~ ?yvD ?Dy
? 4 ?
??sDíEB
~ ?yvD ?Dy
ù5
∫
xdx2cos,2sin Cx+=
3 %ZE
?¨ˉf
!??WM
,
V?
7
xt 2=
,
2
1
dtdx =?
∫
xdx2cos dtt
∫
= cos
2
1
Ct += sin
2
1
.2sin
2
1
Cx+=
?B ?DíE
~ ?yvD ?Dy
B?f ?/
!
),()( ufuF =
′
5
.)()(
∫
+= CuFduuf
?T
)(xu?=
V±
dxxxfxdF )()]([)]([
′
=Q
∫
+=
′
∴ CxFdxxxf )]([)()]([
∫ =
=
)(
])([
xu
duuf
?N V¤DíE? ?
~ ?yvD ?Dy
! )(uf μef
∫
=
′
dxxxf )()]([
∫ = )(
])([
xu
duuf
?B ?Dí
T
X±sE
a
ü
P¨N
T¥1o?|
∫
dxxg )(
1
.)()]([
∫
′
dxxxf
43×??]
¤2
?],
)(xu?= V?
5μDí
T
? ?
~ ?yvD ?Dy
è p,2sin
∫
xdx
3
B
∫
xdx2sin
∫
= )2(2sin
2
1
xxd;2cos
2
1
Cx+?=
3
=
∫
xdx2sin
∫
= xdxxcossin2
∫
= )(sinsin2 xxd
( ) ;sin
2
Cx +=
3
?
∫
xdx2sin
∫
= xdxxcossin2
∫
= )(coscos2 xxd ( )
.cos
2
Cx +?=
~ ?yvD ?Dy
è p
.
23
1
dx
x
∫
+
3
,)23(
23
1
2
1
23
1
′
+?
+
=
+
x
xx
dx
x
∫
+ 23
1
dxx
x
)23(
23
1
2
1
′
+?
+
=
∫
du
u
∫
=
1
2
1
Cu += ||ln
2
1
.|23|ln
2
1
Cx ++=
∫
+ dxbaxf )(
∫ +=
=
baxu
duuf
a
])([
1
B?1
~ ?yvD ?Dy
è p
.
)ln21(
1
dx
xx
∫
+
3 dx
xx
∫
+ )ln21(
1
)(ln
ln21
1
xd
x
∫
+
=
)ln21(
ln21
1
2
1
xd
x
+
+
=
∫
xu ln21+=
∫
= du
u
1
2
1
Cu += ||ln
2
1
.|ln21|ln
2
1
Cx ++=
~ ?yvD ?Dy
è p,
)1(
3
dx
x
x
∫
+
3
dx
x
x
∫
+
3
)1(
dx
x
x
∫
+
+
=
3
)1(
11
)1(]
)1(
1
)1(
1
[
32
xd
xx
+
+
+
=
∫
2
2
1
)1(2
1
1
1
C
x
C
x
+
+
++
+
=
.
)1(2
1
1
1
2
C
xx
+
+
+
+
=
~ ?yvD ?Dy
è p
.
1
22
dx
xa
∫
+
3
dx
xa
∫
+
22
1
dx
a
x
a
∫
+
=
2
2
2
1
11
+
=
∫
a
x
d
a
x
a
2
1
11
.arctan
1
C
a
x
a
+=
~ ?yvD ?Dy
è p
.
258
1
2
dx
xx
∫
+?
3
dx
xx
∫
+? 258
1
2
dx
x
∫
+?
=
9)4(
1
2
dx
x
∫
+
=
1
3
4
1
3
1
22
+
=
∫
3
4
1
3
4
1
3
1
2
x
d
x
.
3
4
arctan
3
1
C
x
+
=
~ ?yvD ?Dy
è p
.
1
1
dx
e
x
∫
+
3
dx
e
x∫
+1
1
dx
e
ee
x
xx
∫
+
+
=
1
1
dx
e
e
x
x
∫
+
=
1
1
dx
e
e
dx
x
x
∫∫
+
=
1
)1(
1
1
x
x
ed
e
dx +
+
=
∫∫
.)1ln( Cex
x
++?=
~ ?yvD ?Dy
è p,)
1
1(
1
2
dxe
x
x
x
∫
+
3
,
1
1
1
2
xx
x?=
′
+Q
dxe
x
x
x
∫
+
∴
1
2
)
1
1(
)
1
(
1
x
xde
x
x
+=
∫
+
.
1
Ce
x
x
+=
+
~ ?yvD ?Dy
è p
.
