http://www.courses.fas.harvard.edu/~chem206/
Ph
Ph
OO O
CO2Me
CO2Me
H
H
CO2Me
MeO2C H
H
O
O
O
Ph
Ph
Chem 206D. A. Evans
Matthew D. Shair Monday, Columbus Day,
October 14, 2002
a73 Reading Assignment for week:
Carey & Sundberg: Part A; Chapter 11Concerted Pericyclic Reactions
Pericyclic Reactions: Part–2
Chemistry 206
Advanced Organic Chemistry
Lecture Number 12
Pericyclic Reactions–2
a73 Electrocyclic Reactions
a73 Cheletropic Reactions
a73 Sigmatropic Rearrangements: [1,2], [1,3], [1,5]
a73 Other Reading Material:
Fleming: Chapter 4Thermal Pericyclic Reactions
a73 Woodward-Hoffmann Theory R. B. Woodward and R. Hoffmann, The Conservation of Orbital
Symmetry, Verlag Chemie, Weinheim, 1970.
a73 Frontier Molecular Orbital Theory I. Fleming, Frontier Orbitals and Organic Chemical Reactions,
John-Wiley and Sons, New York, 1976.
a73 Dewar-Zimmerman Theory T. H. Lowry and K. S. Richardson, Mechanism and Theory in
Organic Chemistry, 3rd Ed., Harper & Row, New York, 1987.
a73 General Reference R. E. Lehr and A. P. Marchand, Orbital Symmetry: A Problem
Solving Approach, Academic Press, New York, 1972.
a73 Problems of the Day:
Huisgen, TL, 1964, 3381.
Predict the stereochemical outcome of this reaction.
a68
a68heat
Suggest a mechanism for the following reaction.
heat
Bloomfield, TL, 1969, 3719.
Houk, et. al. Acc. Chem. Res. 1996, 29, 471-477.
Houk, et. al. JOC. 1996, 61, 2813-2825.
H
Ph
Ph
OO O
Ph
Ph
OO O
R R R
R
R
R
R
R
H
HOMO
O
O
O
Ph
Ph
O
O
O
Ph
Ph
LUMO
LUMO
HOMO
Evans, Breit Electrocyclic Processes-1 Chem 206
Electrocyclic Reaction - Selection Rules
Ground State(Thermal process) Excited State(Photochemical Process)
4n pi e-
(n = 1,2...)
4n+2 pi e-
(n = 0,1,2...)
conrotatory disrotatory
disrotatory conrotatory
Controtation and on to the indicated bonding and anti-bonding
orbitals of cyclobutene:
Con
Con
42
29
45
27
Criegee, Chem. Ber. 1968, 101, 102.
Activation Energy (kcal/mol)for electrocyclic ring opening
Huisgen, TL, 1964, 3381.
Activation Energy (kcal/mol)for electrocyclic ring opening
Ground State Excited State
Conrotatory Disrotatory
Disrotatory Conrotatory
Conrotatory Disrotatory
Disrotatory Conrotatory
Conrotatory Disrotatory
Conrotatory Disrotatory
Disrotatory Conrotatory
Examples
Con Con
Sterically favored
R
CN
Me
CH2OBn
H
H
CHO
R
H
R
H
R
Me
CN
CH2OBn
CHO
R
Me
CN
R
CH2OBn
CHO A
R
H
H
H
H H
H H
R
H
H
H
H
H
H
H
H H
H H
R
H
H
H
H
H B
Evans, Breit Electrocyclic Processes-2: Torquoselectivity Chem 206
con con
in out
Torquoselectivilty is defined as the predisposition of a given R substituent for a given conrotatory motion
con +
R = Me
R = CHO
only
none
none
only
con +
ratio: >20:1
con +
ratio: 4:1
Houk et al. Acc. Chem. Res 1996, 29, 471
Examples: Donor substituents prefer con–out modePi acceptor substituents prefer con–in mode
HOMO + p
LUMO + p
Inward Motion
HOMO + p
Outward Motion
LUMO + p
How do we explain? Donor substituents prefer con–out modePi acceptor substituents prefer con–in mode
View the 2 conrotatory modes by looking at the breaking sigma bond from this perspective
destabilizing 4 electron interation for donor
substituents
stabilizing 2 electron interation for acceptor
substituents
As conrotation begins the energy ofthe breaking sigma bond rises
steeply. Hyperconjugation with a pi* orbital, while possible in both A & B ,
is better in B. (Houk)
+
+
Ψ3
Ψ1
Ψ2
A
H
R
H
A
R
A H
A
H
CR
A
H
H
A
X
R
R
R
R
X
R
R
LUMO
C
C
R A
H
H
A
A
A
R
H
H
R
R
HOMO
LUMO
LUMO
X
X
H
TsO
X
C
CR
H
Me
Me
H
C
CR
Me
H
H
Me
X
HOMO
HOMO
–X–
–X–
H
TsO MeMe
H
H
H
+X–
R
Me H
H
Me
H
TsO HH
Me
Me
R
H Me
Me
H
X
+X–
Electrocyclic Processes-3: 3-Atom Electrocyclizations Chem 206
Sterically favored
Dis
Favored for R = ring
Dis
Three-Atom Electrocyclizations (2 electrons)
Con??Dis??
