http://www.courses.fas.harvard.edu/~chem206/
R1Me
Me
OOH
R2CHO
H
O
Ph
OH
N Ph
Ph
N B O
PhPh
R
H
Me
O
(R)
Et2Zn, 0 °Ctoluene
1 equiv BH3?THF
R1Me
Me
OHOR2
O
Me
OH
Et
OH
(R)
(S)
Chem 206D. A. Evans
Matthew D. Shair Wednesday, November 6, 2002
a73 Reading Assignment for this Week:
Carey & Sundberg: Part A; Chapter 8Reactions of Carbonyl Compounds
Diastereoselective & Enantioselective Carbonyl Addition
Chemistry 206
Advanced Organic Chemistry
Lecture Number 21
Enantioselective Carbonyl Addition
a73 Enantioselective addition of R2Zn to aldehydes
a73 Enantioselective Reduction of Ketones & Imines
Carey & Sundberg: Part B; Chapter 2Reactions of Carbon Nucleophiles with Carbonyl Compounds
Carey & Sundberg: Part B; Chapter 5Reduction of Carbonyl & Other Functional Groups
Carbonyl Addn: Felkin Control: Evans, JACS 1996, 118, 4322 (handout)
Carbonyl Additon: Chelate Control: Evans JACS 2001, ASAP (handout)
Enantioselective Carbonyl Reduction: Corey Angew. Chem. Int Ed.
1998, 37, 1986-2012 (handout)
Enantioselective Carbonyl Addition (R2Zn): Noyori Angew. Chem.
Int Ed. 1991, 30, 49-69 (handout)
a73 Problems:
15% SmX3 catalyst
diastereoselection > 100:1
Propose a mechanism for tihs highly diastereoselective transformation, Evans, Hoveyda
JACS 112, 6447 (1990)
Cume Question, 2000: Chiral amino alcohol 1 efficiently mediates the addition of
diethylzinc to aromatic aldehydes. While a number of other amino alcohols are also
effective in controlling the absolute course of the addition process, this amino alcohol has
been the focus of a recent computational investigation that addresses the preferred
transition state geometry for this addition process (Pericas, et al. J. Org. Chem. 2000, 65, 7303
and references cited therein). It should be noted that, while 1 is not the actual catalyst, it is
modified under the reaction conditions to the competent catalytic agent. Provide a detailed
mechanism for the overall transformation. Use 3-dimensional representations to illustrate
the absolute stereochemical aspects of the indicated transformation.
1
0.06 equiv 1 97% ee
1, (R = H or Me)
0.1 equiv 1
Cume Question, 2000: Corey's introduction of chiral oxazaborolidine catalysts 1 in the
borane-mediated enantioselective reduction of ketones represents an important advance in
asymmetric synthesis (Corey & Helal, Angew. Chem. Int. Ed. 1998, 37, 1986-2012). Provide a
detailed mechanism for the overall transformation. Use 3-dimensional representations to
illustrate the absolute stereochemical aspects of the indicated transformation.
97% ee
H
H
C HCHH
Nu
C
HR
Nu
CHO
H
Nu
C
Nu
OHH
R L
R L
R M
R M
H
C OH
R L
R M
R L O
R M
H H
H
CH O
C HO
R L
R L
R M
R M
H
C HO
R L
R M
C
Nu
C
RL
H
H
RL
RL
H
H
Chem 206The Felkin-Anh Eisenstein ModelD. A. Evans
wrong prediction
destabilizinginteraction predicted to be favored TS
Nu:Nu:
The flaw in the Felkin model: A problem with aldehydes!!
Anh & Eisenstein Noveau J. Chim. 1977, 1, 61-70
Anh Topics in Current Chemistry. 1980, No 88, 146-162
anti-Felkin
Nu:
Nu:
Nu:
Felkin
?
?
Nu: favored
disfavored
a73 The antiperiplanar effect:
Hyperconjugative interactions between C-RL which will lower pi*C=O
will stablize the transition state.
a73 Dunitz-Bürgi C=O–Nu orientation applied to Felkin model.
