Chemistry 206
Advanced Organic Chemistry
Handout–10A
Diastereoselective Attack of Electrophiles on
Chiral Olefins
Matthew D. Shair Wednesday,
October 9, 2002
Michael Dart
Evans Group Seminar, January 18, 1994
Electron Rich Substituents have lone pairs (OR, NR
2
, SR, SO
2
R)
Electron Poor Substituents: SiR
3
(electropositive)
Based solely on electrostatic considerations
Mick Dart
Evans Group Seminar
Tues. Jan. 18, 1994
1. Diels Alder reactions2. Halogenation and related electrophilic additions3. Reactions of allylsilanes4. Hydroborations5. Osmylations
Diastereoselective Attack of Electrophiles
on Chiral Olefins
D. Jones,
J. C. S. Chem. Comm.
1980
, 739.
a73
Other dienophiles also give adducts derived from
endo
addition
syn
to the hydroxyl
anti
syn
Dienophile
X
SynAnti
Electron RichElectron Poor
Hehre's Proposal:
a73
Opposite diastereofacial selectivity is observed with acrolein.
(73%)
a73
Stereocontrol: A(1,3) strain
Trost,
J. Org. Chem,
1989
,
54
, 2271-2274.
Diastereoselective Diels–Alder Reactions: Chiral Dienes
Diastereoselection 91 : 9
Diastereoselection >95 : 5
Kahn & Hehre,
J. Am. Chem. Soc.
1987
,
109
, 663-666.
(99%)
PhN
OO
O
O
Me
H
H O
NPh
Me
OH
H
H
OH
O
H
H
Me
H
O
H
R
X
H
MeMe
OH
O
OO
O
O
O
Me
Me
OH
H
H
OH
Me
Mick Dart
Diastereoselective Attack of Electrophiles on Chiral Olefins
10A-01-Diels-Alder
10/9/00
12:12 AM
Also see A. Kozikowski,
J. Am. Chem. Soc.
1987
,
109
, 5167-5175.
Allylic Ether
Allylsilane
Favored diene conformers in
reactions with acetylenic dienophiles
Dienophile
a73
Rationalization for diastereofacial selectivity:
Fleming,
JCS Perkin Trans I,
1989
, 2023-2030.
Diastereoselective Diels–Alder Reactions: Chiral Dienes
Diastereoselection 82 : 18Diastereoselection 12 : 88
R. Franck,
J. Am. Chem. Soc.
1988
,
110
, 3257
Dienophile
Dienophile
Dienophile
Dienophile
PhH, rt
PhH, 60 °C
10 days
2 days
(96%)
(90%)
2 days
PhMe, 100 °C
Dienophile
Dienophile
Dienophile
R. Franck,
J. Am. Chem. Soc.
1988
,
110
, 3257
Diastereoselection 27 : 73 Diastereoselection >99 : 1
Fleming,
JCS Perkin Trans I,
1989
, 2023-2030.
PhMe, 100 °C
2 days
(72%)(62%)
See Houk & Co-workers
Science
,
1986
,
221
, 1108-1117.
anti
outside
inside
Dienophile
Me
H
SiMe
2
Ph
Me
PhN
OO
NPh
O
O
H
SiMe
2
Ph
Me
Me
HH
H
NPh
O
O
H
OSiMe
3
Me
Me
HH
H
HH
H
Me
Me
OSiMe
3
H
O
O
NPh
SiMe
2
Ph
Me
H
H H
Me
Me
Me
SiMe
2
Ph
H
O
O
NPh
O O
PhN
Me
OSiMe
3
H
Me
H
Me
H
Me
OSiMe
2
Me
H
Me
3
SiO
Me
Me
Me
H
OSiMe
3
H
Me
PhMe
2
Si
Me
Me
Me
3
SiO
H
Me
Me
OSiMe
3
H
Me
Me
H
OSiMe
3
Me
CO
2
Me
CO
2
Me
CO
2
Me
CO
2
Me
CO
2
Me
CO
2
Me
CO
2
Me
CO
2
Me
H
SiMe
2
Ph
Me
Me
Me
H
H
Me
SiMe
2
Ph
CO
2
Me
CO
2
Me
CO
2
Me
CO
2
Me
Me
H
OSiMe
3
Me
Me
HH
Me
H
Me
Me
OSiMe
3
H
SiMe
2
Ph
H
Me
Me
SiMe
2
Ph
H
Me
CO
2
Me
CO
2
Me
CO
2
Me
CO
2
Me
H
SiMe
2
Ph
H
Me
SiMe
2
Ph
H
Me
Me
PhMe
2
Si
Me
10A-02-Diels-Alder
10/8/00
8:11 PM
A preference for "
inside
alkoxy
"
is observed in these cyclizations
B
A
low yield due to
δ
-lactone formation
Gauche
A
is now more
destabilizing than
gauche
B
+
I
2
, HOH/THF
HCO
3
–
Ratio
>95 : 5 (49%)
+
A
B
How can the above results be rationalized?