Dis
Note that there are two disrotatory modes
Dis
++
Evans, Breit
nonbonding
cation anion
Solvolysis of Cyclopropyl Derivatives
slow fast
slow
Does solvolysis proceed via cation 1 followed by rearrangement to 2
(Case 1), or does it proceed directly to 2 (Case 2)?
1
2
2
Case 2
Case 1
relative rate 1 4 40,000
Dis
DePuy, Accts. Chem. Res. 1967, 1, 33
fast
fast
H2C
H2C
CH2TsO
H
H
H
H
TsO
H
H
O
Cl
H
TsO
O–
Cl
H
TsO MeMe
H
H
TsO
H
H
H
H
TsO
H
H
–Cl–
O–
H
TsO H
H
Me
Me
O
Ψ3
Ψ1
Ψ2
A
H
R
H
A
CR
B A
B
A
NAr
CO2Me
CO2Me
H
H
NAr
CO2Me
H
H
MeO2C
CR
A
H
H
A
MeO2C
N
MeO2C
Ar
CC
CR
B
A
B
A
N
MeO2C
Ar
CO2Me
A
A
R
H
H
Electrocyclic Processes-3: 3-Atom Electrocyclizations Chem 206
Three-Atom Electrocyclizations (4 electrons)
Con??Dis??
Evans, Breit
nonbonding
cation anion
Observation
??
?? (–)(+)
?? (–)(+)
Con
Con
Con
??
??
relative rate 1 4 40,000
Solvolysis Summary favorableUnfavorable
Ring-fused Cyclopropyl Systems
When the cis substiltutents on the cyclopropyl ring are tied together in a ring the following observsations have been made
dis-in
dis-in dis-out
dis-out
favored
disavored
relative rate: > 10+6
Revisiting the Favorski rearrangement: (Carey, Part A, pp 506-8)
base dis-in
3-exo-tet
disallowed products
R
A A
R
A A
R
A A
O
A A
O
+H+
+H+
OH
A A
C
C A
H
A
HA
A
HOMO
LUMO
C
C H
H
A
AA
A
A
A
AA
O
–H+
O
A A
A
A
Electrocyclic Processes-3 Chem 206
Eight-Atom Electrocyclizations (8 electrons)
??
Five-Atom Electrocyclizations (4 electrons)
a70 Con??Dis??
nonbonding
Cation Anion
a70a70
Con
Pentadienyl Cation
+
Dis
Pentadienyl Anion
–
a71
a71
a71
Con??Dis??
Let's use the "Ready" shortcut to find the homo: Nodes will appear at single bonds
symmetry of homo
Closure should be conrotatory
Evans, Breit
Denmark, S. E. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5; pp 751.
The Nazarov Reaction
predict stereochemistry
a66 a66
a66 a66
X Y
Z
C R
R
C
R
R
C
Y
Z
C
Me
Me
Y
Z
Me
Me
HOMO
HOMO
SO2
C
C
C O
C
C
X
Y
Z
C N N N N O
R RR R
X
Y
Z
X Y
Z
HOMO
HOMO
R
R
C
C
C
C
R
R
S OOS
O
O
C RR
Cheletropic Processes-1 Chem 206
2 + 1 CheletropicReaction: Olefins + Singlet CarbeneCHELETROPIC REACTIONS: [n+1] Cycloadditions (or Cycloreversions)
Concerted processes in which 2 σ-bonds are made (or broken) which terminate at
a single atom.
+
[4+2]
+
[4+1]
General
pi-s
yst
em Reversion
Addition pi-sy
ste
m
+
Singlet-CarbeneAddition (and Reversion) Cycloreversion only Reversion
and Addition
Frontier Orbitals E
ω2
ω0
p (empty)
sp2 (filled)
0
2
Linear Approach: 2 HOMO-LUMO Interactions
LUMO LUMO
Nonlinear Approach: 2 HOMO-LUMO Interactions
LUMO
Carry out the analysis of the indicated hypothetical transformation
Evans, Breit
predict approach geometry of carbene
LUMO
Question: what is orientation of carbene relative to attacking olefin??
HOMO
LUMO
HOMO
LUMO
Me
Me
Me
Me
S
O
O
S
O
O
filled
filled
empty (LUMO)
S
O
O
S
O
O
S
O
O
S
O
O
Me
Me
S
O
O
Me
Me
S
O
O
filled
S
O
O
empty
S
O
O
S
O
O
R1
X
S R2O O
R1
R2
filled
+ SO2
empty (LUMO)
S
O
O–
S
O
O–
S
R1 R2
O O
S
R1 R2
O O -SO2
-SO2
S
R1 R2
O O
R1
R2
R2R1
S
O
O–
S
O
O–
Cheletropic Processes-2 Chem 206
Let's now consider SO2 as the one-atom component
4e– in pi system
reactions are:stereospecific & reversible
Key step in the Ramberg B?cklund Rearrangement
base
E
Z
base
suprafacial
Evans, Breit
Clough, J. M. The Ramberg-Backlund Rearrangement.; Trost, B. M. and Fleming, I.,
Ed.; Pergamon Press: Oxford, 1991; Vol. 3, pp 861.
