Matthew D. Shair Friday,
November 15, 2002
Chemistry 206
Advanced Organic Chemistry
Handout 25A
The Asymmetric Baylis-Hillman Reaction
An Evans Group Afternoon Seminar
Jake Janey
March 29th, 2001
EWG
+ cat. base
XH
EWG
X
R R'
R
R'
*
EWG
–
Chem 206
J. Janey
The Asymmetric Baylis-Hillman Reaction
Leading References:Langer, P.
Angew. Chem. Int. Ed. Engl.
2000
,
39
, 3049-3052.
Ciganek, E.
Org. React.
1997
,
51
, 201-350.
Basavaiah, D.;
et. al
.
Tetrahedron
,
1996
,
52
, 8001-8062.
Drewes, S. E.; Roos, G. H. P.
Tetrahedron
,
1988
,
44
, 4653-4670.
An Evans Group Afternoon Seminar
Jake Janey
March 29th, 2001
EWG
+
cat. base
XH
EWG
X
RR
'
R
R'
*
EWG
–
Baylis-Hillman Reaction Scope
R
1
X
EWG
R
2
X = O, NTs, NCO
2
R, NPPh
2
, NSO
2
Ph
R
1
= alkyl, aryl
R
2
= H, alkyl, EWG
EWG = CO
2
R, CN, POEt
2
,
CHO, COR, SO
2
Ph, SO
3
Ph
+
cat. base
EWG
R
1 R
2
XH
R
OH
EWG
Rh(I), H
2
R
EWG
OH
An anti propionate aldol equivalent...
N
N
N
N
OH
cat. bases:
3-hydroxyquinuclidine (3-QDL)
DABCO
quinuclidine
n
-Bu
3
P:
Early Synthetic Examples
CO
2
Et
MeCHO
5% DABCO
25 °C, 7d
Me
OH
CO
2
Et
94% yield
HO
2
C
Me
Me
CO
2
H
OH
Me
+
Drewes, S. E.
J. Chem. Soc., Perkin Trans. 1
1982
, 2079-2083.
10 years after the Baylis-Hillman German patent...used in a C
10
integerrinecic acid synthesis:
Shortly thereafter, a more extensive, published study:
CO
2
Me
RCHO
15% DABCO
25 °C, 0.5 to 7d
R
OH
CO
2
Me
94% yield
+
Hoffmann, H. M. R.; Rabe, J.
Angew. Chem. Int. Ed. Engl.
1983
,
22
, 795-797.
? All reactions run neat in a sealed tube with 1.5-2 equivalents of acrylate.
R = alkyl or aromatic
25A-01
11/9/01
1:06 PM
Chem 206
The Asymmetric Baylis-Hillman Reaction
EWG
R
3
N
+
EWG
R
3
N
–
+
R'CHO
EWG
R
3
N O
R'
+
EWG
R'
OH
NR
3
H
H
EWG
H
α
O
+
R'
NR
3
H
H
H
α
EWG
+
O
E2 elimination...
initially formed
eliminates
? rate = K
obs
[aldehyde][alkene][amine]
? pseudo-second order if [amine]
≈
constant
? addition to aldehyde is r.d.s. because the dipole is increased by further charge seperation? acrylonitrile and methyl acrylate studied? enolate geometry not considered? ethereal solvent inhibits reaction whereas alcohols (especially diols) accelerate reaction? huge volume of activation:
?
V
?
of -79 cm
3
mol
-1
(the
Diels-Alder is -35 cm
3
mol
-1
) found by plotting ln
k
obs
vs.
P. 5000 bar increases rate by 1.1 x 10
6
? Reaction is reversible (i.e. a Grob type fragmentation), thus mechanism could be ternary, with no discrete enolate intermediate (supported by
?
V
?
and
temperature effects).
Hill, J. S.; Isaacs, N. S.
J. Phys. Org. Chem.
1990
,
3
, 285-288.
Kaye, P. T.; Bode, M. L.
Tetrahedron Lett.
1991
,
32
,
5611-5614.
