~ ?yvD ?Dy
?=c
?
D±s
~ ?yvD ?Dy
? 1 ?
?
¥à
Q
~ ?yvD ?Dy
Baù5¥4
1a1?
8?¥
§
H
ù5
0
t
t?
,
0
H Y¥
§
H
 p t
t
?m,
,
0
tt¥
H Y |B
#í?,t??
HW
t
s
v
=
ü (

0
0
tt
ss
=
).(
2
0
tt
g
+=
,
0
H? tt → |K¤
2
t)(t
lim
0
0
+
=

g
v
tt
§
H
,
0
gt=
~ ?yvD ?Dy
2a MLù5 éL¥Kê? —— MLê?
lb
lb
~ ?yvD ?Dy
α
T
0
x x
o
x
y
)(xfy =
C
N
M
?m, ?TéL MN ??
Mè7 t_Kê?
MT,°L MTü?1 wL
C? M)¥ ML,
Kê?'
.0,0 →∠→ NMTMN
).,(),,(
00
yxNyxM
!
¥|
q1éL MN
0
0
tan
xx
yy
=?,
)()(
0
0
xx
xfxf
=
,,
0
xxMN
C
→→?
 wL
¥|
q1 ML MT,
)()(
limtan
0
0
0 xx
xfxf
k
xx
=α=

~ ?yvD ?Dy
=a?
¥?l
,,)(
,)(
,0
);()(
,)
(,
)(
0
0
0
00
0
0
0
xx
yxxfy
xxfy
xxy
xfxxfyy
xx
xxx
xxfy
=

=
=

+=
+
=
:1)¥?
?
i???K1f) V??
5?f
H¥Ki-1?D
?T |¤9
f
M?1
H ˉ?
#×
= Vμ O?
V?) |¤9
?1M
μ?l
¥
?
#×
=?
!f


1a?l
~ ?yvD ?Dy
.
)()(
lim)(
00
0
0
h
xfhxf
xf
h
+
=



?
T
.
)()(
lim)(
0
0
0
0 xx
xfxf
xf
xx
=


x
xfxxf
x
y
y
xx
xx
+
=
=

→?→?
=
)()(
limlim
00
00
0
,
)(
00
xxxx
dx
xdf
dx
dy
==

'
~ ?yvD ?Dy
.
,
0
¤?
7M¥ yyM

1M
¥MQ?

)¥M
q??
^yM
? x
.)(,
)(
= V? 7 uWü?f
)? V?
=¥
? 7 uW ?Tf
Ixf
Ixfy =
?
?
1??
¥
a
ü
~ ?yvD ?Dy
.
)(
),(,
.)(.
)(,
dx
xdf
dx
dy
xfy
xf
xfIx
:T
¥?f
??f
?Se ?f
?
′
¥B? ??¥??"? ?B
′′

x
xfxxf
y
x
+
=

→?
)()(
lim
0
'
.
)()(
lim)(
0
h
xfhxf
xf
h
+
=



?i
.)()(.1
0
0 xx
xfxf
=

=

?
~ ?yvD ?Dy
lb
lb
2a?f
(
§
HM
q )
^f
ü (M
q¥/
íf
,
~ ?yvD ?Dy
?
2.·?
,
?§?
1.P?
,;
)()(
lim
)()(
lim)(
00
0
0
0
0
0
0 x
xfxxf
xx
xfxf
xf
xxx
+
=
=

→→;
)()(
lim
)()(
lim)(
00
0
0
0
0
0
0 x
xfxxf
xx
xfxf
xf
xxx
+
=
=

+→?+→
+
f
)(xf ?
0
x ) VP?
)(
0
xf


?
)(
0
xf
+

?i OM?,
?
~ ?yvD ?Dy
?T )(xf  7 uW ( )ba,
= V? O )(af
+

#
)(bf

?iü
a )(xf > uW []ba,
 V?,
?
.
,
),(
),(
)(
0
0
0
V??
¥)
?
!f
x
xxx
xxx
xf
<

=
ψ
x
xfxxf
x
+
→?
)()(
lim
00
0
?
x
xxx
x
+
=
→?
)()(
lim
00
0
ψ
,)(
0
ixf

=
?
~ ?yvD ?Dy
5 )(xf ?
0
x V?
,)(
0
ixf
+

=
x
xfxxf
x
+
+→?
)()(
lim
00
0
?
x
xxx
x
+
=
+→?
)()(
lim
00
0

,)()(
00
axfxf =

=

+?
O
.)(
0
axf =

O
~ ?yvD ?Dy
?a??l p?
??,
);()()1( xfxxfy+=? p9
;
)()(
)2(
x
xfxxf
x
y
+
=
1′
.lim)3(
0
x
y
y
x
=