New Additions to Felkin Model:
Theoretical Support for Staggered Transition states
Houk, JACS 1982, 104, 7162-6
Houk, Science 1986, 231, 1108-17
Review Lecture-7
Houk: "Torsional effects in transition states are more important than in ground states"
σC-Nu
σ?C-RLTransition state
σC-Nu
σ?C-RLGround state
Transition states
H-radical and H-anion: antiperiplanar σ?C–R orbital stabilized the TS
illustrated for Nu addition
Houk, Science 1981, 231, 1108-1117"The Theory and Modeling of Stereoselective Organic Reactions"
σC-Nu
σ?C-RL
σC-Nu
homo
σ?C-RL
lumo
Forming bond Forming bond
Nu
OH
H
Me
H
H
MeMe
H
H
Me
H
O
H
Cram
R L H
R M
O
H
Me
OR
O
Me
H R
OLi
OLi
OMeMe
Me
H
H
CH O
C HO
R L
R L
R M
R M
R
OOH
Me
R
Me
OH O
OMe
Me Me
OH
R M
NuR L
R L Nu
R M
OH
H
Me
O
R1 O
Me
H
BF3-Et2O
R2
OSiMe2tBu
R
Me
OH
R2
OOH
Me
R1
ClMg C CEt
Li
>90 : 10(R–MgX gives Ca 3:1 ratios)
R–Ti (OiProp)3
R = n-Bu
R-Titanium Ratio
>90 : 10R = Me
M. Reetz & Co-workers, Angew Chemie Int. Ed.. 1982, 21, 135.
C. Djerassi & Co-workers, J. Org, Chem. 1979, 44, 3374.
1 : 1
Reagent Ratio
5 : 1
3 : 1
4 : 1
Ratio Li enolate
R = Ph 24 : 1
C. Heathcock & L. Flippin J. Am. Chem. Soc. 1983, 105, 1667.
Ketone (R1) Ratio
10 : 1R = Ph R = Me
Enolate (R2)
R = t-Bu
-78 °C
R = OMe 15 : 1R = Ph
R = Ph 36 : 1R = Ot-Bu
R = Ot-Bu 16 : 1R = c-C6H11
a73 This trend carries over to organometallic reagents as well
Lewis acid catalyzed rxns are more diastereoselectiveTrend-2:
Trend-1: For Li enolates, increased steric hindrance at enolate carbon results in enhanced selectivity
L. Flippin & Co-workers, Tetrahedron Lett.. 1985, 26, 973.
R = Ph
+ Anti-Felkin Isomer
>200 : 1
RatioKetone (R)L. Flippin & Co-workers,
Tetrahedron Lett.. 1985, 26, 973.
9 : 1R = c-C6H11
R = OtBu 4 : 1
Enolate (R) Ratio
3 : 1
+ Anti-Felkin Isomer
R = Me
Addition of Enolate & Enol Nucleophiles
anti-Felkin
Nu:
Nu:
Nu:
Felkin
?
?
Nu: (Felkin) favored
disfavored
D. A. Evans The Felkin-Anh Eisenstein Model: Verification Chem 206
+ Anti-Felkin Isomer
+ Anti-Felkin Isomer
+ Anti-Felkin Isomer
HMe
H
H
MeHO
H
R L
C OR
BH
R
R
R M
CramR
L R
R M
O
O
Me
Me
H2C (CH2)2Ph
O
Me
R
M–H
M–H
H
H
CR O
C RO
R L
R L
R M
R M
Me
Me
OH
R
Me
OH
(CH2)2PhH2C
OH
Me
Me
OH
R M
RR L
R L R
R M
OH
O
R M
RR L
H
O Me
H
H
Me
R2B–H
R2B–H
[H]
H
CO R
HB
R
R
R L
R M
LiAlH4
NaBH4
R L R
R M
OH
OH
R M
RR L
Exercise: Draw the analogous bis(R2BH)2 transition structures
Nonspherical nucleophiles are unreliable in the Felkin Analysis
Transition States for C=O-Borane Reductions
anti-Felkin
Felkin
?