:B
––
–
E1cB is also possible
Evidence for an Intermediate
OO
O
1 eq DABCO
CH
2
Cl
2
, r.t., 2.5 h
OO
N
N
+
Cl
X-ray
81% yield
Coumarin Salt
Drewes:"...the counter ion was chloride (presumably originating from the dichloromethane...)."
OOH
+
Cl
O
OOH
+
OMe
O
1 eq DABCOCH
2
Cl
2
, 0 °C
OO
N
N
+
Cl
Or...
40% yield
Drewes, S. E.;
et. al.
Syn. Comm.
1993
,
23
, 2807-2815.
H
H
H
–
–
Effects of Acrylate Ester Substituent
CO
2
R
+
13% DABCO
neat, r.t
1.3 eq
1.0 eq
Ph
OH
O
OR
PhCHO
R
Me
Et
Bn
n
-C
10
H
21
t
-Bu
2-adamantyl
CH
2
CH
2
F
CH
2
CH
2
Br
CH
2
CF
3
CH
2
CH
2
OMe
CH
2
CH
2
NMe
2
(CH
2
)
6
Cl
time (days)
672
146562
32
15 h
48
15
yield (%)
89798875654081
NR
588982
NR
Caubere, P.;
et. al.
Tetrahedron
1992
,
48
, 6371-6384.
? For aryl substituted benzyl ethers, no clear relation between
σ
values and reactivity was
observed.? Trends hold for furfural.? The products undergo retro Baylis-Hillman, i.e. the reaction is reversible.
J. Janey
25A-02
11/9/01
1:07 PM
Chem 206
The Asymmetric Baylis-Hillman Reaction
Bases for Catalysis
N
N
DABCO
2.97, 8.82 (2.97, 8.93)
N
Quinuclidine
10.9 (9.80)
N
3-Hydroxyquinuclidine (3-QDL)
9.5 (~8.5)
OH
>>
>
>
N
3-Acetoxyquinuclidine
OAc
N
3-Quinuclidone
6.9
O
or
O
OR
N
O
H
...or could accelerateprotonation ofintermediate, as anyalcohol additivewill acceleratereaction
NMe
2
NMe
2
Proton sponge
12.0 (7.50)
N
N
DBU
(~12)
Sterics also important:
Me
2
NH > Me
2
NEt > MeNEt
2
> NEt
3
10.75 (9.00)
Many, many phosphines screened...the winner:
n
-Bu
3
P ~9
P
P
unreactive
?
n
-Bu
3
P is only a slightly better catalyst than DABCO.
pK
a
H
2
O (DMSO)
–
>
>
Temperature Effects
CO
2
Me
MeCHO
+
0.1 mol% DABCO
2M in dioxane
Me
OH
CO
2
Me
25 °C 1 week0 °C 8 hours!
74% yield
? Reaction is accelerated for a wide variety of aldehydes when conducted at 0 °C? Temperature effect not seen with acrylonitrile (cannot form enolate)? Author concludes that one enolate must react faster than another (i.e. a kinetic versus a thermodynamic enolate).
NR
3
O
OMe
O
R
3
N
+
+
–
E
CO
2
Me
R
3
N
+
Z
Which enolate is more stable and which is more reactive?
Leahy, J. W.; Rafel, S.
J. Org. Chem.
1997
,
62
, 1521-1522.
–
OMe
Enolate Geometry
NR
3
O
OMe
O
R
3
N
+
+
–
E
R
3
N
+
Z
Thermodynamic
Kinetic
? less charge seperation? less reactive
? more charge separation? less stable? enolate twists out of plane by PM3
O
OMe
R
3
N
+
OO
M
e
O
NR
3
MeO
σ
*
4
π
e
-
HOMO
+
MeO
NR
3
O
σ
*
+
better conjugation into
σ
*
OMe
–
–
–
J. Janey
25A-03
11/9/01
1:07 PM
Chem 206
The Asymmetric Baylis-Hillman Reaction
Salt Additive
CO
2
Me
PhCHO
+
5% DABCO
Et
2
O, 0 °C, 20 h
Ph
OH
CO
2
Me
LiClO
4
(mol%)05
105070
100200500
y
ield (%)
trace
124063
72 (81)
a
2512
trace
1.2 eq
1.0 eq
a
15 mol% DABCO was used.