1232
1
dx
xx
∫
++
e
T
( )( )
dx
xxxx
xx
∫
+?++
+
=
12321232
1232
dxxdxx
∫∫
+= 12
4
1
32
4
1
)12(12
8
1
)32(32
8
1
++=
∫∫
xdxxdx
()().12
12
1
32
12
1 33
Cxx ++=
3
~ ?yvD ?Dy
è p
3
.
cos1
1
∫
+
dx
x
∫
+
dx
xcos1
1
()()
∫
+
= dx
xx
x
cos1cos1
cos1
∫
= dx
x
x
2
cos1
cos1
∫
= dx
x
x
2
sin
cos1
∫∫
= )(sin
sin
1
sin
1
22
xd
x
dx
x
.
sin
1
cot C
x
x ++?=
~ ?yvD ?Dy
è p
3
.cossin
52
∫
xdxx
∫
xdxx
52
cossin
∫
= )(sincossin
42
xxdx
∫
= )(sin)sin1(sin
222
xdxx
∫
+?= )(sin)sinsin2(sin
642
xdxxx
.sin
7
1
sin
5
2
sin
3
1
753
Cxxx ++?=
a
ü ?$f
^??f
Me
H· 7
Q[?X±s,
~ ?yvD ?Dy
è p
3
.2cos3cos
∫
xdxx
)],cos()[cos(
2
1
coscos BABABA ++?=
),5cos(cos
2
1
2cos3cos xxxx +=
∫∫
+= dxxxxdxx )5cos(cos
2
1
2cos3cos
.5sin
10
1
sin
2
1
Cxx ++=
~ ?yvD ?Dy
è p
3
B
∫
= dx
xsin
1
.csc
∫
xdx
∫
xdxcsc
∫
= dx
xx
2
cos
2
sin2
1
∫
=
2
2
cos
2
tan
1
2
x
d
xx
∫
=
2
tan
2
tan
1 x
d
x
C
x
+= )
2
ln(tan
.)cotln(csc Cxx +?=
P¨
??f
?M?
~ ?yvD ?Dy
3
=
∫
= dx
xsin
1
∫
xdxcsc
∫
= dx
x
x
2
sin
sin
∫
= )(cos
cos1
1
2
xd
x
xu cos=
∫
= du
u
2
1
1
∫
+
+
= du
uu 1
1
1
1
2
1
C
u
u
+
+
=
1
1
ln
2
1
.
cos1
cos1
ln
2
1
C
x
x
+
+
=
?
1 Vw,)tanln(secsec
∫
++= Cxxxdx
~ ?yvD ?Dy
3
è
!p.,cos)(sin
22
xxf =
′ )(xf
7 xu
2
sin=
,1cos
2
ux?=?
,1)( uuf?=
′
( )duuuf
∫
= 1)(
,
2
1
2
Cuu +?=
.
2
1
)(
2
Cxxxf +?=
~ ?yvD ?Dy
è p
3
.
2
arcsin4
1
2
dx
x
x
∫
dx
x
x
∫
2
arcsin4
1
2 2
2
arcsin
2
1
1
2
x
d
xx
∫
=
)
2
(arcsin
2
arcsin
1 x
d
x
∫
=,|
2
arcsin|ln C
x
+=
~ ?yvD ?Dy
5
Bap/
??s
?B ?DíE
a
∫
+
dx
xa
xa
a
∫
)ln(lnln xxx
dx
a
∫
+
+
2
2
1
.1tan
x
xdx
x a
∫?
+
xx
ee
dx
a
∫
+ dxxx
32
1 a
∫
+
dx
x
xx
4
sin1
cossin
a
∫
+
dx
xx
xx
3
cossin
cossin
a
∫
dx
x
x
2
49
1
a
∫
+
dx
x
x
2
3
9
a
∫
+ )4(
6
xx
dx
~ ?yvD ?Dy
11a
∫
+
dx
xx
x
)1(
arctan
12a
∫
+
+
dx
xex
x
x
)1(
1
a
∫
dx
x
x
2
arccos2
1
10
a
∫
dx
xx
x
sincos
tanln
~ ?yvD ?Dy
Baa Cxa
a
x
a +
22
arcsin a Cx +|lnln|ln
a Cx ++? |1cos|ln.3
2
a Ce
x
+arctan
a Cx ++
2
3
3
)1(
9
2
a Cx +)arctan(sin
2
1
2
7a Cxx +?
3
2
)cos(sin
2
3
8a C
xx
+
+
4
49
3
2
arcsin
2
1
2
a Cx
x
++? )9ln(
2
9
2
2
2
5s?
~ ?yvD ?Dy
a C
x
x
+
+ 4
ln
24
1
6
6
a Cx +
2
)(arctan
a Cxexe
xx
++? )1ln()ln(
a C
x
+
10ln2
10
arccos2
a Cx +
2
)tan(ln
2
1
? 4 ?