→?
pK
è
.)()( ¥?
1è
pf
CCxf =
3
h
xfhxf
xf
h
)()(
lim)(
0
+
=


h
CC
h
=
→0
lim
.0=
.0)( =

C'
~ ?yvD ?Dy
è
.)(sin)(sin,sin)(
4
π
=
′′
=
x
xxxxf # p
!f
3
h
xhx
x
h
sin)sin(
lim)(sin
0
+
=


2
2
sin
)
2
cos(lim
0
h
h
h
x
h
+=

.cos x=
.cos)(sin xx =

'
44
cos)(sin
π
=
π
=
=


xx
xx
.
2
2
=
~ ?yvD ?Dy
è,)( ¥?
1??
pf
nxy
n
=
3
h
xhx
x
nn
h
n
+
=


)(
lim)(
0
]
!2
)1(
[lim
121
0


++
+=
nnn
h
hhx
nn
nx L
1?
=
n
nx
.)(
1?
=

nn
nxx'
÷B?1 )(.)(
1
Rxx ∈μμ=

μμ
)(

x
è ?,
1
2
1
2
1
= x
.
2
1
x
=
)(
1

x
11
)1(

= x
.
1
2
x
=
~ ?yvD ?Dy
è,)1,0()( ¥?
pf
≠>= aaaxf
x
3
h
aa
a
xhx
h
x
=

+
→0
lim)(
h
a
a
h
h
x
1
lim
0
=

.lnaa
x
=
.ln)( aaa
xx
=

',)(
xx
ee =

~ ?yvD ?Dy
è,)1,0(log ¥?
pf
≠>= aaxy
a
3
h
xhx
y
aa
h
log)(log
lim
0
+
=


.log
1
)(log e
x
x
aa
=

',
1
)(ln
x
x =

x
x
h
x
h
a
h
1
)1(log
lim
0
+
=

h
x
a
h
x
h
x
)1(loglim
1
0
+=

.log
1
e
x
a
=
~ ?yvD ?Dy
è
.0)( )¥ V??)
f
== xxxf
3 xy =
x
y
o
,
)0()0(
h
h
h
fhf
=
+
Q
h
h
h
fhf
hh
++
→→
=
+
00
lim
)0()0(
lim
,1=
h
h
h
fhf
hh
=
+

→→ 00
lim
)0()0(
lim
.1?=
),0()0(
+



ff'
.0)( ?? V?f
==∴ xxfy
~ ?yvD ?Dy
1a?
¥+ilDt ?il
o
x
y
)(xfy =
α
T
0
x
M
1a+il
)(,tan)(
,
))(,(
)()(
0
00
0
1 `?
' ML¥|
q
)¥?
V
U wL
αα=

=

xf
xfxM
xfyxf
MLZ?1
ELZ?1
).)((
000
xxxfyy?

=?
).(
)(
1
0
0
0
xx
xf
yy?

=?
~ ?yvD ?Dy
è
.,
)2,
2
1
(
1
Z?ELZ?i??)¥ ML|
q
)¥ ML¥? p?H
wL
x
y =
3
??
¥+il,¤ ML|
q1
2
1
=

=
x
yk
2
1
)
1
(
=

=
x
x
2
1
2
1
=
=
x
x
.4?=
p MLZ?1
ELZ?1
),
2
1
(42=? xy
),
2
1
(
4
1
2?=? xy
.044 =?+ yx'
.01582 =+? yx'
~ ?yvD ?Dy
2at ?il
d (
M
¥
§
HM
q,
M
°L?
^?
HW¥?
1t8¥
§
H
,
.lim)(
0
dt
ds
t
s
tv
t
=
=
→?
?
@è
^ è

HW¥?
1è
@ <,
.lim)(
0
dt
dq
t
q
ti
t
=
=
→?
d (
¥t8 é
é(
,8 )¥?
1t8¥L (
,8 )
á,
~ ?yvD ?Dy
?a V?D ??¥1"
? ? O V?f
?
^ ??f

£,)(
0
V??
!f
xxf
)(lim
0
0
xf
x
y
x

=
→?
α+

=
)(
0
xf
x
y
xxxfy?+?

=? α)(
0
])([limlim
0
00
xxxfy
xx
α+?

