Chemistry 206
Advanced Organic Chemistry
Handout–19A
Enantioselective Carbonyl Addition Handout
Matthew D. Shair Friday,
November 1, 2002
a73 Enantioselective addition of R2Zn to aldehydes
a73 Enantioselective Reduction of Ketones & Imines
00
00
0000
0000
0000
Review: Noyori
Angew. Chem. Int. Ed.
1991
,
30
, 49
the catalyst
a73
Two zinc species per aldehyde
are involved in the alkylation step.
a73
Product is taken out of the picture by aggregation
4
a73
The method is catalytic in aminoalcohol.
Enantioselective C=O Addition: Noyori Catalyst
D. A. Evans
Chem 115
Noyori & co-workers,
J. Am. Chem. Soc
.
1986
, 108, 6072.
replace with chiral controller
Catalytic Asymmetric Carbonyl Addition
a73
Catalyst must be sterically hindered so that association is precluded
98% e.e.
91% e.e.
93% e.e.
93% e.e.
96% e.e.
90% e.e.
61% e.e.
Et
2
Zn
Me
2
Zn
Et
2
Zn
Et
2
Zn
Et
2
Zn
Et
2
Zn
Et
2
Zn
C
6
H
5
CHO
"
p-ClC
6
H
4
CHO
p-MeOC
6
H
4
CHO
Cinnamyl
PhCH
2
CH
2
CHO
n-C
6
H
13
CHO
0°C, toluene
59 - 97%
Ar–CHO + R
2
’Zn
J. Am. Chem. Soc
.
1989
, 111, 4028.
the catalyst
the catalyst
Et
2
Zn
90-98% ee
RDS
The Catalytic Cycle
(DAIB-Zn)
Zn
R
Zn
I
I
CO
R
R H
Me
Me
N
H
Me
Me
MeZn
O
H
Et
Me
Me
N
H
Me
Ar
R’
OH
Me
MeZn
O
H
Et
O
C
H
Zn
Et
Et
Zn
Et
C
Et
O
H
O Zn
Et
H
H
N
Me
Me
Me
Me
Me
O
C
H
Et H
O Zn
Et
H
H
O
N
Me
Me
Me
Me
Me
Me
Me
N
H
Me
Me
MeZn
O
H
Et
Zn–
E
t
O
C
H
O
R'
Zn
O
Zn
Zn
O
Zn
O
R
R
R
R'O
Z
nR
R'
Zn
R
R'
R'
R
O
R'
O
R'
Zn
R
OZ
n
Zn
O
R
R'
R'
R
Zn
Et
H
H
O
N
Me
Me
Me
Me
Me
19A-01-Et2Zn-1
1/19/00
1:49 PM
Other Catalysts for the R
2
Zn Addition Process
Chem 115
D. A. Evans
Enantioselective C=O Addition: Noyori Catalyst-2
a73
Non-linear effects observed with the Noyori Catalyst (DAIB-Zn)
Product
(%ee)
100
%ee of catalyst
100
25% ee Catalyst affords
product in 95% ee.
There is no correlation between
catalyst and product ee.
Et
2
Zn + PhCHO
(S,S) dimer
(R,R) dimer
+
(S) catalyst
(R) catalyst
(S) catalyst
90% e.e. (R)
90% e.e. (R)
90% e.e. (R)
(Results are cited for the reaction of benzaldehyde and Et
2
Zn)
95% e.e. (S)
100% e.e. (R)
97% e.e. (S)