? Ether was found to be optimal from solvent screening.? General for a variety of alkenes and aldehydes.
O
R
3
N +
Li
ClO
4Stablize enolate?
Kobayashi, S.; Kawamura, M.
Tetrahedron Lett.
1999
,
40
, 1539-1542.
–
OMe
Lewis Acid Catalysis
CO
2
t
-Bu
PhCHO
+
1 eq DABCO
MeCN
, r.t., 1 d
Ph
OH
CO
2
t
-Bu
ligand
none
(+)BINOL
(+)diethyl tartrate
(+)diisopropyl tartrate
(+)TMTDA
(+)hydrobenzoin
(+)triphenylethanediol
(+)TADDOL
ethylene glycoltriethanolamine
salen
box
N
-methylephedrine
Sc(OTf)
3
3.39.45.23.54.13.53.22.93.3
4.652.31
3.6
2.87
Yb(OTf)
3
3.6
14.4
9.79.58.0
16.2
5.24.56.35.8
Eu(OTf)
3
3.5
12.8
5.54.63.65.82.23.85.23.2
La(OTf)
3
4.7
14.6
7.38.14.05.35.94.7
10.8
4.04.4
5 mol% ligand, 5 mol% metal
Relative Reaction Rates
? no enantioselectivity observed? DABCO loading dropped to <10 mol% with (+)-BINOL?
rac
-BINOL showed no rate acceleration
Aggarwal, V. K.;
et. al. Chem. Commun.
1996
, 2713-2714.
Aggarwal, V. K.;
et. al. J. Org. Chem.
1998
,
63
, 7183-7189.
J. Janey
25A-04
11/9/01
1:07 PM
Chem 206
The Asymmetric Baylis-Hillman Reaction
Possible Stereoisomers
H
α
O
R'
H
H
H
NR
3
+
O
MeO
H
α
O
H
R'
H
H
NR
3
+
O
MeO
H
α
O
R'
H
+
OMe
O
H
H
R
3
N
H
α
O
H
R'
+
OMe
O
H
H
R
3
N
CO
2
Me
H
α
O
R'
H
H
H
NR
3
+
CO
2
Me
H
α
O
H
R'
H
H
NR
3
+
CO
2
Me
H
α
O
R'
H
+
H
H
R
3
N
CO
2
Me
H
α
O
H
R'
+
H
H
R
3
N
H
R
3
N
H
H
α
MeO
2
C
H
R
3
N
H
H
α
MeO
2
C
H
H
NR
3
H
α
CO
2
Me
H
H
NR
3
H
α
CO
2
Me
R'
H
OH
R'
OH
H
R'
HO
H
R'
H
HO
R'
CO
2
Me
OH
R'
CO
2
Me
OH
++
+
+
120 ° rotationthen E2 elim.
Assumptions:?
E
enolate formed
? E2 favored over E1 pathway? -NR
3
+
is orthogonal to
π
face
(stereoelectronics)
––
–
–
––
–
–
J. Janey
25A-05
11/9/01
1:08 PM
Chem 206
The Asymmetric Baylis-Hillman Reaction
E/Z
Selectivity with Crotononitrile
CN
Me
PhCHO
Ph
Me CN
OH
Ph
CN
OH
Me
r.t.
++
EZ
Solvent
neatTHF
CHCl
3
CH
3
CN
MeOH
E/Z
ratio
1.2 : 11.4 : 11.5 : 13.1 : 1
4 : 1
5 mol% DABCO, 8 kbar, 17 h, solvent 50 vol%
Base
DABCO
3-QDL
NEt
3
E/Z
ratio
1 : 12 : 14 : 1
10 mol% base, 8 kbar,17 h, CHCl
3
50 vol%
1 eq
1 eq
5 mol% DABCO,17 h, solvent 50 vol%
Rozendaal, E. L. M.; Voss, B. M. W.; Scheeren, H. W.