=?
→?→?
0=
.)(
0
???f
xxf∴
)0(0 →?→ xα
~ ?yvD ?Dy
??f
?i?
 è
.,)(
)()(,)(.1
000
f
??? V?¥??1f
5?? ? ??f
xf
xxfxfxf
+?



x
y
2
xy =
0
xy =
è ?,
,
0,
0,
)(
2
>

=
xx
xx
xf
.)(0,0 ¥??1)? V? xfxx ==
?i ?? ?¥
I? ??? ?,
?
~ ?yvD ?Dy
3
1?= xy
x
y
0 1
)(.)(
,
)()(
limlim
,)(.2
0
00
00
0
? V?μí k?
??f
? ???
!f
xxf
x
xfxxf
x
y
xxf
xx
∞=
+
=
→?→?
è ?,
,1)(
3
= xxf
.1)? V? =x
~ ?yvD ?Dy
.,)(
)(.3
0
?? V?5·????
?i ???¥P·?
?f
x
xf
,
0,0
0,
1
sin
)(
=

=
x
x
x
x
xf
è ?,
.0)? V? =x
0
1
1/41/4
x
y
~ ?yvD ?Dy
.)(
)(,
,)(.4
0
00
? V??
¥U?1f
5???|MQ
¥
??§?
O? ?
xfx
xxf ∞=

x
y
o
x
y
0
xo
)(xfy =
)(xfy =
~ ?yvD ?Dy
è
.0
,
0,0
0,
1
sin
)(
)¥ ???D V??
)
f
=
=

=
x
x
x
x
x
xf
3
,
1
sin
^μ?f
x
Q
0
1
sinlim
0
=∴

x
x
x
.0)( ) ?? =∴ xxf
)μ? 0=x
x
x
x
x
y
+
+
=
0
0
1
sin)0(
x?
=
1
sin
.11,0 -W??7K?i
H
→?
x
y
x
.0)( )? V? =∴ xxf
0)(lim)0(
0
==

xff
x
Q
~ ?yvD ?Dy
Bal2
1,?
¥
Lé,9
1¥K ;
2,axf =

)(
0
=

)(
0
xf ;)(
0
axf =

+
3,?
¥+il, ML¥|
q ;
4,f
V?B? ??? ???B? V? ;
5, p?
K'¥ZE,??l p?
,
6,
 V??
? ??,B?? V?,
??
°¤¨?l ;
AP·?
^?i OM?,
~ ?yvD ?Dy
± I5
f
)(xf 
?
0
x )¥?
)(
0
xf

D?f
)(xf


I
1 uYD ó"$
~ ?yvD ?Dy
± I53s
??
¥?l? )(
0
xf

^B? 8¥
′ )(xf

^?? )(xf 
 uW I

B
?? V?7?l I
¥B??f
'
Ix∈? μ·B′ )(xf

D-?
[

?¥ uY
^B?
^
′
6B?
^f


?¥ ó"
^
?
0
x )¥?
)(
0
xf

'
^?
f
)(xf


0
x )¥f
′
~ ?yvD ?Dy
Ba A b5
a
! )(xf 
0
xx = ) V?' )(
0
xf

i5
 _________
)()(
lim
00
0
=
+
→?
x
xfxxf
x

 _________
)()(
lim
00
0
=

→?
x
xfxxf
x

aX?t8¥?
p1
2
ts =
ü
5?t8
 2=t
e
H¥
1 @@@@@@@
a
!
3 2
1
)( xxy =
2
2
1
)(
x
xy =
5
3 22
3
)(
x
xx
xy =
5
�
sY1
dx
dy
1
@@@@@@@@@@@@@@@@@@@
dx
dy
2
@@@@@@@@@@@@@
dx
dy
3
@@@@@@@@@@@@@
5
~ ?yvD ?Dy
a
!
2
)( xxf =
5 [ ]=

)(xff @@@@@@@@@@@@@@@@
[]=

)(xff @@@@@@@@@@@@@@@@@
a wL
x
ey = ? )1,0( )¥ MLZ?1
@@@@@@@@@@@@@@@@@@
=a /
ò5? (L? )(
0
xf

i?v?
¥?
l43/
Ksi· AV
U
I
1$
a A
xx
xfxf
xx
=

0
0
)()(
lim
0

a A
h
hf
h
=

)(
lim
0
 ? )0(0)0( ff

= O i
a A
h
hxfhxf
h
=
+

)()(
lim
00
0

?a£
ü ? )(xf 1
}f
O )0(f

i5 0)0( =

f 
~ ?yvD ?Dy
1a
!f
=

=
0,0
0,
1
sin
)(
x
x
x
x
xf
k
ù L
@
I
1H
q )(xf  0=x ) 
?? 
 V?

?
??
?a
!f
>+

=
1,
1,
)(
2
xbax
xx
xf
1

Pf
)(xf  1=x ) ?? O V? ba,? |
I
1′
BaX?