Problem: Rationalize the stereochemical course of each of the catalysts
Explanation for Nonlinearity of DAIB Catalyst
(S,R) dimer
Observations
a73
(S,S) dimer dissociates upon addition of RCHO & effects catalysis
a73
(S,R) dimer is overwhelmingly more stable than (S,S) homodimer
a73
(S,R) dimer is ineffective as a catalyst
Ph
Me
OH
O
Zn
Me
2
N
Me
Zn
Me
Me
2
NO
Zn
Me
Me
2
NO
O
Zn
NMe
2
Me
Zn
O
O
Zn
Me
NMe
2
Me
2
N
Me
Zn
O
O
Zn
Me
NMe
2
N
Zn
O
Me
Ph
Ph
Et
Zn
Et
Ph
H
N
O
Me
3
C
Me
2
N
Me
Li
O N
Me
Me
N
Me
H
H
Ph
H
Ph
NO
N
Li
N
Me
Me
Me
Me
N
Zn
N
Bu
Me
O
Et
LiLi
Bu
Ph
19A-02-Et2Zn-1
1/19/00
1:49 PM
93% ee
95% ee
78% ee
88% ee
Improved Selectivity with Aliphatic Aldehydes
Soai,
J. Org. Chem.
1991
,
56
, 4264
(6%)
RCHO + Et
2
Zn
0
°
C, hexane
70 - 100%
60% ee
Et
2
Zn
(S) catalyst
Review: Noyori
Angew. Chem. Int. Ed.
1991
,
30
, 49
(S) catalyst
Et
2
Zn
90% ee
(S) catalyst
(n-Pen)
2
Zn
85% ee 96% ee
Et
2
Zn
(S) catalyst (S) catalyst
Me
2
Zn
91% ee
98% ee
Et
2
Zn
(S) catalyst
Scope of the DAIB Catalyst
(S) catalyst
Enantioselective C=O Addition: Dialkylzinc Addn Scope
D. A. Evans
Chem 115
Lepicidin Application: The reaction functions in complex systems
3
9
Et
2
Zn,
3
3
15
15
11
diastereoselection
10:1 (98%)
21
the catalyst
21
21
0
°
C, hexane
Evans, Black,
JACS
1993
,
115
, 44974513
H
O
OH
Et
Me
OH
O
Zn
Me
2
N
Me
Ph
NO
Bu
Zn
Et
Me
Bu
RE
t
OH
O
O
H
n-Bu
H
OO
H
Me
H
O
Me
OR
OR
O
O
Me
Et
H
H
H
H
H
MeO
OTIPS
OTES
O
O
HH
O
OH
H
Bu
3
Sn
Me
H
O
Et
OH
MeO
SnBu
3
OTIPS
OTES
O
Me
C
5
H
11
OH
O
H
H
OH
O
Bu
3
Sn
H
n-Bu
SnBu
3
HH
Zn
H
O
OH
H
N
Bu
Me
O
Et
Bu
n-Bu
Ph
19A-03-Et2Zn-Scope
1/19/00
1:49 PM
MgX
2
–
dioxane complex
MgX
2
+ dioxane
R
2
–
Zn + MgX
2
+ MgCl
2
2 R
–
MgX + ZnCl
2
Chem 115
D. A. Evans
Enantioselective C=O Addition: Dialkylzinc Addn Scope
Ohno,
Tet. Lett
.
1989
,
30
, 7095
RCHO + Et
2
Zn
Ti(O-
i
-Pr)
4
toluene-hexane
78 - 95%
a73
Knochel has described preparation of functionalized R
2
Zn reagents
Knochel,
J. Org. Chem.
1992
,
57
, 1956
Other Catalysts for Aliphatic Aldehydes
-20
°
C
-50
°
C
0
°
C
-20
°
C
0.04 equiv0.02 equiv0.01 equiv0.04 equiv
98% ee99% ee92% ee99% ee
1.2 equiv.