Chamberlin,
J. Am. Chem. Soc.
1983
,
105
, 5819-5825.
K
2
CO
3
MeOH
Epoxidation Ratio = 3 : 97 Lactonization Ratio = 96 : 4
t-BuOOHVO(acac)
2
Gauche
B
is more destabilizing than
gauche
A
+
Ratio
96 : 4 (85%)
HCO
3
–
I
2
, HOH/THF
+
R = H
R = Me
A(1,2) strain
95 : 5
49
a73
Kinetic conditions: 3 equiv I
2
, aq Na
2
CO
3
, Et
2
O, 0 °C
a73
Protection of the hydroxyl group (TBS or Ac) does not affect selectivity
a73
Iodolactonization of allylic alcohols
75 : 25 9 : 91
(
cis : trans
)
NIS, CHCl
3
, 25 °C
3 equiv I
2
, MeCN, O °C
Kinetic
Thermodynamic
Conditions
Bartlett,
J. Am. Chem. Soc.
1978
,
100
, 3950-3952.
Iodolactonization
Yield (%)
Selectivity
Major Product
Substrate
85 7481
4194
66
R = HR = Me
95 : 5
87 : 1390 : 10
93 : 7
77 : 2342 : 58
R = HR = Me
Chamberlin,
J. Am. Chem. Soc.
1983
,
105
, 5819-5825.
a73
Bartlett's "thermodynamic conditions" produced complex mixtures
I
HO
O
O
O
O
HO
I
MeMe
RR
Me
OH
HO
O
-O
2
C
CH
2
HO
H
O
C
H
C
H
Me
HO
I
Me
O
H
HO
O
I
I
O
HO
H
O
C
I
H
OH
C
Me H
R R
Me
H HO
CH
2
Me
OH
Me
-O
2
C
O
RO
OH
Me
HO
O O
HO
OHOH
HO
O
O
I
Me
O
Me
I
O
Me
HO
O
O
O
O
Me
OH
Me
RO
O
-O
2
C
CH
2
HO
Me
Me
HO
H
C
Me
C
HMe
I
O
Me
HO
O
I
I
O
HO
Me
O
Me
HO
C
I
C
Me
H
Me
H
CH
2
-O
2
C
O
MeO
Me
OH
Me
Me
I
H
I
HO
O
O
O
Me
OH
Me
MeO
O
OO
OH
O
I
Me
10A-03-Iodolactonization
10/8/00
8:11 PM
a73
Place the medium size group (–OH) outside and the small group (–H) inside
a73
Other conditions: I
2
, THF/phosphate buffer; I
2
, THF, aq Na
2
CO
3
provide 1,3–diols in very high selectivity
Model for Stereoinduction?
minor
major
Gauche
B
is more energetically
destabilizing than
gauche
A
I
2
, AgOAc
+
+
–
OAc
AcO
–
B
A
A
B
H
2
O
+
+
I
2
, AgOAc
Gauche
A
is now more
destabilizing than
gauche
B
OH
2
Ratio
80 : 20
perfect regioselectivity
HCO
3
–
I
2
, HOH/THF
Poor regioselectivity affords
a mixture of products
Evans, Kaldor, Jones,
J. Am. Chem. Soc.
1990
,
112
, 7001.