<
=
0,
0,sin
)(
xx
xx
xf
p )(xf 
ta £
ü
wL
2
axy =
 ?B?)¥ MLD

USà?¥ ???¥
???
2
2a 
~ ?yvD ?Dy
?a
!μB?%? |?¥B
T1e??
 ?i?
¥US1 x ?
^s? uW ]1,0[
%?¥é
 m
^ x ¥f
)(xmm = ?8" ??%??
0
x )¥L
á
? (
%? ?
a?êé%?
¥é
?T?%?¥L
á$
~ ?yvD ?Dy

Baa )(
0
xf

  )(
0
xf

 a
a
6
5
3
3
1
6
1
,
2
,
3
2

x
x
x  a
2
4x
2
2x  
a 01 =+? yx 
=aa )(
0
xf

 a )0(f

 a )(2
0
xf


1a 
? 0>k
H
)(xf  0=x ) ?? 

? 1>k
H
)(xf  0=x ) V?
O 0)0( =

f 
 
? 2>k # 0≠x
H
)(xf

 0=x ) ??
?a 1,2?== ba 
Ba

<
=
0,1
0,cos
)(
x
xx
xf ?a
0
xx
dx
dm
=

5s?
~ ?yvD ?Dy
2. MLù5 éL¥Kê? —— MLê?
~ ?yvD ?Dy
2. MLù5 éL¥Kê? —— MLê?
~ ?yvD ?Dy
2. MLù5 éL¥Kê? —— MLê?
~ ?yvD ?Dy
2. MLù5 éL¥Kê? —— MLê?
~ ?yvD ?Dy
2. MLù5 éL¥Kê? —— MLê?
~ ?yvD ?Dy
2. MLù5 éL¥Kê? —— MLê?
~ ?yvD ?Dy
2. MLù5 éL¥Kê? —— MLê?
~ ?yvD ?Dy
2. MLù5 éL¥Kê? —— MLê?
~ ?yvD ?Dy
2. MLù5 éL¥Kê? —— MLê?
~ ?yvD ?Dy
2. MLù5 éL¥Kê? —— MLê?
~ ?yvD ?Dy
2.?f
(
§
HM
q )
^f
ü (M
q¥/í
f
,
~ ?yvD ?Dy
2.?f
(
§
HM
q )
^f
ü (M
q¥/í
f
,
~ ?yvD ?Dy
2.?f
(
§
HM
q )
^f
ü (M
q¥/í
f
,
~ ?yvD ?Dy
2.?f
(
§
HM
q )
^f
ü (M
q¥/í
f
,
~ ?yvD ?Dy
2.?f
(
§
HM
q )
^f
ü (M
q¥/í
f
,
~ ?yvD ?Dy
2.?f
(
§
HM
q )
^f
ü (M
q¥/í
f
,
~ ?yvD ?Dy
2.?f
(
§
HM
q )
^f
ü (M
q¥/í
f
,
~ ?yvD ?Dy
2.?f
(
§
HM
q )
^f
ü (M
q¥/í
f
,
~ ?yvD ?Dy
2.?f
(
§
HM
q )
^f
ü (M
q¥/í
f
,
~ ?yvD ?Dy
2.?f
(
§
HM
q )
^f
ü (M
q¥/í
f
,
~ ?yvD ?Dy
2.?f
(
§
HM
q )
^f
ü (M
q¥/í
f
,
~ ?yvD ?Dy
2.?f
(
§
HM
q )
^f
ü (M
q¥/í
f
,
Ba 1a 2aC
D
=a 1a 2a6 3a 4a
4
1
5a 6a
2ln
4
2
acos
6
e
?a
e
5? ?
?
,?? ?
?
 ??5Tf

=∈?∴
>=<?=
=
0)(,,),2,1(
01)2(,03)1(
]2,1[)(13)(
3
ξξ fts
ff
xfxxxf
Q

t ? Is?
1a
¤e
5? ?a8
5?
,?? ? ?
5?1 ?
? ??
5Tf
00
0
0
21
0)(,.
),,0( 0)(2
0)(1
0)sin1()(,0)0(,
],0[)(sin)(

=
+∈?>+
+==+
≥?=+<?=
+=
ξ
ξ
fts
babaf
baxbaf
aabafbf
baxfbxaxxf
Q
?a
ξξ
ξξ
=
=∈?∴
>?=<?=
=
)(
0)(,,),,(
0)()(,0)()(
],[)()()(
f
Ftsba
bbfbFaafaF
baxFxxfxF
;
?
,?? ?
?
 ??5Tf
Q