Tetrahedron
1993
,
49
, 6931-6936.
?
E
and
Z
crotononitrile is easily isomerized under
the reaction conditions.? Products did not undergo retro-Baylis-Hillman.
J. Janey
25A-06
11/9/01
1:08 PM
Chem 206
The Asymmetric Baylis-Hillman Reaction
Possible Stereoisomers for
Methylcrotonate
H
α
O
H
R'
Me
H
NR
3
+
O
MeO
H
α
O
H
R'
H
Me
NR
3
+
O
MeO
CO
2
Me
H
α
O
H
R'
Me
H
NR
3
+
CO
2
Me
H
α
O
H
R'
H
Me
NR
3
+
Me
R
3
N
H
H
α
MeO
2
C
H
R
3
N
Me
H
α
MeO
2
C
R'
OH
H
R'
OH
H
++
H
α
O
R'
H
H
Me
NR
3
+
O
MeO
H
α
O
R'
H
Me
H
NR
3
+
O
MeO
CO
2
Me
H
α
O
R'
H
H
Me
NR
3
+
CO
2
Me
H
α
O
R'
H
Me
H
NR
3
+
H
R
3
N
Me
H
α
MeO
2
C
Me
R
3
N
H
H
α
MeO
2
C
R'
H
OH
R'
H
OH
++
NR
3
H
Me
H
α
MeO
2
C
NR
3
Me
H
H
α
MeO
2
C
R'
OH
H
R'
OH
H
NR
3
Me
H
H
α
MeO
2
C
NR
3
H
Me
H
α
MeO
2
C
R'
H
OH
R'
H
OH
++
+
+
R'
CO
2
Me
OH
Me
R'
CO
2
Me
OH
R'
CO
2
Me
OH
R'
CO
2
Me
OH
Me
Me
Me
Assumptions:?
E
enolate formed
? E2 favored over E1 pathway, only after rotation of ammonium to
anti
conformation? -NR
3
+
is orthogonal to
π
face
(stereoelectronics)? only
one
π
face of enolate
considered, thus there are an additional 4 stereoisomers
possible
? starting geometry of methylcrotonate and
in situ
isomerization not
considered? retro-Baylis-Hillman not considered
––
–
–
––
––
J. Janey
25A-07
11/9/01
1:09 PM
Chem 206
The Asymmetric Baylis-Hillman Reaction
Camphorsultam Acrylate Baylis-Hillman
S
N
O
O
O
RCHO, 10% DABCOCH
2
Cl
2
, 0 °C, 12 h
O
O O
R
R
R
Me
Et
n
-Pr
i
-Pr
PhCH
2
CH
2
AcOCH
2
(CH
3
)
2
CHCH
2
Ph
yield (%)
85987033686867
0
ee
(%)
>99>99>99>99>99>99>99
MeOH, CSA
(85%)
MeO
2
C
OH
R = Et
Me
Rh(I), H
2
(85%)
MeO
2
C
Me
OH
Me
Leahy, J. W.;
et. al.
J. Am. Chem Soc.
1997
,
119
, 4317-4318.
Camphorsultam Acrylate Mechanism
S
N
O
O
O
NR
3
+
S
N
O
O
NR
3
O
+
Dipole minimized
RCHO
O
X
c
N
NR
3
H H
R
O
+
X
c
N
O
R
O
R
3
N+
X
c
N
O
NR
3
OR
OR
+
O
O O
NR
3
R
R
+
O
O O
R
R
Author's model:
–
–
–
–
–
αααα
-Branched Aldehydes: Modest Felkin-Anh
Selection
R
1
R
2
CHCHO
+
CO
2
Me
r.t
CO
2
Me
R
2
OH
R
1
CO
2
Me
R
2
OH
R
1
+
anti
syn
R
2
MeMeMePhn
-Pr
MeMe
ConditionsDABCO, 4 d3-QDL, 1.5 dDABCO, 6 dDABCO, 10 d3-QDL, 60 dDABCO, 55 dDABCO, 7 dDABCO, 3.5 dDABCO, 11 d
yield (%)
556042423062802843
anti:syn
70:3072:2870:3037:6335:6569:3126:7446:5489:11
? Varying the amount of catalyst only affects the rate, not selectivity.?
