~ ?yvD ?Dy
? 2 ?
ArE5
~ ?yvD ?Dy
ArE5???
T3E?#Ba,
0
0


?l
.
0
0
)(
)(
lim
)()(
)(
)(
???
Tèü??K?1
Y V
ia9 V
?iK
v
*
? t?
,? t?í kD
H
?f
 ?T?


∞→→
∞→

xF
xf
xFxf
xax
x
ax
è ?,
,
tan
lim
0
x
x
x→
,
sinln
sinln
lim
0
bx
ax
x→
)
0
0
(
)(


~ ?yvD ?Dy
.
)(
)(
lim
)(
)(
lim
);(
)(
)(
lim)3(;0)(
)()(,)2(;)()(,)1(
xF
xf
xF
xf
xF
xf
xF
xFxfa
xFxfax
axax
ax


=




′′

→→

*

1í kvi
O
?i#?¥
 ??
#×
=
? t?
,#f
H?
!
? ?
?l ??B?Hq/YVs0s
sY p?
pK ? ????
T¥′¥ZE?1
ArE5
~ ?yvD ?Dy
£ ?l£ùf
,
,0
),(
)(
1
=

=
ax
axxf
xf,
,0
),(
)(
1
=

=
ax
axxF
xF
,),(
0
xaU
= ? |B? δ,1
?¥ uW
D[ xa
,)(),(
11
q
@ O?′? ?¥HxFxf 5μ
)()(
)()(
)(
)(
11
11
aFxF
afxf
xF
xf
=
)(
)(
ξ
ξ
F
f


=
)( -WD axξ
,,aax →→ ξ
H?
,
)(
)(
lim A
xF
xf
ax
=



Q
,
)(
)(
lim A
F
f
a
=




ξ
ξ
ξ
.
)(
)(
lim
)(
)(
lim A
F
f
xF
xf
aax
=


=∴
→→
ξ
ξ
ξ
~ ?yvD ?Dy
.,?E5 ˉ ?? ?
H? ∞→x
P¨
ArE5'? ?¥Hq V[??
@? O ˉ
?T )(),(
0
0
)(
)(
xFxf
xF
xf
′′


.
)(
)(
lim
)(
)(
lim
)(
)(
lim L=
′′
′′
=


=
→→→
xF
xf
xF
xf
xF
xf
axaxax
.
)(
)(
lim
)(
)(
lim
xF
xf
xF
xf
xx


=
∞→∞→
.,,9μM?¥
ArE5
H¥??
T?


∞→→ xax
~ ?yvD ?Dy
è
3
.
tan
lim
0
x
x
x→
p
)(
)(tan
lim
0


=

x
x
x
e
T
1
sec
lim
2
0
x
x→
=
.1=
è
3
.
1
23
lim
23
3
1
+
+?

xxx
xx
x
p
123
33
lim
2
2
1

=

xx
x
x
e
T
26
6
lim
1
=

x
x
x
.
2
3
=
)
0
0
(
)
0
0
(
~ ?yvD ?Dy
è
3
.
1
arctan
2
lim
x
x
x
+∞→
π
p
2
2
1
1
1
lim
x
x
x
+
=
+∞→
e
T
2
2
1
lim
x
x
x
+
=
+∞→
.1=
è
3
.
sinln
sinln
lim
0
bx
ax
x→
p
axbxb
bxaxa
x
sincos
sincos
lim
0
=

e
T
.1=
)
0
0
(
)(


ax
bx
x
cos
cos
lim
0→
=
~ ?yvD ?Dy
è
3
.
3tan
tan
lim
2
x
x
x
π

p
x
x
x
3sec3
sec
lim
2
2
2
π

=e
T
x
x
x
2
2
2
cos
3cos
lim
3
1
π

=
xx
xx
x
sincos2
3sin3cos6
lim
3
1
2
=
π

x
x
x
2sin
6sin
lim
2
π

=
x
x
x
2cos2
6cos6
lim
2
π

=
.3=
)(


~ ?yvD ?Dy
?i
ArE5
^ p??
T¥B?μrZE
?D 
pKZE2
P¨rT÷z
è
3
.
tan
tan
lim
2
0
xx
xx
x

p
3
0
tan
lim
x
xx
x
=

e
T
x
xx
x
6
tansec2
lim
2
0→
=
2
2
0
3
1sec
lim
x
x
x
=

x
x
x
tan
lim
3
1
0→
=,
3
1
=
~ ?yvD ?Dy
???
T3E=a
00
,1,0,,0 ∞∞?∞∞?