0.3 equiv0.6 equiv0.6 equiv
PhCHO
PhCH=CHCHO
PhCH
2
CH
2
CHO
n-C
5
H
11
CHO
Ti(OR)
4
Temp
ligand
aldehyde
ee
R
–
I + Et
2
Zn
3-5 equiv
Et
–
I + R
–
Zn
–
Et
distill
R
2
Zn
–
Et
2
Zn + Et
–
I
2
X = Cl, OAc
2
Ohno
catalystPhCHO
92% ee (90% yield)
Reagent
2
is a more effective catalyst for the addition of Et
2
Zn to aldehydes
MeMgI
n-BuMgBr
CH
2
=CH(CH
2
)
2
MgBr
MeMgBr
n-BuMgBr
MeMgI
n-PrMgBr
PhCHOPhCHOPhCHO
i-PrCHO
C
6
H
11
CHO
CH
2
=CH(CH
2
)
3
CHO
Ph(CH
2
)
2
CHO
55%82%83%40%35%69%60%
94%96%90%
≥
90%90%95%
≥
90%
R
1
-CH
2
MgX
(2 equiv.)
1) ZnCl
2
, Et
2
O, 23
°
C
2) dioxane; filter3) 0.15 eq.
1
, -78
°
C
4) 1.2 eq. Ti(OiPr)
4
5) R
2
CHO to -30
°
C
(R,R)-
2
(R,R,R,R)-
1
Utilization of Grignard and Alkenyllithium Reagents
Seebach,
Angew. Chem. Int. Ed.
1991
,
30
, 1008, and 1321
Grignard
RCHO
% Yield
% ee
X
Zn
O
t-BuO
Zn
t-BuO
O
Ph
OH
O
Ti
O
OO
O
Me
O
Ph
Me
Ph
Ph
Ph
OO
Me
Ph
Me
Ph
Ph
Ph
OH
Et
R
NHSO
2
CF
3
NHSO
2
CF
3
O
Ti
O
OO
O
–
CHMe
2
Me
Ph
Me
Ph
Ph
Ph
O
–
CHMe
2
R
2
OH
R
1
19A-04-Et2Zn-Scope-2
1/19/00
1:49 PM
Pb: S. Torii,
Chem. Lett
.
1986
, 1461-1462.
Mo: J. Faller,
Tetrahedron Lett
.
1991
,
32
, 1271-1274.
Cr: Y. Kishi,
Tetrahedron Lett
.
1982
,
23
, 2343-2346.
P. Knochel,
J. Org. Chem
.
1992
,
57
, 6384-6386.
Sb: Y. Butsugan,
Tetrahedron Lett
.
1987
,
28
, 3707-3708.
Mn: T. Hiyama,
Organometallics
,
1982
,
1
, 1249-1251.
Zn: T. Shono,
Chem. Lett
.
1990
, 449-452.
Ba: H. Yamamoto,
J. Am. Chem. Soc
.
1991
,
113
, 8955-8956.
a73
Many Other Metals Have Been Employed in the Allylation Reaction ...
Allyl and Crotyl Metal Species-4: Catalytic Systems
D. A. Evans, D. M. Barnes
Chem 115
a73
Three Catalytic Asymmetric Allylations of Aldehydes are Known
+ BH
3
-THF
BL
n
*
E/Z = 61/39
+ PhCHO
20 mol % BL
n
*
H. Yamamoto,
Synlett
1991
, 561-562.
n-C
7
H
15
CHO
+
81% yield97.4% ee
63% yield
90% ee
E. Tagliavini, A. Umani-Ronchi
J. Am. Chem. Soc
.
1993
,
115
, 7001-7002.
G. Keck
J. Am. Chem. Soc
.
1993
,
115
, 8467-8468.
20 mol %
Ti(OiPr)
4
, 4
?
sieves
Ti(OiPr)
4
, 4
?
sieves
CF
3
COOH or TfOH
1
2
1
or
2
(10 mol %), RCHO
R
Ph
Chex
Catalyst
121212
Yield (%)
889866954278
ee (%)
959294928977
COOH
iPrO
OiPr O
OH
COOH
Me
SiMe
3
Me
Ph
Me
OH
Me
OO
Ti
ClCl
SnBu
3
n-C
7
H
15
OH
H
O
SnBu
3
R
OH
OHOH
OO
Ti
OiPrOiPr
OHOH
OO
Ti
OO
19A-04a - Allyl/Crotyl 4
1/19/00
1:49 PM
00
00
000
000
Brown's Model
Chem 115
D. A. Evans
Enantioselective C=O Addition: Ketone Reduction
(R)-Alpine Borane
Li
+
(S)-BINAL-H
Enantioselective Reducing Agents
Darvon alcohol, LiAlH
4
[LiAl(lig)
2
H]
N-Methylephedrine,
LiAlH
4
, (3,5-xylenol)
2
[LiAl(
lig)
(OAr)
2
H]
-
Reviews:
Midland,
Asymmetric Synthesis
,
Vol 2
, p 45-
Granbois,
Asymmetric Synthesis
,
Vol 2
, p 71-
Brown,
Accts. Chem. Res.
