 11/1/01 3:42 PM
A Survey of 'Soft' Enolization Techniques
M. Bilodeau, D.A. Evans
Chem 115
(-)-(Ipc)
2
BOTf
a73 Chiral dialkylboron triflates
Masamune, S. et. al. Tetrahedron Lett. 1979, 2225, 2229, 3937.
Masamune, S. et. al. J. Am Chem. Soc. 1981, 103, 1566-1568.
a73 Diastereoselective Aldol Reactions of Boron Enolates.
a73 Di-n-butylboron triflate
Evans, Vogel, Nelson J. Am. Chem. Soc. 1979, 101, 6120.
Evans, Nelson, Vogel, Taber J. Am. Chem. Soc. 1981, 103, 3099-3111.
Evans, Bartroli, Shih J. Am. Chem. Soc. 1981, 103, 2127.
Dialkylboron Triflates
Enolizes ketones with 2,6-lutidine or DIPEA in ethereal solvents.
Mukaiyama, Inoue Chem. Lett. 1976, 559-562.
Bull. Chem. Soc. Jpn. 1980, 53, 174-178.
Masamune, Sato, Kim, Wollmann J. Am. Chem. Soc. 1986, 108, 8279-8281.
Paterson, I. et. al. Tetrahedron 1990, 46, 4663-4684.
Tetrahedron Lett. 1989, 30, 997-1000.
Tetrahedron Lett. 1986, 27, 4787-4790.
a73 Borane and lutidine or DIPEA form 1:1 complex. Complexation reversible as enolization will
occur upon addition of ketone.
a73 Less hindered nitrogen bases - pyridine, Dabco, DBU, and tetramethylguanidine innefective
in the enolization. Attributed to irreversible amine-borane complexation.
a73 The more hindered triflate - enolization must be carried out at 0° C.
R=Et: Z:E = >97:3
R= i-Pr: Z:E = 45:55
R= t-Bu: Z:E = 25:75
n-Bu
2
BOTf
DIPEA
Ether, -78° C
R
2
BOTf
DIPEA
Ether, -78° C
R= n-Bu: Z:E = >97:3
R= c-C
5
H
11
: Z:E = 82:18
DIPEA: Z:E = >97:3
Lut: Z:E = 69:31
n-Bu
2
BOTf
Base
Ether, -78° C
Evans, Nelson, Vogel, Taber J. Am. Chem. Soc. 1981, 103, 3099-3111.
Dialkylboron Triflates
+
L
2
BOTf
+
-
+
-
NR'
3
NR'
3
(A) E and Z enolates derived from deprotonation of syn and anti complexes respectively.
(B) Deprotonation is rate determining step rather than complexation.
(C) All factors being equal anti deprotonation preferred over syn deprotonation.
1. n-Bu
2
BOTf
Et
3
N
2. n-BuLi, TMSCl
Polniazek, R. Research Report
94:6 Z:E
TfOB
Me
Me
BOTf
O
MeMe
Me Me
O
Me
R
O
O
R
Me
H
Me H
RO
BL
2
OTf
O
BL
2
OTf
R
MeH
H
Me
R
Me
OBL
2
R
OBL
2
O
Me
Et
O
HH
O
Et
Me
TMSO
22A-09 Ketone Acidity 11/1/01 3:43 PM
M. Bilodeau, D.A. Evans
A Survey of 'Soft' Enolization Techniques
Chem 115
Coordination to a Lewis Acid lowers rotational barriers moderately , still a preference for
eclipsed methyl.
LePage, Wiberg J. Am. Chem. Soc. 1988, 110, 6642-6650.
Raber, D. J.; Raber, N. K.; Chandrasekhar, J.;
Schleyer, P. von R.
J. Organomet. Chem. 1984, 23, 4076-4080.
13
C NMR study of 2-butanone with BF
3
shows Lewis acid predominantly on
one side of carbonyl group.
Shielded by 2.0 ppmDeshielded by 2.2 ppm
Hartman, J. S.; Stibbs, P.; Forsen, S. Tetrahedron Lett. 1975, 3497-3500.
a73 Poor regioselectivity of deprotonation by R
2
BOTf (vide infra)
a73 Electronic as well as steric impetus for trans deprotonation.