è
3
.lim
2 x
x
ex
+∞→
p
)0( ∞?
x
e
x
x
2
lim
+∞→
=e
T
2
lim
x
x
e
+∞→
=,+∞=
1o | 
????
T1
ArE5 V3 %
¥ ??,
),
0
0
( )(


?∞?0.1
??,
,
1
0 ∞?

∞?,
0
1
00∞?
~ ?yvD ?Dy
è
3
).
1
sin
1
(lim
0
xx
x

p )( ∞?∞
0
1
0
1
∞?∞,
00
00
xx
xx
x
sin
sin
lim
0
=

e
T
xxx
x
x
cossin
cos1
lim
0
+
=

.0=
?∞?∞.2
??,
~ ?yvD ?Dy
??,
?
00
,1,0.3 ∞

∞?

→?


ln0
1ln
0ln0
1
0
0
0
|
.0 ∞
è
3
.lim
0
x
x
x
+

p
)0(
0
xx
x
e
ln
0
lim
+

=e
T
xx
x
e
lnlim
0
+

=
2
0
1
1
lim
x
x
x
e
+

=
0
e=
.1=
x
x
x
e
1
ln
lim
0
+

=
~ ?yvD ?Dy
è
3
.lim
1
1
1
x
x
x

p
)1(

x
x
x
e
ln
1
1
1
lim

=e
T
x
x
x
e

=
1
ln
lim
1
1
1
lim
1?→
=
x
x
e,
1?
= e
è
3
.)(cotlim
ln
1
0
x
x
x
+

p
)(
0

,)(cot
)ln(cot
ln
1
ln
1
x
xx
ex
= |

)ln(cot
ln
1
lim
0
x
x
x
+

Q
x
xx
x
1
sin
1
cot
1
lim
2
0

=
+

xx
x
x
sincos
lim
0
=
+

,1?=
.
1?
=∴ ee
T
~ ?yvD ?Dy
è
3
.
cos
lim
x
xx
x
+
∞→
p
1
sin1
lim
x
x
=
∞→
e
T
).sin1(lim x
x
=
∞→
K?i
ArE5
>rb
)cos
1
1(lim x
x
x
+=
∞→
e
T,1=
?i
ArE5¥
P¨Hq
~ ?yvD ?Dy
?al2
ArE5
?
00
,1,0 ∞

?∞?∞
?∞?0
?
0
0
?


g
f
gf
1
=?
fg
fg
gf
11
11
=?
|
7
g
fy =
~ ?yvD ?Dy
± I5
!
)(
)(
lim
xg
xf
^???K ?T
)(
)(
xg
xf


¥
K?i
^?
)(
)(
xg
xf
¥K9B??i$
 è
a
ü
.
~ ?yvD ?Dy
± I53s
?B?
è
,sin)( xxxf +=
xxg =)(
A ?
=


∞→
)(
)(
lim
xg
xf
x
1
cos1
lim
x
x
+
∞→
K?i
? =
∞→
)(
)(
lim
xg
xf
x
x
xx
x
sin
lim
+
∞→
1=
Ki
~ ?yvD ?Dy
°z A b5
a
ArE5"
 V¨? po
0
0
p#o


p
? ?
?¥??
T¥K?9 VYVMD3 %
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@??¥??
T
¥ pK¥ù5

a
x
x
x
)1ln(
lim
0
+

@@@@@@@@@@@
a
x
x
x
2tanln
7tanln
lim
0→
@@@@@@@@@@@@
5
~ ?yvD ?Dy
=a ¨
ArE5 p/
K
a
2
2
)2(
sinln
lim
x
x
x
π
π

 a
x
x
x
arctan
)
1
1ln(
lim
+
+∞→

a xx
x
2cotlim
0→
 a )
1
1
1
2
(lim
2
1

xx
x

a
x
x
x
sin
0
lim
+→
 a
x
x
x
tan
0
)
1
(lim
+→

a
x
x
x)arctan
2
(lim
π
+∞→

~ ?yvD ?Dy
?a )
f

>
+
=
0,
0,]
)1(
[
)(
2
1
1
1
xe
x
e
x
xf
x
x
?
?



 )? 0=x ¥ ???
~ ?yvD ?Dy

Baa
00
,0,1,,0 ∞∞?∞∞?

 a a

=aa
8
1
 a a
2
1
 a
2
1
 a 
a a
π
2
e 

?a ??
5s?