~ ?yvD ?Dy
? ?c
?′? ?D
?
¥?¨
~ ?yvD ?Dy
? 1 ?
?′? ?
~ ?yvD ?Dy
Ba
,(Rolle)? ?
:
3PMMF? ? ?Tf
)(xf > uW ],[ ba
 ??
 7 uW ),( ba
= V?
O uW
?¥f
′M?' )()( bfaf =
*
 ),( ba
=à
μB?
)( ba <ξ<ξ
P¤f
)(xf ??¥?
??
,
'
0)(
'
=ξf
)1(
)2()3(
è ?,
32)(
2
= xxxf
).1)(3( +?= xx
,]3,1[
 ???,)3,1(
 V??
,0)3()1( ==? ff O
))3,1(1(,1?∈=ξ |,0)( =ξ

f),1(2)(?=

xxfQ
~ ?yvD ?Dy
? m
?i)lb \ T
t ?3
d
M
°L?|R
?),
§
H
??
,.
+3
d
a
b
1
ξ
2
ξ x
y
o
)(xfy =
.
,

ü¥
??)¥ ML
^?
à
μB wL
C
AB
C
~ ?yvD ?Dy
£
.)1( mM = ?
,],[)( ?? baxfQ
.mMKl′AμKv′
.)( Mxf =5
.0)( =

xf?N¤
),,( ba∈ξ?
.0)( =ξ

f?μ
.)2( mM ≠ ?
),()( bfaf =Q
. |¤K′? V
]
H
?∴
),(afM ≠
!
.)(),( Mfba =ξξ
P
=à
iB?5
),()( ξ≤?+ξ fxfQ,0)()( ≤ξ+ξ∴ fxf
~ ?yvD ?Dy
,0>?x ?;0
)()(

ξ+ξ
x
fxf
5μ
,0<?x ?;0
)()(

ξ+ξ
x
fxf
5μ;0
)()(
lim)(
0

ξ+ξ



→?
x
fxf
f
x;0
)()(
lim)(
0

ξ+ξ


+→?
+
x
fxf
f
x
,)( iξ

fQ
).()( ξ




+?
ff
.0)( =ξ

∴ foμ
~ ?yvD ?Dy
?i, ?
:? ?¥ ??Hq?μB??
@, 
2
V
?? ?,
è ?,
];2,2[,?∈= xxy
,
,)0(]2,2[
¥B MHq
@
:? ??i?
" f

.0)(
2][-2
=

xf
P
=s??B?
? uW;
0,0
]1,0(,1
=
∈?
=
x
xx
y
].1,0[,∈= xxy
? è ?,
~ ?yvD ?Dy
è
.1
015
5
¥?
L?
μ O?μB?l?£
üZ? =+? xx
£
,15)(
5
+?= xxxf
!
,]1,0[)( ??5 xf
.3)1(,1)0(?== ff O
?
,?? ?
.0)(),1,0(
00
=∈? xfx
P '1Z?¥l? 1¥?
L?,
,),1,0(
011
xxx ≠∈
!
6μ,0)(
1
=xf
P
,,)(
10
q-W
@
:? ?¥H xxxfQ
P¤-Wà
iB? ),,(
10
xxξ∴
.0)( =ξ

f
)1(5)(
4
=

xxf? ))1,0((,0 ∈< x
±,
.
0
1·B
L?x∴
~ ?yvD ?Dy
=a ?ì μ ° (Lagrange)?′? ?
?ì μ °
Lagrange?′? ? ?Tf
f(x)
> uW ],[ ba
 ??
 7 uW ),( ba
= V?
*

),( ba
=à
μB? )( ba <ξ<ξ 
P?
T
 ))(()()(
'
abfafbf?ξ=? ? ? 
)1(
)2(
).()(,bfaf = ??
D
:? ?M1Hq??i
).(
)()(
ξ

=
f
ab
afbf
2
g V?
~ ?yvD ?Dy
a
b
1
ξ
2
ξ
x xo
y
)(xfy =
A
B
C
DN
M
+3
d,
.
,
AB
C
AB
L
ü???
??)¥ MB?
à
μ wL
£
s,).()( bfaf =Hq?D
:? ?Mμ
? ABZ?1
).(
)()(
)( ax
ab
afbf
afy?
+=
,)( ABxf h ?? wL
.,