?
(Felkin) disavored
favored
Note: Borane reducing agents do not follow the normal trend
M. M. Midland & Co-workers, J. Am. Chem. Soc. 1983, 105, 3725.
TS ?
Anti-Felkin
Felkin
H–B(Sia)2 1 : 4
22 : 1Li+H–B–(sec-Bu)3
RatioReagent
Reagent Ratio
Li+H–B–(sec-Bu)3 96 : 4
Ketone (R)
R = H
- 78 °C
R = H 47 : 53DIBAL
DIBAL 88 : 12R = Me
R = Me >99 : 1Li+H–B–(sec-Bu)3
G. Tsuchihashi & Co-workers, Tetrahedron Lett. 1984, 25, 2479.
TS ?
Anti-FelkinH–B(Sia)2 1 : 10
54 : 1Li+H–B–(sec-Bu)3
RatioReagent
5 : 1
3 : 1
M. M. Midland & Co-workers, J. Am. Chem. Soc. 1983, 105, 3725.
Hydride
Chem 206The Felkin-Anh Model: Ketone ReductionD. A. Evans
disfavored
(Felkin) favoredNu:
?
?
Felkin
Nu:
Hydride
anti-Felkin
Addition of Hydride Nucleophiles
+ Anti-Felkin Isomer
+ Anti-Felkin Isomer
Felkin
Felkin
Felkin
Review hydroboration discussion in Lecture-8
R R
O OR M
R O
O
R
R M
R L R
OR
O H:
RO
H
C
O
M RO
R
CR O
O
MOR
R
R
Nu
C RO
OMOR
RR
Nu
OR
R L
R L
H
R L
H
H:
H:
H+
H+
Nu
R OH
O
R
R
Nu
R R
O OHR
OH
OR
RR L
R L R
OR
OH
OH
OR
RR L
Me
O
ORMe
Me
Ph Me
O
X
X
O
MePh
Bu4N+ F-
LiAlH4
PhMe2Si–H
PhMe2Si–H
(OR)
THF
THF
Et2O
X
OH
MePh
OR
OH
MeR
Ph Me
OH
X
R Me
OH
OR
Ph Me
OH
X
X
OH
MePh
Degree of chelate organization may be regulated by choice of solvent
and protecting group. Note that SiPh2(t)Bu group prevents chelation for most Lewis acids. There are dramatic exceptions However:
2 : 98
-10 °C
Overman
Tet Lett. 1982, 23, 2355 Chelate
Ratio
30 : 70
Solv.
R = CH2OBn
R = CH2OBn
R = SiPh2(t)Bu
Model
95 : 5
Chelate
Cram: RL=OR
X = OCOPh
<1 : 99
RatioH-bonding Chelate Model
T. Hiyama & Co-workers,
J. Am. Chem. Soc. 1984, 106, 4629.
TFA, 0 °C
Substituent (X)
7 : 93X = NHCO2Et
Lets begin with a case where chelation is precluded: (Path A)
?
path C
path B
path A
?
Lets begin with the hydride reductions of alkoxy ketones
X = OCOPh 96 : 4
95 : 5X = OAc
X = NMe2
Substituent (X)
T. Hiyama & Co-workers, J. Am. Chem. Soc. 1984, 106, 4629.
Let RL = X
in the Ahn-Eisenstein model Ratio
>99 : 1
Nu–M
Reviews Reetz, Angew. Chem. Int. Ed. 1984, 23, 556-569Reetz, Accts. Chem. Res. 1993, 26, 462-468 (pdf)
?