+
Calculations on cationic complex:
6-31G*//3-21G
If OTf- dissociates from ketone-R
2
BOTf complex structure could be anticipated
to become linear.
Allene-like structure resulting from rehybridization of O lone pairs and overlap of resulting
p-orbital with empty p orbital on boron.
R = H, Me: Methyl group eclipsing
carbonyl preferred conformation.
Lewis Acid-Ketone complexation: Theory & NMR
-
+
+
a73 Enolization could occur through a linear boron-carbonyl complex.
R
2
BCl
Et
3
N
Et
2
O
R =Chx, Z:E = 20:80
R = Bco, Z:E = 3:97
Bco = Bicyclo[2.2.2]oct-2-ane
Esters, N,N-disubstituted amides could not be enolized.
Thioesters could be quantitatively enolized.
Z:E ratio as a function of Lewis acid and base.
Propiophenone
Reagent Base Z:E
9-BBN-Cl Et
3
N 52:48
DIPEA >99:1
Chx
2
BCl Et
3
N 1:>99
DIPEA 51:49
9-BBN-OTf Et
3
N >99:1
DIPEA >99:1
Chx
2
BOTf Et
3
N 67:33
DIPEA >99:1
R = Ph, Z:E = >97:3
R = Et, Z:E = >97:3
R = i-Pr, Z:E = 65:35
R = Ph, Z:E = <3:97
R = Et, Z:E = 20:80
R = i-Pr, Z:E = <3:97
R = t-Bu, Z:E = <3:97
9-BBN-Cl
DIPEA
Et
2
O
Chx
2
BCl
Et
3
N
Et
2
O
H. C. Brown J. Am. Chem. Soc. 1989, 111, 3441-3442.
J. Org. Chem. 1992, 57, 499-504.
J. Org. Chem. 1992, 57, 2716-2721.
J. Org. Chem. 1992, 57, 3767-3772.
J. Org. Chem. 1993, 58, 147-153.
Dialkylboron chlorides
BF
3
O
Me
Me
O
H
H
B
H
H
O
Me
Me
B
OTf
O
B
Me
R
Me
R
RR
R
Me
O
HH
O
R
Me
Me
R
OB-9-BBN
OBChx
2
R
Me
Me
Et
OBR
2
Me
Et
O
22A-10 Ketone Acidity 11/1/01 3:43 PM
M. Bilodeau, D.A. Evans
A Survey of 'Soft' Enolization Techniques Chem 115
a73 For 9-BBN-Cl, greater Z:E with DIPEA. Smaller R - greater Z:E.
a73 For Chx
2
BCl, greater E:Z with Et
3
N. Larger R - greater E:Z.
a73 2-Butanone regioselectively deprotonated at methyl group.
a73 Diethylketone poor ratio (4:1 E:Z). Increasing the size of L
2
increases E:Z ratio (97:3).
Boron Chloride - Cis Deprotonation?
H. C. Brown Tetrahedron Lett. 1992, 33, 3421-4.
Chx
2
BI
Et
3
N
CCl
4
, 0° C
X = OEt, 96% yield (
1
H NMR)
X = NMe
2
, 96% yield (
1
H NMR)
Enolization also achieved in hexane or CH
2
Cl
2
.
a73 Chx
2
BI enolizations of esters and amides.
6-31G*//3-21G level
Gung, Wolf J. Org. Chem. 1992, 57, 1370-1375.
Goodman Tetrahedron Lett. 1992, 7219-7222.
MO Calculations on C=O-Boron Lewis Acid Complexes
a73 Strong preference for F to eclipse the C=O bond. Generalized anomeric effect.
Gaussian82
MP2/6-31G*//3-21G level
F-H separation of only 2.06 ?