Chamberlin,
Tetrahedron
1984
,
40
, 2297-2302.
Diastereoselection 96 : 4
I
2
, THF
aq KH
2
PO
4
Cytovaricin Synthesis
a73
High selectivities are also observed with allylic ethers (OMe, OBn, OTBS)
a73
Prevost conditions: 2 equiv I
2
, 2 equiv AgOAc, THF, –78
→
0 °C
94 : 6 98 : 295 : 580 : 20
7890
85
Substrate
Major Product
Selectivity
Yield (%)
Iodo diol formation from allylic alcohols
a73
Analysis: D. A. Evans, Chem. 115, Lecture 23, Dec. 16, 1993
HO
H
R
C
H
H
OAc
I
OH
R'
R
OH
C
Me
I
R'
HO
H
R C
Me
C
HH
I
I
Me
OH
Me
OH
Bu
Bu
Me
R
Me
OH
TIPSO
Me
Bu
OH
Me
OH
Me
OAc
R
Bu
R'
OH
I
OH
OH
Bu
I
Me
OAc
CC
I
H
OH
Me
OH
Bu
OAc
OH
Me
R
R
HO
OH
R
OH
OH
Me
I
OH
R
MeMe
Bu
Bu
OH
I
I
I
I
Me
Me
HO
OAc
TIPSO
OH
R' H
H
R
HO
CC
I
HO
H
HR'
R
H
10A-04-Iododiol formation
10/8/00
8:11 PM
a73
"The presence or absence of an internal nucleophile acts to determine the
stereochemical outcome of the reaction by modifying the nature (timing) oftransition state. a73
Onium ion formation is rate determing in the addition reactions
a73
π
–complex cyclizes if R contains a Nu and its formation is rate determining
For a review of the halogenation reaction see: Andy Ratz,
Evans Group Seminar
,
Synthetic and Mechanistic Review of Electrophilic Halogenation
, May 7, 1992.
For a review of elctrophilic induced olefin cyclization reactions see:G. Cardillo & M. Orena,
Tetrahedron
1990
,
46
, 3321.
a73
"Facial preferences in electrophilic addition reactions are
not
invariant with respect
to the location of the transition state along the reaction coordinate."
Chamberlin & Hehre,
J. Am. Chem. Soc.
1987
,
109
, 672-677.
-
I
2I
2
OH
2
cis : trans 95 : 5
ratio 99 : 1
I
2
I
2
H
2
O
a73
A complete turnover in olefin diastereofacial selectivity is
observed when adding
internal
and
external
nucleophiles
Chamberlin & Hehre's Rationalization
For electrophiles that react via onium intermediates (I
2
, Br
2
, Hg(OAc)
2
, PhSeCl),
the major diastereomer from electrophile-induced cyclization is opposite to thatobserved in the analogous intermolecular electrophilic addition.
General Observation:
a73
Analysis of the stereoselectivity of electrophilic addition to chiral olefins:
1. Relative abundances of conformational minima2.
Relative reactivities of the available forms
3. Stereoselectivies of the individual conformers
a73
Change in diastereoselectivity is a consequence of a change in the
rate-limiting step
a71
Addition reactions:
Formation of an
onium ion intermediate
(subsequently trapped by a Nu from the medium)
a71
Cyclization reactions:
Intramolecular attack on a
ππππ
–complex
(not an onium ion)
+
+
Nu
Nu
Disfavored
π
–complex
Favored
π
–complex
Disfavored iodonium ion
Favored iodonium ion
Cyclization product
Addition product
Favored ground-state conformerMore reactive
ground-state conformer
Hehre's Analysis
Houk: Argument for the "inside alkoxy effect" in
π
–complex formation
O
O
HO
OH
Me
Bu
OH
I
Me
I
H
I
OH
Bu
Me
OH
H
I
Me
HO
O
O
Bu
H
HO
OH
Bu
Me
Me
OH
HO
O
O
O
Me
OH
H
I
2
H
O
O
H
H
R
H
OH
Me
Me
OH
H
R
H
I
HO
Me
Me
I
H
OH
Me
Bu
OH
I
Me
H
R
HO
H
H
H
H
H
H
HO R
H
Me
Me
H
R
HO
H
H
H
H
OH
R
H
Me
I
I
2
10A-05-Iodolact/Hehre
10/8/00
8:12 PM
D. A. Evans, Chem. 115, Lecture 23, Dec. 16, 1993
Diastereoselective Functionalization of (E) Allylic Alcohols
a73
Halogenation
a73
Oxymercuration
a73
Hydroboration
a73
Sulfenylation
At least 3 major products
H
2
O
2
ThexylBH
2
Ratio = 99 : 1 (40%)
PhS
–Cl
Me
2
Zn
TiCl
4
+
Ratio = 50 : 50 (77%)
Me
2
Zn
TiCl
4
PhS
–Cl
+
Reetz,
Angew. Chem. Int. Ed.
1987
,
26
, 1028-1029.
minor
major
Gauche
B
is more energetically
destabilizing than
gauche
A
syn : anti = 80 :20
Chamberlin,
Tetrahedron
1984
,
40
, 2297-2302.
Hg(OAc)
2
I
2
, AgOAc
+
+
–
OAc
AcO
–
B
A
Hg(OAc)
2
R'OH
Oxymercuration of Acyclic allylic alcohols:
NaBH
4
R
R'OH
Ratio
-Et
HOH
76 : 24
yield65%
72%
93 : 07
MeOH
-Et-Ph
HOH
88 : 12
66%70%
98 : 02
HOH
-tBu
Giese,
Tet. Lett.
1985
,
26
, 1197
Hg(OAc)
2
NaBH
4
HOH
Hg(OAc)
2
syn
syn : anti = 77 : 23
O-acetate participation will turn over the stereochemical course of the rxn
Iodohydroxylation of thesesubstrates is not regioselective
+
+
+
+
Favored
Disfavored
a73
Hehre's model could be invoked to explain turnover in
π
–facial selectivity
O
H
R
L
C
H
C
n-Bu
OH
Me
OAc
I
OH
HH
Hg X
R'
OR
H
C
Hg X
H
H
C
H
R
L
O
R
OH
OH
R
R
C
Hg
R
L
H
H
C
H
OR'
HgOAc
OR'
R
H
Me
OH
X
C
Hg
H
X
C
H H
OH
OH
H
n-Bu
R'
HO
R
L
OH
R
L
HgOAc
HgOAc
Me
OH
OR'
n-Bu
R
L
HO
OH
OH
OH
R
L
OR'
HgOAc
O
R
OR
Me
Me
R
L
OR
Et
OR
R
L
Me
OR
HO
OBz
H
OH
Et
Me
OBz
OBz
Et
C
H
C
HMe
Hg
X
R
RR
'
OH
I
OAc
CC
I
H
S Ph
C
H
C
Et H
H
MeO
Me
Me
Me
SPh
Me
TBSO
Et
OMe
Me
Me
OTBS
Me
TBSO
Me
SPh
Me
Me
MeO
Me
SPh
Et
Me
Me
OH
R' H
H
R
HO
CC
I
HO
H
HR'
R
H
n-Bu
10A-06-Oxymercuration
10/8/00
8:12 PM
Scott J. Miller
Evans Evening Seminar
, "The Chemistry of
Allylsilanes and the
β
Silicon Effect," Dec 11, 1990, p 45.
Path A
Path B
Paddon-Row, Rondan, and Houk
JACS
1982
104
, 7162.