1992
, 25,
16-24
Singh,
Synthesis
1992
,
605-617
78% e.e. R=Me90% e.e. R=CO
2
Me
95 - 100% e.e.(71% ee, R=i-Pr)15 - 75% e.e. ----
59 - 89% e.e.>95% e.e.25% e.e.78 - 98% e.e.(cyclic ketones)
72 - 92% e.e.84 - 96% e.e.(57% ee, R=i-Pr)34 - 90% e.e.75 - 90% e.e.
Alpine-BoraneBINAL-HDarvon-LiAlH
4
N-Methylephedrine- LiAlH
4
Reagent
Reductions of Representative Carbonyl Compounds
THF
50 - 90%
Less hindered aliphatic ketones
are not reduced with useful
levels of enantioselectivity
2
Brown,
J. Org. Chem.
1985
,
50
, 5446
98%98%79%95%91%
-25
°
C
-25
°
C
-25
°
C
25
°
C, 12 days
25
°
C, 2 days
acetophenone
butyrophenone
2,2-dimethylpropiophenone
3,3-dimethyl-2-butanone
2,2-dimethylcyclohexanone
Ketone
Reaction Conditions
% ee
Brown,
J. Org. Chem.
1986
,
51
, 3394
Brown,
J. Org. Chem.
1988
,
53
, 2916
Stoichiometric Chloroborane Reducing Agents
Small ligand (R
s
)
Large ligand (R
L
)
Favored TS
Me
B
OO
Al
HOEt
B
n
Ph
Ph
Me
Me
2
NO
H
NMe
2
OH
Me
O
R
R
O
R
O
Me
BC
l
R
L
R
S
O
OH
R
S
R
L
X
B
Me
Me
Me
H
H
O
R
L
R
S
Y
19A-05-Asym Redn-1
1/19/00
1:48
PM
LiBH
4
EtOH
( 1 : 3 : 1.3 )
-78
°
C, THF
73%
84% e.e
.
83% e.e. (R)
*
72%
*
t-BuOH replacing EtOH
Soai,
Chem. Commun
.
1987
, 801;
Chem. Commun
.
1986
, 1018
Brown,
J. Am. Chem. Soc.
1988
,
110
, 1539
Brown,
J. Org. Chem.
1988
,
53
, 1231
Brown,
J. Org. Chem.
1986
,
51
, 1934
Miscellaneous Chiral Borohydride Reagents
86 - 98% e.e.
R = alkyl, aryl
THF, -78
°
C
75 - 85%
97% e.e.87% e.e.92% e.e.
R = t-Bu = i-Pr = Et
THF, -78
°
C
90 - 95%
K
+
-
Brown,
Tetrahedron Let.
1991
,
32
, 6691
Ketone
Rxn time
(THF, -25
°
C)
% Conv.
% ee
Brown,
J. Org. Chem.
1989
,
54
, 4504
% ee
% Conv.