Van der Walls radii: H 1.2 ?, F 1.35 ?
a73 Calculation on 2-butanone with H
2
BF show Lewis acid adjacent to methyl group by 3.8 kJ/mol.
a73 Methyl group staggered is 16 kJ/mol higher in energy.
a73 Formaldehyde: For Me
2
BF preference for staggered is 19kJ/mol
For H
2
BCl complex has preference of 14 kJ/mol
O
Me
Me
BL
2
Cl
O
BL
2
Cl
Me
O
R
R
Me
ClL
2
B
O
BL
2
Cl
Me
Me
O
ClL
2
B
X
Me
Me
O
Me
OBChx
2
Me
X
O
HH
B
F
HHHH
HH
F
B
H
F
H
H
O
H
HH
F
22A-11 Ketone Acidity 11/1/01 3:44 PM
A Survey of 'Soft' Enolization Techniques
M. Bilodeau, D.A. Evans Chem 115
Goodman/Paterson Mechanistic Rationale
E:Z = 80:20
Z:E = 97:3
R =Et
R = Me
Z:E = 97:3
60:40 regioisomers
Only isomer
L
2
BCl
Et
3
N
L
2
BCl
Et
3
N
L
2
BOTf
DIPEA
L
2
BOTf
DIPEA
Goodman, Paterson Tetrahedron Lett. 1992, 47, 7223-7226.
"The Cl atom is directed towards one of the hydrogens on the cis alkyl group, which induces
a partial negative charge on this α-carbon (thus activating the cis over the trans side for
enolization by an unhindered base like Et
3
N)."
For L
2
BOTf the steric bulk of the triflate is expected to force the X-B-O=C angle to increase thus
reducing any electronic preference for the Lewis acid to be cis to the less substituted group.
Favored
Disfavored
Disfavored
Favored
Proton activated
by cis Cl-B
Sterically hindered amine
(DIPEA) gives Z by
trans deprotonation
+
+
+
+
-
-
-
-
Corey, Kim J. Am. Chem. Soc., 1990, 112, 4976-4977.
A: Ar= p-MeC
6
H
4
-; B: Ar= 3,5-(F
3
C)
2
C
6
H
3
-
B
Et
3
N
toluene-hex
B
DIPEA
CH
2
Cl
2
c-C
6
H
11
CHO
86% yield, 98:2 syn/anti, 91% ee
c-C
6
H
11
CHO
83% yield, 94:6 syn/anti, 75% ee
82% yield, 83% ee
85% yield, 98:2 syn/anti, 95% ee
i-PrCHO
-90 °C
2 h
Et
3
N, 1.5 equiv
CH
2
Cl
2
23 °C, 1h
A 1 equiv
i-PrCHO
-78 °C
2 h
DIPEA, 2 equiv
CH
2
Cl
2
-78 °C, 1h
1 equivA
Corey, Imwinkelried, Pikul, Xiang J. Am. Chem. Soc., 1989, 111, 5493-5495.
Enantioselective Aldols - Corey
O
R
Me
O
BL
2
Cl
Me
OBL
2
OBL
2
Me
Me
Me
OBL
2
OBL
2
Me
Me
O
MeH
H
RBL
2
OTf
R
H
HMe
O
HMe
H
R
B
TfO
L
L
B
L
L
Cl
O
R
H
Me H
Me
R
OBL
2
OBL
2
R
Me
Me
R
OBL
2
OBL
2
R
Me
Me
N
B
Br
N
Ph Ph
SO
2
O
2
S
Ar
Ar
O
Me
Ot-Bu Ot-Bu
O
R
HO
Me
SPh
Me
O
Me
HO
c-C
6
H
11
O
SPh
O
MeMe
Me
OOH
Me
O
PhS Me
O
PhS
OH
Me
Me
Me
Me
22A-12 Ketone Acidity 11/1/01 3:44 PM
M. Bilodeau, D.A. Evans A Survey of 'Soft' Enolization Techniques Chem 115
Rationale for Apparent Enolate Stereochemistry.
DIPEA
Br
-
R*
2
BBr
DIPEA
CH
2
Cl
2
PhCHO
R*
2
BBr
Et
3
N
PhCHO
Et
3
N
Corey, Kim J. Am. Chem. Soc., 1990, 112, 4976-4977.