Nu–M
Chelate organization provides a powerful control element in carbonyl addition reactions
Chem 206D. A. Evans Carbonyl Addition Reactions: Chelate Organization
Chelation model
Carbonyl Additon: Chelate Control: Evans JACS 2001, ASAP (handout)
H
O
OR
R L H
OR
O
SnBu3
RO
H
BF3-Et2O
TiCl4
MgBr2
MgBr2
(OR)
CO
O
HM
R
CH O
C HO
OR
R L
R L
H
H
R L
OR
OH
C6H11H
5C3 H5C3
C6H11
OH
OR
R L Nu
OR
OH
OH
OR
NuR L
OH
OR
NuR L
OH
O
Me
Et OBnH
OCH2OBn
TBSO O
Me
Me
O
O
Me
Et OBnH
OTBSO
OCH2OBn
Me
OOO Et H H H
OMe
MeMeMe
CH2OHR H
O
THF
Me
MgBr
Me-MgBr
Me
MgBr
Et2O
EtMgBr
MeMgBr
Me
OHTBSO
OCH2OBn
Me
Me
OCH2OBn
TBSO OH
Me
H OBnEt
Me
OH
O
Me
Me
O
OH
Me
Et OBnHEt
OHH
R EtO R'
Me
Addition of Carbon Nucleopiles
Chelation model
?
path C
path B
path A
?
Nu:
?
Nu:
Chem 206D. A. Evans Carbonyl Addition Reactions: Chelate Organization
Nu:
Chelate Felkin: RL=OR
G. Keck & Co-workers, Tetrahedron Lett. 1984, 25, 265
CH2Cl2 (-78°) 5 : 95
>99 : 1R = CH2OBn CH2Cl2 (-78°)
CH2Cl2 (-20°)R = CH2OBn >99 : 120 : 80
Acid RatioSolv.
R = CH2OBn
R = SiMe2(t)Bu
THF (0°)
Lewis Acid
Felkin: RL=OR
Chelate
"only one isomer"
Y. Kishi & Co-workers, J. Am. Chem. Soc. 1979, 101, 260.
Y. Kishi & Co-workers, Tetrahedron Lett. 1978, 19, 2745 Chelate Model"only one isomer"
"only one isomer"
Y. Kishi & Co-workers, Tetrahedron Lett. 1978, 19, 2745 Chelate Model
Chelate Model
diastereoselection 50 : 1
diastereoselection >100 : 1W. C. Still & Co-workers, Tetrahedron Lett. 1980, 21, 1031
Chelate Model
Chelate Model
O
BuMe
Me OR
O
Me2Mg
O
R
M
R
Me2Mg
R–M
MeMe
Bu
OMgX
OMgX
ORMe
Me
R
O M
R
R–M
R
–CMe3
–SiMe3
–Si-i-Pr3
R
R
O
O
H
BnO
Me
OCH2OBn
TBSO O
Me
O
H
BnO
Me
SiMe3
R-M
Me
MgBr
MeMe
OMgX
OR
O
Me OBn
OSi(iPr)3Me
O
R O
O
R
R M R R
O OR M
Me2Mg
Me2Mg
CH2Cl2
Me-MgCl
Me-TiCl3
R-M
OHBnO
Me
R
OHBnO
Me
SnCl4
TiCl4
BF3-OEt2
Me
OHTBSO
OCH2OBn
Me
THF
CH2Cl2
better thanHence, organization through
However, these trends are not transmitted strongly to β-chelation
= 2.5k
2
k1
k2
k1
rxn run inTHF at - 78°CEliel, Frye, JACS 1992, 114, 1778-84 (read)
1
7
9
–Bn 174
213–Me
k1
k2
reference rxn
rel rate
product
+
Ketone +
Substrates which can participate in C=O chelation will be more reactivesince the effective concentration of chelated intermediate will be higher.
much more reactive thanSince
Kinetic Evidence for Chelate-Controlled C=O Additon
Carbonyl Addition Reactions: Chelate OrganizationD. A. Evans Chem 206
Alpha–Versus Beta-Chelation
Chelate Model
W. C. Still & Co-workers, Tetrahedron Lett. 1980, 21, 1031
diastereoselection 50 : 1
-78 °C + isomer
M. T. Reetz & Co-workersJ. Am. Chem. Soc.. 1983, 105, 4833. RatioSolv.
40 : 60
90 : 10Other nucleophiles reported
Chelate Model
95 : 5
95 : 5
RatioAcid
Chelate Model
M. T. Reetz & Co-workersTetrahedron Lett. 1984, 25, 729.
+ isomer
Acid -78 °C
85 : 15
a73 Note that beta chelation can be developed as a control element by varying solvent & Nu.