??sDíEB
~ ?yvD ?Dy
ù5
∫
xdx2cos,2sin Cx+=
3 %ZE
?¨ˉf
!??WM
,
V?
7
xt 2=
,
2
1
dtdx =?
∫
xdx2cos dtt
∫
= cos
2
1
Ct += sin
2
1
.2sin
2
1
Cx+=
?B ?DíE
~ ?yvD ?Dy
B?f ?/
!
),()( ufuF =
′
5
.)()(
∫
+= CuFduuf
?T
)(xu?=
V±
dxxxfxdF )()]([)]([
′
=Q
∫
+=
′
∴ CxFdxxxf )]([)()]([
∫ =
=
)(
])([
xu
duuf
?N V¤DíE? ?
~ ?yvD ?Dy
! )(uf μef
∫
=
′
dxxxf )()]([
∫ = )(
])([
xu
duuf
?B ?Dí
T
X±sE
a
ü
P¨N
T¥1o?|
∫
dxxg )(
1
.)()]([
∫
′
dxxxf
43×??]
¤2
?],
)(xu?= V?
5μDí
T
? ?
~ ?yvD ?Dy
è p,2sin
∫
xdx
3
B
∫
xdx2sin
∫
= )2(2sin
2
1
xxd;2cos
2
1
Cx+?=
3
=
∫
xdx2sin
∫
= xdxxcossin2
∫
= )(sinsin2 xxd
( ) ;sin
2
Cx +=
3
?
∫
xdx2sin
∫
= xdxxcossin2
∫
= )(coscos2 xxd ( )
.cos
2
Cx +?=
~ ?yvD ?Dy
è p
.
23
1
dx
x
∫
+
3
,)23(
23
1
2
1
23
1
′
+?
+
=
+
x
xx
dx
x
∫
+ 23
1
dxx
x
)23(
23
1
2
1
′
+?
+
=
∫
du
u
∫
=
1
2
1
Cu += ||ln
2
1
.|23|ln
2
1
Cx ++=
∫
+ dxbaxf )(
∫ +=
=
baxu
duuf
a
])([
1
B?1
~ ?yvD ?Dy
è p
.
)ln21(
1
dx
xx
∫
+
3 dx
xx
∫
+ )ln21(
1
)(ln
ln21
1
xd
x
∫
+
=
)ln21(
ln21
1
2
1
xd
x
+
+
=
∫
xu ln21+=
∫
= du
u
1
2
1
Cu += ||ln
2
1
.|ln21|ln
2
1
Cx ++=
~ ?yvD ?Dy
è p,
)1(
3
dx
x
x
∫
+
3
dx
x
x
∫
+
3
)1(
dx
x
x
∫
+
+
=
3
)1(
11
)1(]
)1(
1
)1(
1
[
32
xd
xx
+
+
+
=
∫
2
2
1
)1(2
1
1
1
C
x
C
x
+
+
++
+
=
.
)1(2
1
1
1
2
C
xx
+
+
+
+
=
~ ?yvD ?Dy
è p
.
1
22
dx
xa
∫
+
3
dx
xa
∫
+
22
1
dx
a
x
a
∫
+
=
2
2
2
1
11
+
=
∫
a
x
d
a
x
a
2
1
11
.arctan
1
C
a
x
a
+=
~ ?yvD ?Dy
è p
.
258
1
2
dx
xx
∫
+?
3
dx
xx
∫
+? 258
1
2
dx
x
∫
+?
=
9)4(
1
2
dx
x
∫
+
=
1
3
4
1
3
1
22
+
=
∫
3
4
1
3
4
1
3
1
2
x
d
x
.
3
4
arctan
3
1
C
x
+
=
~ ?yvD ?Dy
è p
.
1
1
dx
e
x
∫
+
3
dx
e
x∫
+1
1
dx
e
ee
x
xx
∫
+
+
=
1
1
dx
e
e
x
x
∫
+
=
1
1
dx
e
e
dx
x
x
∫∫
+
=
1
)1(
1
1
x
x
ed
e
dx +
+
=
∫∫
.)1ln( Cex
x
++?=
~ ?yvD ?Dy
è p,)
1
1(
1
2
dxe
x
x
x
∫
+
3
,
1
1
1
2
xx
x?=
′
+Q
dxe
x
x
x
∫
+
∴
1
2
)
1
1(
)
1
(
1
x
xde
x
x
+=
∫
+
.
1
Ce
x
x
+=
+
~ ?yvD ?Dy
è p
.