Anti
and
syn
drawn incorrectly in review, should be reversed.
R
1
MeOCH
2
O
MeOCH
2
O
BnOCH
2
O
MeOCH
2
O
MeNHCO
2
t
-Bu
N
-Phthalimidyl
-N(CO
2
t
-Bu)C(Me)
2
OCH
2
-
-OC(Me)
2
OCH
2
-
O
N
H
H
Me
H
t
-BuO
2
C
syn
selective
Ciganek, E.
Org. React.
1997
,
51
, 217-218.
J. Janey
25A-08
11/9/01
1:09 PM
Chem 206
The Asymmetric Baylis-Hillman Reaction
Chiral Aldehydes: Chromium Auxiliary
Cr(CO)
3
OH
R
50% DABCO
neat, r.t.
CO
2
Me
+
Cr(CO)
3
R
MeO
2
C
H
OH
h
ν
, air
CH
3
CN
OH
CO
2
Me
R
aldehyde
racracracrac
S
-(+)
S
-(+)
R
OMe
Cl
F
Me
OMe
Cl
time (h)
93
67
5893
8
yield (%)
878992908597
dr
>98:2>98:2
92:8
84:16>98:2>98:2
? dr
determined by 200 MHz
1
H NMR
?
N
-Tosyl arylimine chromium complex also reacts
excess
Kundig, P. E.;
et. al.
Tetrahedron Lett.
1993
,
34
, 7049-7052.
Chiral Phosphine Catalysts
CO
2
Et
O
OH
CO
2
Et
18 mol% (-)-CAMP
neat, r.t., 10 d
75% yield (40% isolated)
14%
ee
(-)-CAMP =
POMe
Me
62%
ee
Frater, G.;
e
t
. al. Tetrahedron Lett.
1992
,
33
, 1045-1048.
NC
H
O
CO
2
Me
+
CO
2
Me
OH
N
10 mol% cat.
neat, r.t. 9-94 h
18-83% yield
2-19%
ee
cat. =
P
R
R'OR'O
R
Ph
R = Me and R' = H gave highest reactivity
Zhang, X.;
et. al. J. Org. Chem.
2000
,
65
, 3489-3496.
The High Point of Chiral Phosphine Catalysts
N
N
CHO
CO
2
R
2
N
N
OH
CO
2
R
2
R
1
R
1
+
20 mol% (
S
)-BINAP
CHCl
3
, r.t. 3-14 d
2.4 eq
R
1
HHH
MeMe
R
2
i
-PrEt
MeMeMe
time (d)
434
14
3
yield (%)
8
12241826
ee
(%)9
254437
30
a
a
Tol-BINAP was used
? other phosphines screened gave ~racemic products:DIOP, NORPHOS, BPPFOH, and MOP
Soai, K.;
et. al. Chem. Commun.
1998
, 1271-1272.
J. Janey
25A-09
11/9/01
1:09 PM
Chem 206
The Asymmetric Baylis-Hillman Reaction
Naturally Occurring Alkaloids as Chiral Catalysts
CN
OH
CN
Me
MeCHO
+
? mol% cat.
9 kbar, 25-60 °C
0-81% yield
3-17%
ee
? (-)-quinine, (1
R
,2
S
)
N
-methylephedrine,
S
-(-)-nicotine,
S
-(-)-
N
-methylprolinol screened
? (-)-menthyl acrylate ester gave 100%
de
with aromatic aldehydes and DABCO under high P
Isaacs, N. S.;
et. al. Tetrahedron: Asymm.
1991
,
2
, 969-972.