+
+
El
+
El
+
a73
If A = H, then
Path
B
can compete
a73
If A
≥
Me, then
Path
A
dominates due to A(1,3) strain
tereochemical Model For Electrophilic Attack on Allylsilanes
Model assumes:
1. Electrophilic attack
anti
to the silyl moiety
2. The silyl group is the "large" substituent
Electrophilic Attack on Allylsilanes
mCPBA
Mei
Pr
PH
61 : 39>95 : 05 89 : 11
R
RatioRatio
R
58 : 42>95 : 05 91 : 09
Mei
Pr
PH
AlMe
3
OsO
4
Mei
Pr
PH
34 : 66 67 : 33 92 : 08
R
Ratio
CH
2
I
2
a73
Epoxidation
a73
Cyclopropanation
a73
Osmylation
The products on the left
correspond to attack by
Path
A
a73
Larger R groups result in higher selectivity
a73
The size of R is more important in locking the substrate into the
conformation leading to
Path A
than in shieldieng the El
+
Fleming,
JCS Perkin Trans I,
1992
, 3303-3308.
El
C
R
SiR
3
R'
A
H
R
PhMe
2
Si
Me
R
SiR
3
C
H
H
C
El
C
R'
HR
SiR
3
C
H
A
R'
R
El
RR
'
Me
R
A
Me
PhMe
2
Si
CH
PhMe
2
Si
OO
PhMe
2
Si
PhMe
2
Si
Me
R
Me
R
R
R
H
R
SiR
3
C
H
Me
PhMe
2
Si
PhMe
2
Si
Me
R
C
A
RM
e
R
M
e
PhMe
2
Si
R'
PhMe
2
Si
OH
OH
OH
OH
A
El
A
A
RR
'
SiR
3
R'
0A-07-Allylsilanes
10/8/00
8:13 PM
K. N. Houk, M. N. Paddon-Row, & Co-workers, Tetrahedron
1984
,
40
, 2257-2274.
Assume OH (OR') = R
m
and results are consistent with the model
W. C. Still & J. C. Barrish, J. Am. Chem. Soc
.
1983
,
105
, 2487.
BH
3
?
THF
9–BBN
H
2
O
2
OR'OHOHOTMSOAcOH
nBuiPrnBunBunBu
92 : 08 96 : 04 91 : 09 88 : 12 42 : 58
Selectivity
R
R
2
BH
M. M. Midland & Co-workers, J. Am. Chem. Soc
.
1983
,
105
, 3725.
H
2
O
2
R
2
BH
Dave Evans, Chem 115, Lecture 22, Dec 14, 1993BH
3
H
2
O
2
H
2
O
2
a73
A turnover in diastereofacial selectivity is sometimes observed using BH
3
Favored product fordialkyl borane reagents
H
2
O
2
H
2
O
2
R
2
BH
Worse
Bad
a73
Hydroboration of allylic alcohols (ethers)
Selectivity
50 : 50 80 : 20 93 : 07 96 : 04
BH
3
?
DMS
ThexylBH
2
9–BBN(Chx)
2
BH
Diastereoselective Hydroboration Examples
A Model for Diastereoselective Hydroborations
OH
Me
R
M
OH
R
L
R
OR'
R
L
R
M
Me
B
H
B
H
H
H
Me
R
M
Me
C H
R
L
H
C
Me
C
Me
OR'
R
L
R
R
OH
R
M
H
OR'
Me
OH
H
H
R
L
R
M
H
C
Me
C
C B
BH
H H
Me
H
R
M
R
L
R
M
R
L
R
M
Me
R
R
R
R
Me
R
M
R
L
R
L
OH
R
M
Me
OH
HH
H
C
C
H
H
Me
H
R
L
Me
H
H
Me
Me
H
H
Me
HH
OH
H
Me
H
H
Me
OH
10A-08-Hydroboration Models
10/8/00
8:13 PM
I. Paterson & J. ChannonTetrahedron Lett.
,
1992
,
33
, 797-800.
BH
3
?THF unexpectedly provided the
anti
isomer in high selectivity
5
syn
anti
74%89%
yield
95 : 05>95 : 05
9-BBNBH
3
?THF
anti : syn anti : syn
9-BBNBH
3
?THF
85 : 15 05 : 95
yield
70%84%
anti
syn
80%99%
yield
82 : 1817 : 83
(Chx)
2
BH
BH
3
?DMS
anti : syn
syn
anti
The sense of asymmetric induction is completely turned
over in Andy's reaction when using R
2
BH
?