1232
1
dx
xx
∫
++
e
T
( )( )
dx
xxxx
xx
∫
+?++
+
=
12321232
1232
dxxdxx
∫∫
+= 12
4
1
32
4
1
)12(12
8
1
)32(32
8
1
++=
∫∫
xdxxdx
()().12
12
1
32
12
1 33
Cxx ++=
3
~ ?yvD ?Dy
è p
3
.
cos1
1
∫
+
dx
x
∫
+
dx
xcos1
1
()()
∫
+
= dx
xx
x
cos1cos1
cos1
∫
= dx
x
x
2
cos1
cos1
∫
= dx
x
x
2
sin
cos1
∫∫
= )(sin
sin
1
sin
1
22
xd
x
dx
x
.
sin
1
cot C
x
x ++?=
~ ?yvD ?Dy
è p
3
.cossin
52
∫
xdxx
∫
xdxx
52
cossin
∫
= )(sincossin
42
xxdx
∫
= )(sin)sin1(sin
222
xdxx
∫
+?= )(sin)sinsin2(sin
642
xdxxx
.sin
7
1
sin
5
2
sin
3
1
753
Cxxx ++?=
a
ü ?$f
^??f
Me
H· 7
Q[?X±s,
~ ?yvD ?Dy
è p
3
.2cos3cos
∫
xdxx
)],cos()[cos(
2
1
coscos BABABA ++?=
),5cos(cos
2
1
2cos3cos xxxx +=
∫∫
+= dxxxxdxx )5cos(cos
2
1
2cos3cos
.5sin
10
1
sin
2
1
Cxx ++=
~ ?yvD ?Dy
è p
3
B
∫
= dx
xsin
1
.csc
∫
xdx
∫
xdxcsc
∫
= dx
xx
2
cos
2
sin2
1
∫
=
2
2
cos
2
tan
1
2
x
d
xx
∫
=
2
tan
2
tan
1 x
d
x
C
x
+= )
2
ln(tan
.)cotln(csc Cxx +?=
P¨
??f
?M?
~ ?yvD ?Dy
3
=
∫
= dx
xsin
1
∫
xdxcsc
∫
= dx
x
x
2
sin
sin
∫
= )(cos
cos1
1
2
xd
x
xu cos=
∫
= du
u
2
1
1
∫
+
+
= du
uu 1
1
1
1
2
1
C
u
u
+
+
=
1
1
ln
2
1
.
cos1
cos1
ln
2
1
C
x
x
+
+
=
?
1 Vw,)tanln(secsec
∫
++= Cxxxdx
~ ?yvD ?Dy
3
è
!p.,cos)(sin
22
xxf =
′ )(xf
7 xu
2
sin=
,1cos
2
ux?=?
,1)( uuf?=
′
( )duuuf
∫
= 1)(
,
2
1
2
Cuu +?=
.
2
1
)(
2
Cxxxf +?=
~ ?yvD ?Dy
è p
3
.
2
arcsin4
1
2
dx
x
x
∫
dx
x
x
∫
2
arcsin4
1
2 2
2
arcsin
2
1
1
2
x
d
xx
∫
=
)
2
(arcsin
2
arcsin
1 x
d
x
∫
=,|
2
arcsin|ln C
x
+=
~ ?yvD ?Dy
5
Bap/
??s
?B ?DíE
a
∫
+
dx
xa
xa
a
∫
)ln(lnln xxx
dx
a
∫
+
+
2
2
1
.1tan
x
xdx
x a
∫?
+
xx
ee
dx
a
∫
+ dxxx
32
1 a
∫
+
dx
x
xx
4
sin1
cossin
a
∫
+
dx
xx
xx
3
cossin
cossin
a
∫
dx
x
x
2
49
1
a
∫
+
dx
x
x
2
3
9
a
∫
+ )4(
6
xx
dx
~ ?yvD ?Dy
11a
∫
+
dx
xx
x
)1(
arctan
12a
∫
+
+
dx
xex
x
x
)1(
1
a
∫
dx
x
x
2
arccos2
1
10
a
∫
dx
xx
x
sincos
tanln
~ ?yvD ?Dy
Baa Cxa
a
x
a +
22
arcsin a Cx +|lnln|ln
a Cx ++? |1cos|ln.3
2
a Ce
x
+arctan
a Cx ++
2
3
3
)1(
9
2
a Cx +)arctan(sin
2
1
2
7a Cxx +?
3
2
)cos(sin
2
3
8a C
xx
+
+
4
49
3
2
arcsin
2
1
2
a Cx
x
++? )9ln(
2
9
2
2
2
5s?
~ ?yvD ?Dy
a C
x
x
+
+ 4
ln
24
1
6
6
a Cx +
2
)(arctan
a Cxexe
xx
++? )1ln()ln(
a C
x
+
10ln2
10
arccos2
a Cx +
2
)tan(ln
2
1