O
Me
RCHO
+
10 mol% quinidine
CH
2
Cl
2
, r.t. 20 h
R
OH
O
Me
R
n
-Pr
n
-C
9
H
19
i
-Pr
c
-hex
Pressure
3 kbar
10 kbar
3 kbar3 kbar
ee
(%)
18313745
40-50% yield
? 3-QDL, quinine, cinchonine, cinchonidine,
O
-acetyl quinidine,
N
-methylprolinol,
N
-methylephedrine also screened
?
ee
is highly pressure dependent, optimized pressure is shown in table
Marko, I. E.; Giles, P. R.; Hindley, N. J.
Tetrahedron
1997
,
53
, 1015-1024.
N
N
MeO
O
H
O
H
H
H
H
Me
O
+
R
H
N
N
MeO
O
H
O
R
H
H
H
Me
O
+
H
H
RM
e
O
OH
minor
RM
e
O
OH
major
Model For Quinidine Catalyst
Author's model:
? C
α
hydrogens control
π
face of the aldehyde
? bulky R should enhance selectivity, a trend that they say is "...clearly visible."? H-bonding plays a "clear role" as
O
-acyl quinidine gives no enantioselectivity
αα
Marko, I. E.; Giles, P. R.; Hindley, N. J.
Tetrahedron
1997
,
53
, 1015-1024.
N
N
MeO
O
H
H
+
H
α
O
–
H
O
H
R
Alternative:
H
H
Me
major
–
–
J. Janey
25A-10
11/9/01
1:10 PM
Chem 206
The Asymmetric Baylis-Hillman Reaction
C
2
Symmetric DABCO Catalyst
CHO
Me
O
O
2
N
O
2
N
O
Me
OH
15 mol% cat.
1% Hydroquinone
5-10 kbar, THF, 30 °C
+
N
N
OR
cat. =
R
Bn
TBDPS
TIPS
Ph
Mesityl
1-naphthyl
1-anthranyl
1-napththoyl
N
-Cbz-Gly
time (h)
121228162816241724
yield (%)
452333606766
9
6863
ee
(%)
473419351642111521
? racemic alcohol product can be easily resolved by kineticresolution with Sharpless asymmetric epoxidation? other chiral
DABCO's made, but not tested...
N
N
N
N
N
N
Ph
Ph
Hirama, M.;
et. al.
Tetrahedron: Asymm.
1995
,
6
, 1241-1244.
H
H
OR
Ph
H
H
Ph
Ph
Ph
H
H
H
H
Chiral Pyrrolizidine Catalyst
Me
O
Ar
O
Me
OH
10 mol% cat.
1 eq NaBF
4
CH
3
CN, -40 °C, 0.5-3 d
+
N
O
2
N
HO
H
H
cat. =
ArCHO
Ar
2-NO
2
2-F
2-Cl2-Br
3-NO
2
2-pyridyl3-pyridyl
4-quinolinyl
4-NO
2
yield (%)
713158635183936317
ee
(%)
676372713721497039
N
+
O
Me
NO
2
O
H
O
R
H
Na
+
N
+
O
Me
NO
2
O
H
Na
+
OR
H
favored
disfavored
Author's model:
Barrett, A. G. M.;
et. al.
Chem. Commun.
1998
, 2533-2534.
––
J. Janey
25A-11
11/9/01
1:10 PM
Chem 206
The Asymmetric Baylis-Hillman Reaction
C
2
Symmetric DABCO Catalyst
CHO
Me
O
O
2
N
O
2
N
O
Me
OH
15 mol% cat.
1% Hydroquinone
5-10 kbar, THF, 30 °C
+
N
N
OR
cat. =
R
Bn
TBDPS
TIPS
Ph
Mesityl
1-naphthyl
1-anthranyl
1-napththoyl
N
-Cbz-Gly
time (h)
121228162816241724
yield (%)
452333606766
9
6863
ee
(%)
473419351642111521
? racemic alcohol product can be easily resolved by kineticresolution with Sharpless asymmetric epoxidation? other chiral
DABCO's made, but not tested...
N
N
N
N
N
N
Ph
Ph
Hirama, M.;
et. al.