Rxn time
(THF, 23
°
C)
Ketone
acetophenone
3-methyl-2-butanone
cyclohexyl methyl ketone
2,2-dimethylcyclopentanone
trans-4-phenyl-3-buten-2-one
2-cyclohexenone
4-phenyl-3-butyn-2-one
24 h
2 d3 d
24 h
14d
7 d5 h
80%65%65%80%60%60%82%
>99%
95%97%
>99%
82%74%33%
2
Improved Enantioselectivity with Alphatic Ketones
72%88%86%76%72%79%
50%
100%
60%30%40%50%
7 days2 days4 days
14 days
4 days4 days
acetophenone
3-methyl-2-butanone
cyclohexyl methyl ketone
cyclohexyl ethyl ketone
cyclopentyl methyl ketone
cyclohexenone
Enantioselective C=O Addition: Ketone Reduction-2
D. A. Evans
Chem 115
BC
l
B O
Cl
tBu Bzl
B
O
H
O
O
O
OO
S
Ph
R
O
R
Ph
OH
OEt
R
O
O
O
OH
R
OEt
S
PhCOHN
NHCOPh
CO
2
H
CO
2
H
H
H
N
Me
O
OH
Me
N
Cl
O
OH
Cl
19A-06-Asym Redn-2
1/19/00
1:48
PM
(Review) Martens,
Tertrahedron Asymmetry
1992
,
3
, 1475
97 % ee
97 % ee91 % ee
But how does it really work ?
R = Ph, R = t-Bu, R = c-C
6
H
11
BH
3
–
+
BH
3
R = HR = Me
a73
The Catalytic Process: Corey, 1987
Itsuno,
J. Chem. Soc. Perkin Trans I
.
1985
, 2615
Itsuno,
J. Org. Chem.
1984
, 49, 555
Itsuno,
Chem. Commun
.
1983
, 469
a73
The Stoichiometric Process: Itsuno, 1983-1985
( H
–
BX
C
)
2 equiv BH
3
30
°
C, 10 hr
Chiral
Boron Hydride
( H
–
BX
C
)
R = Me, 94 % eeR = Et, 94 % eeR = n-Bu 100 % ee
Chem 115
D. A. Evans
Enantioselective C=O Addition: Corey-Itsuno Catalyst
Discovery of a Catalytic Process
(0.1 equiv)
B
B
BH
3
–
+
+
–
+
–
The
Catalytic Cycle
+
–
+
Corey,
JOC
1988
,
53
, 2861
Corey,
JACS
1987
,
109
, 5551
Corey,
JACS
1987
,
109
, 7925
Improved version
Catalyst X-ray, Corey,
Tet. Let
1992
,
33
, 3429
Mathre,
JOC
1993
,
58
, 2880
catalyst prep: Mathre,
JOC
1993
,
58
, 799
Mathre,
JOC
1991
,
56
, 751
O
H
2
B
C
RL
H
RS
OBH
2
O
H
2
B
H
N
CRL
RS
N
B
X
Y
X
O
B
N
O B
O
Y
C
RS
X
RL
H
2
N
Ph
Ph
OH
Me
2
HC
R
O
Ph
Ph
OH
H
R
H
H
N
NO
Ph
Ph
BR
BR
O
Ph
Ph
H
3
B
Me
O
R
H
R
OH
Me
O
Y
X
O
B
N
Y
C
RS
RL
H
BH
3
N
B
O
Ph
B
O
Me
Ph
H
H
H
X
Ph
B
Me
O
N
Ph
Ph
H
Recent Review:
Corey, E. J. and C. J. Helal (1998).
“
Reduction of carbonyl
compounds with chiral oxazaborolidine catalysts: A new paradigm for
enantioselective catalysis and a powerful new synthetic method.
”
Angew. Chem.,
Int. Ed. Engl.
37
(15): 1987-2012.
19A-07-Corey Cat
11/1/00
8:03
AM
Chem 115
D. A. Evans
Enantioselective C=O Addition: Catalyst Scope
Representative Reductions
90 : 10
91 : 9
(R)-cat, as above
(S) cat (0.1 equiv)
BH
3
(0.6 equiv)
THF 23
°
C, 2 min
The catalyst
Corey,
JACS
1987
,
109
, 7925
(S) cat
BH
3
86% ee
91% ee
BH
3
(S) cat
91% ee
BH
3
(S) cat
(R) cat (0.2 equiv)
1.5 equiv
92% ee
Tet. Let
1992
,
33
, 2319
Fluoxetine (Prozac?) Synthesis
BH
3
94% ee (>99%)
0.1 equiv
Na
–
I
MeNH
2
NaH
Prozac?