A similar explanation for Brown's observations in enolizations of propiophenone.
+
-
+
TfO-
Et
3
N optimal base DIPEA optimal base
Formation of Z-enolate from 9-BBNCl a consequence of strong acceleration
of the E1 pathway in the 9-BBN pathway regardless of leaving group.
R = Et, 87%, 84:16 syn/anti
R = i-Pr, 84%, 75:25 syn/anti
i-PrCHO
BCl
3
, 2 equiv
DIPEA, 2 equiv
CH
2
Cl
2
-95° C
Inability to achieve complete conversion attributed to attack of DIPEA upon Boron of
coordinated ketone.
Employing 2 equiv of BCl
3
affords complete conversion.
Regenerated ketone activated by excess BCl
3
and deprotnated by excess DIPEA.
DIPEA
R
3
N-BCl
3
DIPEA
-
+
+BCl
3
1
H-NMR shows formation of a 1:1 complex between BCl
3
and DIPEA.
Pre-mixing Lewis acid (1 equiv) and DIPEA (3 equiv) followed by addition of ketone leads to
little enolization.
Addition of ketone to Lewis acid followed by addition of DIPEA leads to conversion of 75% of
aldol.
Chow, H.-F.; Seebach, D. Helv. Chim. Acta 1986, 69, 604-614.
Boron Trichloride
Alkoxydichloroboranes
BCl
3
+ i-PrOH i-PrOBCl
2
+ HCl
i-PrOBCl
2
, 2 equiv
DIPEA, 4→5 equiv
CH
2
Cl
2
-95° C
i-PrCHO
65%, 95:5 syn/anti
Although less Lewis acidic, this Lewis acid irreversible associates with DIPEA
O
Me
Ot-Bu
Ot-Bu
O
R
HO
Me
SPh
Me
O
Me
HO
R
O
SPh
Me
+
O
Me
SPh
OBR*
2
S
Ph
R*
2
B
-
Br
OR*
2
B
Me
+
S Ph
OBR*
2
Ot-BuMe
+
O
O
MeR*
2
B
-
t-Bu
Br
O
Ph
Me
Ph
L
2
B
Cl
O
BL
2
Me
O
MeMe
O
OH
Me
R
O
BCl
2
O
MeMe
O
BCl
3
MeMe
R
Me
MeMe
OH
Me Me
MeMe
O
O
MeMe
22A-13 Ketone Acidity 11/1/01 3:44 PM
A Survey of 'Soft' Enolization TechniquesM. Bilodeau, D.A. Evans Chem 115
Gennari, C.; Colombo, L.; Scolastico, C.; Todeschini, R. Tetrahedron 1984, 40, 4051-4058.
Ethylenechloroboronate
1.0 equiv
DIPEA (1.15 equiv)
CH
2
Cl
2
, -78° C
R= Et, i-Pr
>95:5 Z:E
Enolization achieved with 2,6-lutidine as well.
Can enolize thioseters (25° C).
PhCHO
R= Et, 82%, >99:1 syn/anti
R= i-Pr, 71%, >99:1 syn/anti
t-Butylethylketone or N-propionyloxazolidinone inert at -78° C
Phenyldichloroborane
Hamana, H.; Sasakura, K.; Sugasawa, T. Chem. Lett. 1984, 1729-1732.
R= Et, i-Pr
PhBCl
2
, 1.2 equiv
CH
2
Cl
2
, -78° C
DIPEA, 2.4 equiv
i-PrCHO, 1.2 equiv
R= Et, 96%, >99:1 syn/anti
R= i-Pr, 80%, >99:1 syn/anti
Aldehyde and DIPEA must be added together for good conversion. Otherwise self-condensed
product of ketone is observed.
B
O
O
Cl
R
O
Me
Me
O
R
B
O
O
O
RPh
Me
OH
O
R
Me
B
O
B
Me
R
O
R
Me
B
O
O
O
O
O
O
Cl
Cl
Cl
Me
O
R
OH
Me
R
O
Me
Me
22A-14 Ketone Acidity 11/1/01 3:44 PM