Tetrahedron: Asymm.
1995
,
6
, 1241-1244.
H
H
OR
Ph
H
H
Ph
Ph
Ph
H
H
H
H
Chiral Pyrrolizidine Catalyst
Me
O
Ar
O
Me
OH
10 mol% cat.
1 eq NaBF
4
CH
3
CN, -40 °C, 0.5-3 d
+
N
O
2
N
HO
H
H
cat. =
ArCHO
Ar
2-NO
2
2-F
2-Cl2-Br
3-NO
2
2-pyridyl3-pyridyl
4-quinolinyl
4-NO
2
yield (%)
713158635183936317
ee
(%)
676372713721497039
N
+
O
Me
NO
2
O
H
O
R
H
Na
+
N
+
O
Me
NO
2
O
H
Na
+
OR
H
favored
disfavored
Author's model:
Barrett, A. G. M.;
et. al.
Chem. Commun.
1998
, 2533-2534.
––
J. Janey
25A-12
11/9/01
1:10 PM
Chem 206
The Asymmetric Baylis-Hillman Reaction
Quinidine Ether Catalyst
O
O
R
O
O
OH
10 mol% cat.
DMF
, -55 °C, 0.5-3 d
+
RCHO
N
O
N
OH
CF
3
CF
3
CF
3CF
3
OO
O
R
R
+
ester
dioxanone
R
p
-NO
2
Ph
(
E
)-PhCH=CH
Et
i
-Bui
-Pr
c
-Hext
-Bu
yield (%)
58575040513631
--
ee
(%),
(config)
91 (
R
)
95 (
R
)
92 (
R
)
97 (
R
)
99 (
R
)
99 (
R
)
99 (
R
)
--
R
S
yield (%)
11
----
22182523
--
ee
(%),
(config)
4 (
R
)
----
27 (
S
)
18 (
S
)
25 (
S
)
23 (
S
)
--
cat. =
? Quinidine and other acyclic derivatives showed no enantioselection and verylow reactivity.? Free hydroxyl on quinoline is essential for enantioselectivity.? Reactions conducted at room temperature showed lower enantioselection.? Racemic ester does not react to give dioxanone under the reaction conditions.
Hatakeyama, S.;
et. al J. Am. Chem. Soc.
1999
,
121
, 10219-10220.
prepared in 65% yield fromquinidine in 85% phosphoricacid and KBr (100 °C, 5 d).
Proposed Mechanism: Partial Kinetic Resolution
N
O
N
OH
O
OR'
+
Et
H
N
O
O
+
Et
H
CO
2
R'
H
α
R
O
H
H
N
O
N
O
+
Et
H
CO
2
R'
H
α
H
O
R
H
H
H
H
α
CO
2
R'
Y
X
O
N
O
R
O
OR'
OH
R
O
OR'
OH
OO
O
R
R
OO
O
R
R
RCHO
RCHO
RCHO
RCHO
R
S
S
R
? obscures inherent facial selectivity of the catalyst
N
H
O
H
Et
Y = R
X = R
–
–
–
–
J. Janey
25A-13
11/9/01
1:10 PM
Chem 206
The Asymmetric Baylis-Hillman Reaction
A Model for Facial Selectivity
PM3 minimized: C-N bond to enolate constrained to 1.6 ?
O
R
H H
O
H
R
H
Favored
Disfavored
? Catalyst orthogonal to opposite
π
face of the
enolate leads to same major enantiomer after elimination.
BINOL as an Additive or Ligand
O
RCHO
+
20 mol%
n
-Bu
3
P:
10 mol% BINOL
THF, r.t. 2-24 h
O
R
OH
R
n
-C
7
H
15
Ph
MEMO(CH
2
)
3
Et
PhCH
2
CH
2
yield (%)
quant.
929891
quant.
?
ee
were all <10%
? phenol also accelerates reaction? other acrylates also tolerated
O
+
O
OH
OO
Ca
16 mol%
10 mol%
n
-Bu
3
P:
THF, r.t. 7 h
Ph
CHO
Ph
62% yield, 56%
ee
Ikegami, S.; Yamada, Y. M. A.
