~ ?yvD ?Dy
? 6 ?
w
q
~ ?yvD ?Dy
B a±s
N
R
T
A
0
x
M
x
xx?+
.
),()(
= μ ???
uW
!f
baxf
x
y
o
),,(:
00
yxA?
,),( 1?iB?yxM
?;)1( 9v¥Z_BáwL¥?_D x
,)2( sAM =
j
.,,,|μ|MQ
H|?|Bá
H
¥Z_DwL?_?
ss
AM
j
~ ?yvD ?Dy
).(xss =
??9f
),,( yyxxN?+?+
!
?m
NTMTMNMN +<<
j
,0
H? →?x
22
)()( yxMN?+?=
x
x
y
+=
2
)(1
,1
2
dxy
′
+→
sMN?=
j
,ds→
22
)()( dydxMT +=
,1
2
dxy
′
+=
dyyNT=
,0→,1
2
dxyds
′
+=#
,)( 1??9f
xss =Q
.1
2
dxyds
′
+=#
±s
T
N
M
T
R
A
0
x
x xx?+
x
y
o
~ ?yvD ?Dy
= aw
q#9
T
w
q
^
í
wL ??é
?w?¥
1
M
3
M
)
2
α?
2
M
2
S?
1
S?
M
M
′
1
S?
2
S?
N
N
′
α?)
?w?
v? v
?M]
?w? v
1 aw
q¥?l
1
α?
)
~ ?yvD ?Dy
)
α?+α
α?
S?
S
)α
.
M
′
.
M
C
0
M
y
xo
.
s
KMM
=
′
α
¥
ü (w
q1
!wL C
^;á¥
.
0
^?M
,sMM?=
′
.α?
′
→ ML?1MM
?l
s
K
s
α?
=
→? 0
lim
wL C ? M )¥w
q
,lim
0
i¥Hq/
ds
d
s
s
αα
=
→?
.
ds
d
K
α
=
~ ?yvD ?Dy
2 aw
q¥9
T
?i,
(1) °L¥w
q))1
,;
(2) ?
ò?)¥w
q????¥?
,O
?? lw
q v,
,)( =¨ V?
! xfy =
,tan y
′
=αQ
,
1
2
dx
y
y
d
′
+
′′
=α
.
)1(
2
3
2
y
y
k
′
+
′′
=∴
,arctan y
′
=αμ
.1
2
dxyds
′
+=
~ ?yvD ?Dy
,
),(
),(
=¨ V?
!
=
=
ty
tx
ψ
.
)]()([
)()()()(
2
3
22
tt
tttt
k
ψ?
ψ?ψ?
′
+
′
′′′
′′′
=∴
,
)(
)(
t
t
dx
dy
ψ
′
′
=Q
.
)(
)()()()(
32
2
t
tttt
dx
yd
ψ?ψ?
′
′′′
′′′
=
~ ?yvD ?Dy
è
? 6 ?
w
q
~ ?yvD ?Dy
B a±s
N
R
T
A
0
x
M
x
xx?+
.
),()(
= μ ???
uW
!f
baxf
x
y
o
),,(:
00
yxA?
,),( 1?iB?yxM
?;)1( 9v¥Z_BáwL¥?_D x
,)2( sAM =
j
.,,,|μ|MQ
H|?|Bá
H
¥Z_DwL?_?
ss
AM
j
~ ?yvD ?Dy
).(xss =
??9f
),,( yyxxN?+?+
!
?m
NTMTMNMN +<<
j
,0
H? →?x
22
)()( yxMN?+?=
x
x
y
+=
2
)(1
,1
2
dxy
′
+→
sMN?=
j
,ds→
22
)()( dydxMT +=
,1
2
dxy
′
+=
dyyNT=
,0→,1
2
dxyds
′
+=#
,)( 1??9f
xss =Q
.1
2
dxyds
′
+=#
±s
T
N
M
T
R
A
0
x
x xx?+
x
y
o
~ ?yvD ?Dy
= aw
q#9
T
w
q
^
í
wL ??é
?w?¥
1
M
3
M
)
2
α?
2
M
2
S?
1
S?
M
M
′
1
S?
2
S?
N
N
′
α?)
?w?
v? v
?M]
?w? v
1 aw
q¥?l
1
α?
)
~ ?yvD ?Dy
)
α?+α
α?
S?
S
)α
.
M
′
.
M
C
0
M
y
xo
.
s
KMM
=
′
α
¥
ü (w
q1
!wL C
^;á¥
.
0
^?M
,sMM?=
′
.α?
′
→ ML?1MM
?l
s
K
s
α?
=
→? 0
lim
wL C ? M )¥w
q
,lim
0
i¥Hq/
ds
d
s
s
αα
=
→?
.
ds
d
K
α
=
~ ?yvD ?Dy
2 aw
q¥9
T
?i,
(1) °L¥w
q))1
,;
(2) ?
ò?)¥w
q????¥?
,O
?? lw
q v,
,)( =¨ V?
! xfy =
,tan y
′
=αQ
,
1
2
dx
y
y
d
′
+
′′
=α
.
)1(
2
3
2
y
y
k
′
+
′′
=∴
,arctan y
′
=αμ
.1
2
dxyds
′
+=
~ ?yvD ?Dy
,
),(
),(
=¨ V?
!
=
=
ty
tx
ψ
.
)]()([
)()()()(
2
3
22
tt
tttt
k
ψ?
ψ?ψ?
′
+
′
′′′
′′′
=∴
,
)(
)(
t
t
dx
dy
ψ
′
′
=Q
.
)(
)()()()(
32
2
t
tttt
dx
yd
ψ?ψ?
′
′′′
′′′
=
~ ?yvD ?Dy
è