a73 Note BF3 gives "apparent" chelate control
O
Me
H
BnOCH2O
Me
H
BnOCH2O
Me
O
Me
BnOCH2O
H
Me
O
O
O
Me
H
O
Me2CuLi
Me2CuLi
Me2CuLi
Me-M
OH
Me
BnOCH2O
Me
Me
Me
OHBnOCH2O
Me
Me
Me
OH
O
O
Me
BnOCH2O OH
Me
Me
R-M
MeMgBr
Me2CuLi
O
H
BnO
Me
Me CHOO
OTBS
O N O
Me2CH
Me
TBSO H
RO
Me
O
Me Ph
OTMS
M
MeMeO
O
Me
Me
M
Me
BnOCH2O
H
O
Me
BnOCH2O OH
Me
OH
O
CO2R
MeHH Me2Zn
TiCl4
CH2Cl2
Me2CuLi
XV
OH
O
OTBS
Me
OHBnO
Me Ph
Me
O
H H Me
CO2R
OH
Me O
OH
Me
ROR
Me
Me
O
O
MeMe
chelate model
diastereoselection 96 : 4S. W. Baldwin & Co-workersJ. Org. Chem. 1987, 52, 320.
diastereoselection >92 %
Chelate Model
M. T. Reetz & Co-workersTetrahedron Lett. 1984, 25, 729.
+ isomer
TiCl4 -78 °C
D. A. Evans & E. SjogrenTetrahedron Lett. 1986, 27, 4961.
Metal Ratio
M = MgCl 70 : 30
97 : 3M = ZnCl
+ isomer
D. A. Evans and S.L. Bender J. Am. Chem. Soc.. 1988,
in press. 33 : 6798 : 2M = LiM = [CuCN]1/2
RatioMetal
R = BOM(CH
2OBn)
W.C. Still & Co-workers, Tetrahedron Lett. 1980, 21, 1035.
-78 °C Et2O
+ isomer
diastereoselection 50 : 50
diastereoselection 70 : 30
Chelate Model
-78 °C Et2O
-78 °C Et2O
Chelate Model
diastereoselection > 95 : 5
diastereoselection > 95 : 5
Chelate Model
-78 °C Et2O
-78 °C
Chelate Model
97 : 3
50 : 50
Ratio
+ isomer
Chem 206D. A. Evans Carbonyl Addition Reactions: Chelate Organization
Beta Chelation with Organometals
Carbonyl Additon: Chelate Control: Evans JACS 2001, ASAP (handout)
stereocenters reinforcing
stereocenters non-reinforcing
O
Me
NH2
PhPh
Ph
MeO
Me
O
LiAlH4
Zn(BH4)2
OEt
O
C3H5
O
N
CH2MOM
MOMCH2
Me
Me
O
Me
O
Ph Ph
OH O OO
PhPh
B
Bu Bu
M-H
M-H
Ph
NH2
Me
OH
Ph
OH
Me
MeO
Ph
C3H5
OH
OH
XC
OH
Me
O
Me
Me
NaBH4
M-H
M-H
LiAlH4 THF
Zn(BH4)2 Et2O
KBH3H THF
Zn(BH4)2 Et2O
OHOH
PhPh
OH
OH
C3H5
Me
Me
O
Me
OH
XC
OOH
MeMe
Me Me
MeMe
Me Me
OH O
Me
OOH
MeMe
Me MeMe
OOH
R1 R2
R3
R1Me
Me
OOH
Me4NBH(OAc)3
R2CHO
H
R3
H
C H
O
B OAc
OAc
OR1
R2
C H
BOR1
R2
OAc
OAc
OHH
R3
H
H
R1Me
Me
OHOR2
O
MeMe
Me Me
OH OH
OHOH
MeMe
Me MeMe
MeMe
Me Me
OH OH
Me
R2R1
OH OH
R3
R3
OHOH
R1 R2
favored
?