?¥f
′M?
¤ wL ba
~ ?yvD ?Dy
T£ùf
)].(
)()(
)([)()( ax
ab
afbf
afxfxF?
+?=
,)(
@
:? ?¥HqxF
.0)(,),( =ξ

ξ Fba
P¤
=à
iB?5
0
)()(
)( =
ξ

ab
afbf
f'
).)(()()( abfafbf?ξ

=?
?ì μ °?′
T
?i ?
f
Tú ?1Vr
f
B? uW
¥
9
Df
? uW
=
?)¥?
-W¥1",
~ ?yvD ?Dy
,),(],[)(
= V?
 ??
! babaxf
).10()()()(
000
<θ<θ+

=+ xxxfxfxxf
5μ),,(,
00
baxxx ∈?+
).10()(
0
<θ<θ+

=? xxxfy9 V?
.¥ú ?Vr
T9
 y?
?ì μ °?′? ??? μK9
? ?,
?ì μ °?′
T?? μK9

T,
±s?′? ?
w
.)(
,)(

^B?è
 uW
*

¥?
1
, uW ?Tf
Ixf
Ixf
~ ?yvD ?Dy
è ).11(
2
arccosarcsin ≤≤?
π
=+ xxx£
ü
£ ]1,1[,arccosarcsin)(?∈+= xxxxf
!
)
1
1
(
1
1
)(
22
xx
xf
+
=

Q
.0=
]1,1[,)(?∈≡∴ xCxf
0arccos0arcsin)0( +=fQ?
2
0
π
+=
,
2
π
=
.
2
π
=C'
.
2
arccosarcsin
π
=+∴ xx
~ ?yvD ?Dy
è,ln0
b
ba
b
a
a
ba
ba
<<
>> £
ü
!
£
,ln)( xxf =
!
,],[)(

@ ?
f? ?¥Hq abxf
)(),)(()()( abbafbfaf <<?

=?∴ ξξ
,
1
)(,ln)(,ln)(
x
xfbbfaaf =

==Q
?

T¤
,
1lnln
ξ
=
ba
ba
ab <<ξQ?
,
111
ba
<<
ξ
,
1lnln1
bba
ba
a
<
<∴,ln
b
ba
b
a
a
ba?
<<
'
~ ?yvD ?Dy
è,)1ln(
1
,0 xx
x
x
x <+<
+
>
H£
ü?
£
),1ln()( xxf +=
!
,],0[)(

@ ?
f? ?¥Hq xxf
)0(),0)(()0()( xxffxf <ξ<?ξ

=?∴
,
1
1
)(,0)0(
x
xff
+
=

=Q
?

T¤,
1
)1ln(
ξ+
=+
x
x
x<ξ<0Q?
x+<ξ+< 111,1
1
1
1
1
<
ξ+
<
+ x
,
11
x
x
x
x
<
ξ+
<
+

.)1ln(
1
xx
x
x
<+<
+
'
~ ?yvD ?Dy
?a O (Cauchy)?′? ?
O
$BVDIZ?′? ? ?Tf
)(xf # )(xF
> uW ],[ ba
 ??
 7 uW ),( ba
= V?
O
)(
'
xF  ),( ba
=
B?) (?1
,
*
 ),( ba
=

μB? )( ba <ξ<ξ
P?
T

)(
)(
)()(
)()(
'
'
ξ
ξ
F
f
aFbF
afbf
=
? ?
~ ?yvD ?Dy
+3
d,
)(
1
ξF )(
2
ξF
X
o
Y
=
=
)(
)(
xfY
xFX
)(aF
A
)(bF
B
C
D
)(xF
N
M
.
)),(),((
AB
fFC
AB
?
??)¥ ML
ü??
B?
à
μ wL
ξξ
£
T£ùf
)].()([
)()(
)()(
)()()( aFxF
aFbF
afbf
afxfx?
=?
,)(
@
:? ?¥Hqx?
.0)(,),( =ξ?

ξ
P¤
=à
iB?5 ba
~ ?yvD ?Dy
,0)(
)()(
)()(
)( =ξ

ξ

F
aFbF
afbf
f'
.
)(
)(
)()(
)()(
ξ

ξ

=

F
f
aFbF
afbf
.0)(,),( =ξ?