"The Ramberg-Backlund Rearrangement.", Paquette, L. A. Org. React. (N.Y.) 1977,
25, 1.
suprafacial
Analysis of the Suprafacial SO2 Extrusion (nonlinear)
Similar to carbene geometry
X
H
H
C
XH
R
C RHX
C
Me
H
1 3
R
X Y:–
X
X
R
X
H
?
?
?
?
YHX H
X
H
Y
H
X Y
X Y
?
H
X
X
R
Y–:X
X
R
X
H
Y
MeH
HX H Y
D
Y
CH3
X
?
?
YHX H
Y
H3C
X
Me H
Y
CH3
X
D
Sigmatropic Rearrangements-1 Chem 206D. A. Evans
Bridging distance too great for antarafacial migration.
Antarafacial GeometrySuprafacial Geometry
bonding
Ψ2 (allyl HOMO)
antibondingbonding
bonding
a73 Construct TS by uniting an allyl and H radical:
Consider the orbitals needed to contructthe transition state (TS).
?
consider the 1,3-migration of H
a73 [1,3] Sigmatropic Rearrangements (H migration)
[3,3] Sigmatropic rearrangement
[2,3] Sigmatropic rearrangement
[1,3] Sigmatropic rearrangement
[1,5] Sigmatropic rearrangement
Sigmatropic rearrangements are those reactions in which a sigma bond(& associated substituent) interchanges termini on a conjugated pi system
a73 Examples:
Sychronous bonding to both termini is possible from this geometry
a203 The stereochemical constraints on the suprafacial migration of carbonwith inversion of configuration is highly disfavored on the basis of strain.
bonding bonding
Inversion at carbon
Suprafacial on allyl fragment
Retention at carbon
Sychronous bonding to both termini cannot be achieved from this geometry
bonding
a73 [1,3] Sigmatropic Rearrangements (C migration)
consider the 1,3-migration of Carbon
?Consider the orbitals needed to contruct
the transition state (TS).
a203 Construct TS by uniting an allyl and Me radicals:
antibonding
Suprafacial on allyl fragment
?
1
3
These rearrangements are only seen in systems that are highly strained,an attribute that lowers the activation for rearrangement.
120 °C
3
1
no observed scrambling of labels a54a54
[1,3]-Sigmatropic rearrangements are not common
R
R
R
RR
H
H
R
R
R
H H
Me
Me
H
H
R
H
H
H
H
R
Me
Me
H
H
H
R
H H
R
HH
Me
Me
Sigmatropic Rearrangements-2 Chem 206D. A. Evans
a73 [1,5] Sigmatropic Rearrangements (C migration)
[1s,5s] alkyl shift ? RETENTION
SIGMATROPIC REACTIONS - FMO-Analysis
1
2
3
?/hν
R = H, CR3
4
5
1
2
3
4
5
[1a,5a] alkyl shift ? INVERSIONa73 [1,5] Sigmatropic Rearrangements (H migration)
disfavored
a73 [1,5] (C migration): Stereochemical Evaluation
230-280°C
RETENTION
[1,5s]H- shift[1,5s]C- shift
nonbonding
thermal
hν
photochemical
pentadienyl radical
View as cycloadditon between following species:
pentadienyl radical
+
either, or
suprafacial preferred
Dewar–Zimmerman Analysis: Retention
0 phase inversions ? Huckel toplogy
6 electrons
therefore, allowed thermally
a71
a71
a71
R
R
R
R
R
R
R
R
O R
C O
O R
Li
R
H
BuLi O R
Li
O Li
C O
R
H
OLi
R
O Li
R
Sigmatropic Rearrangements-3 Chem 206D. A. Evans
a73 [1,2] Sigmatropic Rearrangements: Carbon
+ +
consider as cycloaddition
C–R homoylsis
transition state
a71
a71
olefin radical cation
a71 +
[1,2] Concerted sigmatropic rearrangements to cationic centers allowed
[1,2] Concerted sigmatropic rearrangements to carbanionic centers not observed
consider as cycloaddition
a71a71 a71a71stepwise
C–R homoylsis
a71
olefin radical anion
a71a71 a71 a71a71
a71
antibonding
transition state
The Wittig Rearrangement [1,2]
"[2,3]-Wittig Sigmatropic Rearrangements in Organic Synthesis.", Nakai,
T.; Mikami, K. Chem. Rev. 1986, 86, 885.
Marshall, J. A. The Wittig Rearrangement.; Trost, B. M. and Fleming, I.,
Ed.; Pergamon Press: Oxford, 1991; Vol. 3, pp 975.
a71
Ra71This 1,2-sigmatropic
rearrangement is non-concerted
The Wittig Rearrangement [2,3]
C–R homoylsis
Allyl radical
ketyl radical
a71a71
Allyl radical
a71a71