–
Beta Chelate-Controlled Reduction
Carbonyl Addition Reactions: Chelate OrganizationD. A. Evans Chem 206
+ isomer
Chelate Model
Et2O, 0 °C
M. Yamaguchi & Co-workersTetrahedron Lett. 1985, 26, 4643.
diastereoselection 97 : 391-99%
T. Oishi & Co-workersChem. Pharm Bull. 1984, 32, 1411.
J. Barluenga & Co-workersJ. Org. Chem. 1985, 50, 4052.
91-99% diastereoselection 88 : 12
Et2O, 0 °C
Chelate Model
+ isomer
Ratio
100 : 0
0 : 100
G. R. Brown & Co-workersChem. Commun. 1985, 455.
0 : 100
100 : 0
Ratio
T. Oishi & Co-workers
Tetrahedron Lett. 1980, 21, 1641 (Zn(BH
4)2 on esters.
+ isomer
-100 °C
diastereoselection 96 : 4K. Narasaka & Co-workersChem. Lett. 1980, 1415.
NaBH(OAc)3
HOAc, -20 °C + isomer
diastereoselection 96 : 4
diastereoselection 98 : 2
+ isomerHOAc, -20 °CNaBH(OAc)3
NaBH(OAc)3
HOAc, -20 °C + isomer
diastereoselection 98 : 2
– +
?
Directed reductions of -hydroxyketones
Evans, Chapman, Carreira, JACS 110, 3560 (1988)
15% SmX3 catalyst diastereoselection > 100:1
Propose a mechanism for tihs highly diastereoselective transformation, Evans, Hoveyda JACS 112, 6447 (1990)
Et2Zn
Me
Me
N
H
Me
Me
Me
ZnO
H
Et
O C HZn
Et Et
C HO
Zn Et
H
H
O
N Me
Me
Me
Me
Me
RDS
O C H
O
Et
H
Zn–Et
OR'
Zn O
Zn
Zn O
ZnO
R
R
R
R'
R'
R' RZn
ROR'
O R'ZnR
O Zn
Zn OR R'
R' R
Me
Me
N
H
Me
Me
Me
ZnO
H
Et
Zn
Et
C
Et
O
HO
Zn
Et
H
H
N Me
Me
Me
Me
Me
R'O ZnR
Ar R’
OH
Me
Me
N
H
MeMe
Me
ZnO
H
Et
PhCHO
Me2Zn
Et2ZnMe
2ZnEt
2ZnEt
2ZnEt
2ZnEt
2ZnEt
2Zn
Zn
R
Zn I
I
C O
R
R
H
(DAIB-Zn)
Review: Noyori Angew. Chem. Int. Ed. 1991, 30, 49Review: L. Pu, Chem. Reviews 2001, 101, 757-824
a73 Two zinc species per aldehyde are involved in the alkylation step.
a73 Product is taken out of the picture by aggregation
4
a73 The method is catalytic in aminoalcohol.
Enantioselective C=O Addition: Noyori CatalystD. A. Evans
Noyori & co-workers, J. Am. Chem. Soc. 1986, 108, 6072.
replace with chiral controller
Catalytic Asymmetric Carbonyl Addition
a73 Catalyst must be sterically hindered so that association is precluded98% e.e.
91% e.e.
93% e.e.
93% e.e.
96% e.e.
90% e.e.
61% e.e.