BH
3
a73
Erythronolide synthesis: Annette Kim
Diastereoselection 93 : 7
THF, 0 °C
→
rt
12 h
3 ThexylBH
2
a73
Lonomycin synthesis: Andy Ratz
Diastereoselective Hydroborations
BH
3
?DMS
(85%)
Diastereoselection > 95 : 5 (anti)
9-BBN(60%)
Diastereoselection 92 : 8 (syn)
Nakata, Tatsuta & Co-workers, Bull. Chem. Soc
.
Jpn
.,
1992
,
65
, 2974.
Diastereoselective Hydroborations
BH
3
?THF
BH
3
?THF
Diastereoselection 92 : 8 (anti)
R = H Diastereoselection 6.8 : 1 (anti)
Diastereoselection 6.6 : 1 (anti)
R = OBn
K. MoriTetrahedron
1979
,
32
, 1979.
Oikawa & Co-workersTetrahedron Lett.
,
1983
,
19
, 1987.
a73
Anti
–selective hydroborations with borane
A 2:1 mixture of the lactol:lactone was obtained. This mixture wasoxidized to the keto-lactone in 73% overall yield from the olefin.
Me
OH
Me
H
O
Me
Me
OMe
Me
OMe
Me
X
P
OO
H
OH
OH
OBn
OH
Me
OBn
OH
Me
O
Me
OH
X
P
Me
OMe
Me
OMe
Me
O
H
Me
OH
Me
Me
OH
Me
H
O
Me
OMe
Me
OMe
Me
X
P
O
O
Et
OH
Me
O
Me
TBSO
Me
Me
TBSO
Me
Me
Et
OH
O
OO
H
Et
Me
O
Me
TBSO
Me
OH
OH
Me
OBn
OH
Me
OH
OH
Me
OH
OBn
Me
OBn
OH
OBn
Me
Me
OH
OBn
Me
OBn
OBn
OH
Me
OH
OH
OHOH
OH
OH
Me
OH
OBn
OBn
Me
OBn
OH
Me
Me
OBn
OH
OBn
Me
OBn
OH
Me
OH
Me
O
O
O
O
Me
Me
Me
Me
O
BnO
R
Me
Me
O
O
Me
R
BnO
OH
O
Me
Me
O
O
OH
10A-09-Hydroboration-2
10/8/00
8:13 PM
RhL
n
Rh cat
CB
Evans & Fu
JOC
1990
,
55
, 2280 and Evans, Fu, Anderson
JACS
1992
,
114
, 6679.
a73
Olefin
?
catalyst complexation is the stereochemistry-determining step
a73
Olefin binding to metal is irreversible for 1,1-disubstituted allylic alcohol derivatives
Stereochemical Model
RhL
n
The Catalyzed Hydroboration
a73
Complexation involves back-donation from a filled metal d orbital
→π
*
C=C
a73
The EWG (alkoxy substituent) is aligned perpendicular to the olefin (
π→σ
*
C—O
)
a73
This stereoelectronic interaction lowers the energy of
π
*
a73
The small group is placed "inside", the most sterically congested site
CB
Rh cat
syn
anti
anti
syn
9-BBN
El
+
9-BBN
El
+
The uncatalyzed variant:
Complementary diastereoselectivity for the catalyzed and
uncatalyzed reactions is observed for a wide range of substrates.
Anti
Syn
9-BBN9-BBN9-BBN
757267
Si(
t
-Bu)Me
2
3 : 97
95 : 595 : 5
96 : 4
R
Conditions
Anti : Syn
H
50 : 50 15 : 85
68 65 77
Yield (%)
THF
20 °C
The Catalyzed vs Uncatalyzed Hydroboration Reactions
Rh(PPh
3
)
3
Cl / CB
Rh(PPh
3
)
3
Cl / CB
Rh(PPh
3
)
3
Cl / CB
Si(
t
-Bu)Ph
2
Evans, Fu, & Hoveyda
JACS
1988
,
110
, 6917 and
JACS
1992
,
114
, 6671.