Tetrahedron Lett.
2000
,
41
, 2165-2169.
J. Janey
25A-14
11/9/01
1:11 PM
Chem 206
The Asymmetric Baylis-Hillman Reaction
A Related Phosphine Catalyzed Reaction
?
EtO
2
C
+
10 mol% cat.PhCH
3
, 0 °C
P
Ph
i
-Pr
i
-Pr
cat. =
CO
2
i
-Bu
CO
2
i
-Bu
CO
2
Et
C
O
2
Et
CO
2
i
-Bu
+
AB
10 eq
CO
2
R
PR
3
:PR
3
+
CO
2
i
-Bu
CO
2
i
-Bu
CO
2
Et
C
O
2
Et
CO
2
i
-Bu
+
R
3
PR
3
P
++
CO
2
i
-Bu
CO
2
Et
C
O
2
Et
CO
2
i
-Bu
+
R
3
PR
3
P
++
88% yield100:0
A:B
93%
ee
:PR
3
P
Ph
i
-Pr
EtO
2
C
i
-BuO
2
C
i
-Pr
Zhang, X.;
et. al. J. Am. Chem. Soc.
1997
,
119
, 3836-3837.
Lu, X.;
et. al. J. Org. Chem.
1995
,
60
, 2906-2908.
–
–
––
––
:PR
3
? other catalyst and conditions give lower regio- and enantio- selection
Phosphine Catalyzed Addition
?
RO
2
C
+
NuH
10 mol% cat.
NaOAc/HOAc
r.t. PhCH
3
Nu
CO
2
R
O
CO
2
Me
R
Me
Et
t
-Bu
EtEtEt
Me
O
COMe
O
O
COMe
O
O
2
N
CO
2
Et
NC
yield (%)
80767467833147
ee
(%)
73747556484145
product
O
CO
2
Me
CO
2
R
O
COMe
CO
2
Et
O
O
COMe
CO
2
Et
NO
2
CO
2
Et
CO
2
Et
CO
2
Me
O
NC
NuH
Zhang, X.;
et. al.
J. Org. Chem.
1998
,
63
, 5631-5635.
P
Ph
Me
Me
cat. =
J. Janey
25A-15
11/9/01
1:11 PM
Chem 206
The Asymmetric Baylis-Hillman Reaction
Addition Mechanism
?
CO
2
R
CO
2
R
PR
3
:PR
3
+
NuH
CO
2
R
PR
3
+
Nu
CO
2
R
PR
3
+
Nu
–
CO
2
R
Nu
+
cat. :PR
3
HOAc/NaOAc
PhCH
3
:PR
3
Author's proposal:
H
+
shift
–
–
Recipe for a Good Catalyst?
NR
3
O
OR
+
vs.
NR
3
OR
O
+
EZ
NR
2
O
OR
+
O
R
H
vs.
? for substituted acrylates, must control enolate
π
facial selectivity
? chirality on catalyst may also gear ester substituent to influence aldehyde approach
NR
2
O
OR
+
O
H
R
Control enolate geometry...
Control aldehyde
π
face...
or
NR
2
O
OR
+
O
H
R
X
NO
X
OR
R
1
R
2
O
R
H
–
–
–
–
–
–
Conclusions
? The Baylis-Hillman reaction provides convenient access to valuable allylic alcohol building blocks which may serve as synthetic equivalents to
anti
-propionate aldol addition products.
? The basics of the reaction mechanism are understood, but the mechanistic details still remain elusive at best.? Few examples of a general, diastereoselective Baylis-Hillman have been reported and the successful ones are rather limited in scope.? Only one synthetically useful enantioselective, base catalyzed Baylis-Hillman reaction exists. There is no rational design, nor models for asymmetric catalysis.? The asymmetric, catalytic Baylis-Hillman reaction is very promising and attractive methodology, but remains an elusive goal of chiral Lewis base catalysis.
J. Janey
25A-16
11/9/01
1:11 PM