C6H5CHO
"
p-ClC6H4CHO
p-MeOC6H4CHO
Cinnamyl
PhCH2CH2CHO
n-C6H13CHO
0°C, toluene
59 - 97%
Ar–CHO + R2’Zn
J. Am. Chem. Soc. 1989, 111, 4028.
the catalyst
the catalyst
90-98% ee
The Catalytic Cycle
Chem 206
N
B
O
PhB
OMe
Ph
H
H
H
X
Ph
B B
+
–
+
H2N
Ph
Ph
OH
Me2HC
R
O
Ph Ph
OH
H
R
H
N O
Ph
Ph
B
R
Me
O
R BH3
BH3
H
R
OH
Me
H
N B
R
O
Ph
Ph
H3B
B
Me
ON
Ph
Ph
H
RL
H
RS
OBH2
O
N B
Y
O
H2B
O
BN
Y
C RS
RL
H
X
X BH
3
O
BN
Y
BH3
H2B H
N
C
RL
RSO
B
OY X
X
C RSRL
O
(Review) Martens, Tertrahedron Asymmetry 1992, 3, 1475
97 % ee97 % ee
91 % ee
But how does it really work ?
R = Ph,
R = t-Bu,
R = c-C6H11
–
+
R = HR = Me
a73 The Catalytic Process: Corey, 1987
Itsuno, J. Chem. Soc. Perkin Trans I. 1985, 2615
Itsuno, J. Org. Chem. 1984, 49, 555
Itsuno, Chem. Commun. 1983, 469
a73 The Stoichiometric Process: Itsuno, 1983-1985
( H–BXC )
2 equiv BH3
30 °C, 10 hr
Chiral
Boron Hydride
( H–BXC )
R = Me, 94 % eeR = Et, 94 % ee
R = n-Bu 100 % ee
Chem 206D. A. Evans Enantioselective C=O Addition: Corey-Itsuno Catalyst
Discovery of a Catalytic Process
(0.1 equiv)
–
+
+
–+
–
TheCatalytic Cycle
Corey, JOC 1988, 53, 2861
Corey, JACS 1987, 109, 5551
Corey, JACS 1987, 109, 7925
Improved version
Catalyst X-ray, Corey, Tet. Let 1992, 33, 3429
Mathre, JOC 1993, 58, 2880
catalyst prep: Mathre, JOC 1993, 58, 799
Mathre, JOC 1991, 56, 751
Recent Review: Corey, E. J. and C. J. Helal (1998). “Reduction of carbonyl compounds with chiral oxazaborolidine catalysts: A new paradigm for
enantioselective catalysis and a powerful new synthetic method.” Angew. Chem., Int. Ed. Engl. 37(15): 1987-2012.
O
O
n-C5H11
OArCOO
N B O
Ph
PhH
Me
O OH
Br
OH
O
Me
O
Br
Me
OH
ArCOO OH
n-C5H11
O
O
O
O
n-C5H11
OHArCOO
CCl3R
O
CCl3R
OH
Cl
O
O
NHMe
CF3
Me
Me
O
Me Me
Me
Me
Me
Me
F
O
BH
O
HO–
O
BH
O
N B O
Ph
PhH
Me
BH3
NaH
CF3
Cl
B
n-Bu
H PhPh
N O
N3
R COOH
OH
R CCl3
OH
Cl
NHMe
OH
Na–IMeNH
2
R
t-C4H9
n-C5H11
Me
Me
Me
Me
MeMe
HO
Me
Me
F
c-C6H11
D. A. Evans Enantioselective C=O Addition: Catalyst Scope
Representative Reductions
90 : 10
91 : 9
(R)-cat, as above
(S) cat (0.1 equiv)
BH3 (0.6 equiv)
THF 23°C, 2 min
The catalyst
Corey, JACS 1987, 109, 7925
(S) cat
BH3 86% ee
91% eeBH
3
(S) cat
91% eeBH
3
(S) cat
(R) cat (0.2 equiv)
1.5 equiv 92% ee
Tet. Let 1992, 33, 2319
Fluoxetine (Prozac?) Synthesis
94% ee (>99%)
0.1 equiv
Prozac?
An -Amino Acid Synthesis
Tet. Let 1989, 30, 5207
0.1 equiv
ee
95%
92%
98%
N3– rm temp
Corey, JACS 1992, 114, 1906
Tet. Let 1992, 33, 3435
Tet. Let 1992, 33, 3431
Chem 206