K. Burgess & Co-workers,
J. Org. Chem.
1991
,
56
, 1020-1027
i
-Pr
Me
OR
OR
Me
i
-Pr
i
-Pr
R
H
R'O
C
Me
C
HH
R
Me
OR'
OR'
Me
R
Me
OR
OH
C
H H
C
Me
OH
H
R'O
R
R
Me
OR'
OH
OH
OH
OH
OR'
Me
R
R'O
H
R
C
Me
C
HH
R
Me
OR'
OR'
Me
R
C
H H
C
Me
H
R
OR'
10A-10-Cat Hydroboration
10/8/00
8:14 PM
E. Vedejs & C. McClure
JACS
,
1986
,
108
, 1094.
syn
anti
syn
anti
Vedejs Model
OsO
4
X = SR, SO
2
R, SiR
3
X = OTBS, OAC
OsO
4
Kishi Model
OsO
4
OsO
4
34 : 6622 : 7833 : 6761 : 3962 : 38
selectivity
PhMe
2
Si
PhSO
2
PhSTBSOAcO
X
(E) Olefins
(z) Olefins
(E) Olefins
(z) Olefins
a73
Vedejs argues that hyperconjugative effects are not important
because both EDG and EWG provide the same sense of induction a73
Addition occurs
anti
to the allylic heteroatom functionality
X
PhMe
2
Si
PhSO
2
PhSTBSOAcO
selectivity
78 : 2280 : 2083 : 1762 : 3870 : 30
OsO
4
Diastereoselective Osmylations
James Barrow,
Evans Group Seminar
, "Osmium Mediated Dihydroxylation:
Mechanism and Application" April 21, 1993.
Kishi & Co-workersTetrahedron
Lett
.,
1983
,
24
, 3943 and
Tetrahedron
,
1984
,
40
, 2247.
Acetates give lower selectivity
a73
Allylic oxygen protecting group:
H, Bn, SiR
3
, acetonides
→
all work well
Works for both (
Z
) and (
E
) allylic ethers (alchols)
OsO
4
attacks anti to the allylic oxygen substituent
Arrange olefin in the stable ground state conformer
a73
Kishi's Empirical Model:
OsO
4
OsO
4
OsO
4
X
MeOBn
selectivity
60 : 4081 : 19
50 : 5086 : 14
selectivity
MeOBn
X
Diastereoselective Osmylations
OsO
4
Me
OH
Me
X
OH
X
Me
H
C
H
C
H
BnO
OH
X
R
OH
OH
BnO
BnO
C
Me
H
C
OH
R
X
OH
H
Me
BnO
OH
X
X
H
Me
OH
Me
Me
X
OH
OH
OH
Me
OH
Me
C
(Me)H
(H)Me
C
H
H
CH
2
OB
n
OBn
X
Me
Me
Me
OH
Me
H
X
X
OH
Me
C
H
C
Me
H
X
OH
Me
C
Me H
C
H
Me
X
H
Me
10A-11-Osmylations
10/8/00
8:14 PM
Houk,
JACS
,
1986
,
108
, 2754.
a73
Oxygen avoids "outside" position to avoid repulsive
electrostatic interactions with the incoming OsO
4
anti
syn
OsO
4
OsO
4
"inside alkoxy"
Houk Model: Staggered transition states
Vedejs model breaks downor iPr, Ph
>
Me
2
PhSi
syn
anti
syn
OsO
4
Fleming,
JCS Perkin Trans I,
1992
, 3303-3308.
Ratio
R
34 : 66 67 : 33 92 : 08
Mei
Pr
PH
OsO
4
Diastereoselective Osmylations
PhMe
2
Si
Me
R
RM
e
R
M
e
PhMe
2
Si
PhMe
2
Si
OH
OH
OH
OH
H
PhMe
2
Si
R
C
H
C
HMe
C
Me H
C
H
H
XO
R
R
H
XO
C
H
C
H
Me
OH
OH
OH
OH
XO
XO
Me
R
Me
R
10A-12-Osmylation
10/8/00
8:15 PM