An
α
-Amino Acid Synthesis
Tet. Let
1989
,
30
, 5207
0.1 equiv
R
ee
n-C
5
H
11
95%92%
c-C
6
H
11
t-C
4
H
9
98%
HO
–
N
3
–
rm temp
Corey,
JACS
1992
,
114
, 1906
Tet. Let
1992
,
33
, 3435
Tet. Let
1992
,
33
, 3431
MeMe
O
Me
Me
Me
Me
Me
Me
Me
Me
Me
N
B
O
Ph
Ph
H
Me
O
O
n-C
5
H
11
O
ArCOO
ArCOO
OH
n-C
5
H
11
O
O
Me
Me
Me
HO
Me Me
O
BH
O
F
F
Cl
O
N
O
O
n-C
5
H
11
OH
ArCOO
OO
H
Br
OH
O
Br
Me
OH
O
Me
B
O
Ph
Ph
H
Me
OH
Cl
NHMe
OH
O
NHMe
CF
3
CF
3
Cl
CCl
3
R
O
OH
R
CCl
3
B
n-Bu
H
Ph
Ph
N
O
O
BH
O
CCl
3
R
OH
N
3
R
COOH
19A-08-Corey Cat
1/19/00
1:48
PM
with S. Kaldor,
J. Am. Chem. Soc.
,
1990
,
112
, 7001
98%
98.5 : 1.5
SmI
2
/i-PrOH
40%
60 : 40
Na/NH
3
0%
0 : 100
LiAlH
4
Yld Eq ROH
Eq : Ax ROH
Hydride
Kagan,
Nouv. J. Chim.
1986
,
10
, 229-232.
25
°
C, 30 min.
SmI
2
0.1 equiv
Me
2
CHOH
A
Kagan,
Tet. Lett
,
1991
,
32
, 2355
Kagan,
J. Org. Chem
,
1984
,
48
, 2045
10 % SmI
2
25
°
C
Kagan 1984
10 %
t
-BuO-SmI
2
65
°
C
Woodward: 1945
W. von E. Doering: 1950
The Oppenauer Oxidation
Al(O-iPr)
3
80
°
C
80
°
C
Al(O-iPr)
3
The Meerwein-Ponndorf-Verley Reduction
Exercise: Work out a rational methanism which explains the stereochemical outcome. Assume that the resting state of the the catalyst is in the +1 oxidation state.
70% ee (94% yield)
27% ee (60% yield)
95% ee (91% yield)
93% (90% yield)
-5
°
C, 5h
4 %
AgBF
4
1.0 mol% BF
3
?
OEt
2
1.7 mol%
3.5 %
0
°
C, 14h
82% no rxn
rm temp
1.7 %
ee, %
conditions
catalyst
none
Additve
H
3
O
+
additive
1
, Ph
2
SiH
a73
Representative Reductions
a73
The Reaction:
The Catalyst (
1
)
RhCl
3
The Ligand
Nishiyama,
J. Org. Chem
,
1992
,
57
, 4306
Nishiyama,
Organometallics
,
1991
,
10
, 508
Nishiyama,
Organometallics
,
1989
,
8
, 846
Chem 115
D. A. Evans
Enantioselective C=O Addition: Other Methods
Enantioselective Hydrosilylation
N
O
NN
O
Me
2
HC
CHMe
2
CHMe
2
Me
2
HC
O
N
N
O
NRhCl
Cl
Cl
Me
Ph
O
O
SiR
3
Ph
Me
Me
Ph
OH
Me
OEt
O
OH
O
OH
OEt
Me
OH
Me
Me
Me
R
1
R
2
OO
H
R
2
R
1
Me
Me
OH
O
Me
Me
R
1
R
2
OH
O
R
2
R
1
R
1
R
2
OH
O
R
2
R
1
OH
H
Me
H
Me
DEIPSO
PMBO
H
H
O
Et
O
H
O
O
Et
H
H
PMBO
DEIPSO
Me
H
Me
H
O
19A-09-Other Methods-1
1/19/00
1:48
PM
0
20 40 60 80
100
0.75
%ee
0.80
0.85
0.90
0.95
1.00
1.05
Sc
Ionic Radius
(?)
for
MI
3
MI
3
Source
(<5% conv.)