ξ
P¤
=à
iB?5 ba
,)( xxF =?,1)(,)()( =

=? xFabaFbF
)(
)(
)()(
)()(
ξ

ξ

=
F
f
aFbF
afbf
).(
)()(
ξ

=
f
ab
afbf
~ ?yvD ?Dy
è
)].0()1([2)(),1,0(
:,)1,0(,]1,0[)(
fff
xf
=

∈ ξξξ
Pà
iB?
£
ü
= V?
 ??
!f
£ s,2
VM?1
ξ
ξ

=
2
)(
01
)0()1( fff
.
)(
)(
2
ξ=


=
x
x
xf
,)(
2
xxg =
!
,]1,0[)(),( Hq

@ O?′? ?¥5 xgxf

=à
iB?,)1,0( ξ∴
ξ
ξ

=
2
)(
01
)0()1( fff
)].0()1([2)( fff?ξ=ξ

'
~ ?yvD ?Dy
è
).()(|)()(|,:
)(|)(|,)(),(
agxgafxfax
xgxfxgxf
<?>

<

H?£
ü
 O?
^ V?f
!
£ 0)(,0|)(|)(,),(),( ≠



>

xgxfxgxgxf ' O V?y1
@ O?′? ?Hq# )(),( xgxf
)(
)(
)()(
)()(
,,),,(
ξ
ξ
ξ
g
f
agxg
afxf
tsxa


=
∈?∴
##?Hq,0)(,1
)(
|)(|
>

<


xg
xg
xf
,1
)()(
)()(
<
agxg
afxf
|,)()(||)()(| agxgafxf?<?'
~ ?yvD ?Dy
?μ?? ?ì μ °?′?
)( )()()()(
11
xagaxagxg <<

=? ξξ
#?,0)( >

xg
0)()(,>?> agxgax μ
H?
).()(|)()(| agxgafxf?<?V7μ
~ ?yvD ?Dy
1al2
Rolle
? ?
Lagrange
?′? ?
Cauchy
?′? ?
xxF =)(
)()( bfaf =
:? ?a ?ì μ °?′? ?# O?′? ?
-W¥1"
?i? ?? ?¥Hq
?i ?¨?′? ?£
ü?
TD??
T¥??,
~ ?yvD ?Dy
± I5
k  è
a
ü ?ì μ °?′? ?¥Hq
?B? V,
~ ?yvD ?Dy
± I53s
=
<≤
=
1,3
10,
)(
2
1
x
xx
xf
?
@> uW
 ?? ¥Hq
],[,
1
)(
2
bax
x
xf ∈=
O
0<ab
?
@ 7 uW
= V± ¥Hq
[

?? V
a
üù5,
~ ?yvD ?Dy
°z A b5
af
4
)( xxf =  uW<
>

@ ?ì μ °?′
? ?52@@@@@@@
a
! )4)(3)(2)(1()(= xxxxxf Z?
0)( =

xf μ@@@@@@@@@@@@??
ìsY uW
@@@@@@@@@@@@@

a
:? ?D ?ì μ °? ?-W¥1"
^
@@@@@@@@@@@@@@@@@
a ±s?′? ?ú ?1Vrf
B? uW
¥
@@@@@@@Df
? uW
=
?)¥@@@@@@@-W
¥1"
a ?Tf
)(xf  uW I
¥?
@@@@@@@@@@
*
1 )(xf  uW I

^B?è

5
~ ?yvD ?Dy
=a
k£
üf
rqxpxy ++=
2
?¨ ?
f?′? ? 

H
p¤¥? ξ9
^ê? uW¥??W
?a£
ü?
T
2
1
arctan1arcsin
2
2
π
=
+?
x
x
x 
 ))1,0(( ∈x 
1a
! 0>> ba  1>n £
ü
 )()(
11
banababanb
nnnn
<?<?


z £
ü/
??
T
a baba?≤? arctanarctan  
a
H? 1>x  exe
x
> 
~ ?yvD ?Dy
Ba
!f
)(xfy =  0=x ¥

#×
= Oμ n¨?

O )0()0()0(
)1(?
==

=
n
fff K
k¨ O?′? ?
£
ü
!
)()(
)(
n
xf
x
xf
n
n
θ
= 
10 <<θ 
ta
! )(xf < ba,>
=
 ?? ba,
= V? ? 
 ba <<0
5 ba,
=iB ξ? 
P
 ))](()([)()( baffabfbaf=? ξξξ >
~ ?yvD ?Dy
Baa
3
4
15

a









a -?
^a?¥+
y f?
F )()( bfaf = ' V
a9

?

a1
,
5s?