Lu
La
(40 %conv.)
(57% conv.)
Y
Tb
Sm
Nd
with Nelson, Muci, Gagne,
JACS
in Press
a73
Yttrium (Y)
a73
Terbium (Tb)
a73
Neodymium (Nd)
Other candidates
Are other lanthanide reagents effective catalysts?
a73
Representative Reductions
96 % ee R = H
> 98 % ee
95 % ee
70 % ee
96 % ee R = Cl93 % ee R = OMe
+ 2
Bn-NH
2
a73
Catalyst Preparation:
SmI
3
THF
> 90 % ee
64 % ee
24 % ee
23 % ee
0 % ee
25
°
C
10 % SmI
3
?
a73
The Test Reaction:
10-20 equiv
i-propanol
a73
Tridentate Ligands:
a73
Bidentate Ligands:
An Enantioselective Meerwein-Ponndorf-Verley Variant
Chem 115
D. A. Evans
Enantioselective C=O Addition: Other Methods
N
O
N
O
O
Me
N
O
R
R
R
O
N
O
N
R
Me
R'N
R
Me
R
OLi
O
Li
Cl
Cl
Me
OH
OOO
OLiOLi
MeMeMeMe
OLiOLi
OLi
OLi
Ph
N
Ph
Bn
BnN
Ph
Ph
OO
Sm
Ph
O
I
Me
O
R
O
Me
O
Me
O
Me
19A-10-Other Methods-2
1/19/00
1:48
PM
Catalyst-Substrate Stereoinduction (Buchwald)
Ti
Ti
Ti
PhSiH
3
imine, H
2
(2000 psi)
81%
98% e.e.
Buchwald,
J. Am. Chem. Soc
.
1992
,
114
, 7562
93%
76% e.e.
81-93%
77-85% e.e.
77%
98% e.e.
Ti
X
2
= 1,1'-binaphth-2,2'-diolate
2 n-BuLi, THF
2-10 mol %
Asymmetric Hydrogenation of Imines
The stereochemistry of reduction of oxime ethers depends on the
geometry of the oxime C=N double bond
BH
3
(2 equiv)
THF, 23
°
C
64%
92% e.e. (S)92% e.e. (R)
"
58%"
40%
86% e.e. (S)81% e.e. (R)
"
46%
Sakito,
Tet. Lett
.
1988
,
29
, 223; see also
Didler,
Tetrahedron
1991
,
47
, 4941
Itsuno,
J. Chem. Soc. Perkin Trans I
.
1985
, 2039
% ee
BH
3
(equiv)
1
(equiv)
95%90%52%
411
1.0
0.250.10
1
, BH
3
, THF, 23
°
C
(1)
BH
3
Enantioselective C=N Addition:
D. A. Evans
Chem 115
H
2
N
Ph
OH
Ph
Ph
Me
Ph
Me
NH
2
OMe
N
N
OMe
Me
Me
NH
2
Ph
Me
OH
NH
2
NH
2
Me
OMe
N
Me
Me
Me
N
MeO
Ph
Ph
NH
2
N
Ph
Me
MeO
NH
2
Ph
Me
X
X
R'
R
NHR"
NN
H
Me
NH
–
Bn
Me
N
–
Bn
NH
–
Bn
Me
N
–
Bn
Me
NH
n-C
5
H
11
n-C
5
H
11
N
H
H
H
N
R
N
R
19A-11-Asym C=N Red-1
1/19/00
1:48
PM