~ ?yvD ?Dy
? 3 ?
?f
p?
ú¨?
~ ?yvD ?Dy
Ba?f
¥ p?ù5
1.è
'?f
¥?

T
0)( )1( =

C
1
)( )2(
=

μμ
μ xx
?f
¥?
ˉ1?f
/
ó
'?f
¥ p?
T
xx cos)(sin )3( =

xx sin)(cos )4(?=

xx
2
sec)(tan )5( =

xx
2
csc)(cot )6(?=

xxx tansec)(sec )7( =

xxcotcsc)(csc )8(?=

xx
ee =

)( )10(
aaa
xx
ln)( )9( =

x
x
1
)(ln )12( =

ax
x
a
ln
1
)(log )11( =

~ ?yvD ?Dy
2.f
¥aμaa
¥ p?E5
!
)(),( xvvxuu
==
V?5

1

vuvu
′′
=

)(,

2

uccu

=

)(

3

vuvuuv

+

=

)(
,

4
 )0()(
2



=

v
v
vuvu
v
u
.

^è

C± ±
2
1
1
)(arcsin )13(
x
x
=

2
1
1
)(arccos )14(
x
x
=

2
1
1
)(arctan )15(
x
x
+
=

2
1
1
)cot( )16(
x
xarc
+
=

~ ?yvD ?Dy
3.ˉf
¥ p?E5
).()()(
)]([)(),(
xufxy
dx
du
du
dy
dx
dy
xfyxuufy



=

=
===
?
1
¥5ˉf
7
!
?¨


T#E5?f
p?ù5 V? ?3
%,
?i ?f
¥?
ˉ1?f
,
~ ?yvD ?Dy
è,¥?
pf
xxxy ++=
3
)(
2
1

++
++
=

xxx
xxx
y
))(
2
1
1(
2
1

+
+
+
++
= xx
xx
xxx
))
2
1
1(
2
1
1(
2
1
x
xx
xxx
+
+
+
++
=
.
8
124
2
2
xxxxxx
xxxx
+?++
+++
=
~ ?yvD ?Dy
è
.)](sin[ ¥?
pf
nnn
xfy?=
3
)](sin[)](sin[
1 nnnnn
xfxnfy?

=

)(sin)(sin
1 nnn
xxn?


1
cos

nn
nxx
).(sin)](sin[)(sin
)](sin[cos
1
113
nnnnn
nnnnn
xxfx
xfxxn




=

~ ?yvD ?Dy
=aú¨?
¥?l
ù5 M
°L?¥F
,
),(tfs =
!
)()( tftv

=5
§
H
1
¥M
q
HW
^
F
tvaQ
.])([)()(
′′
=

=∴ tftvta
?l
.)())((,
)()(
lim))((
,)()(
0
)¥=¨?
?1f
5?i
') V??¥?
?Tf
xxfxf
x
xfxxf
xf
xxfxf
x
′′

+

=
′′

→?
~ ?yvD ?Dy
:T
.
)(
,),(
2
2
2
2
dx
xfd
dx
yd
yxf 
′′′′
:T¨?
¥f
¨?
¥?
?1¥f
B?1
,)(
1)(,
nxf
nxf?
.
)(
,),(
)()(
n
n
n
n
nn
dx
xfd
dx
yd
yxf 
?¨?
¥?
?1
1¨?
,
=¨=¨[
¥?
d?1 ú¨?
,
.)(;)(,?1B¨?
?1
,¨?
M?1 xfxf

.,),(
3
3
dx
yd
yxf
′′′′′′
=¨?
¥?
?1 ?¨?
,
.,),(
4
4
)4()4(
dx
yd
yxf
~ ?yvD ?Dy
?aú¨?
pE  è
è ).0(),0(,arctan ffxy
′′′′′
= p
!
3
2
1
1
x
y
+
=

)
1
1
(
2

+
=
′′
x
y
22
)1(
2
x
x
+
=
)
)1(
2
(
22

+
=
′′′
x
x
y
32
2
)1(
)13(2
x
x
+
=
0
22
)1(
2
)0(
=
+
=
′′

x
x
x
f
0
32
2
)1(
)13(2
)0(
=
+
=
′′′
x
x
x
f;0=
.2?=
°¤E ?ú¨?
¥?l?? pú¨?
,
~ ?yvD ?Dy
è
.),(
)(n
yRxy p
! ∈α=
α
3
1?α
α=

xy
)(
1

α=
′′
α
xy
2
)1(
α
αα= x
LL
3
)2)(1(
α
α?αα= x
))1((
2

αα=
′′′
α
xy
)1()1()1(
)(
≥+?α?αα=
α
nxny
nn
L
511 ?
?,nα
)()(
)(
nnn
xy =,!n= )!(
)1(

=
+
ny
n
.0=
~ ?yvD ?Dy
è
.),1,0(
)(nx
yaaay p
! ≠>=
3
aay
x
ln=

aaaay
xx 2
ln)ln( =

=
′′
LL
aaaay
xx 32
ln)ln( =

=
′′′
)1(ln
)(
≥= naay
nxn
xnx
ee
ea
=
=
)(
)(
Hμ+Y1?
~ ?yvD ?Dy
è,),1ln(
)(n
yxy p
! +=
3
?i
x
y
+
=

1
1
2
)1(
1
x
y
+
=
′′
3
)1(
!2
x
y
+
=
′′′
4
)4(
)1(
!3
x
y
+
=
LL
)1!0,1(
)1(
)!1(
)1(
1)(
=≥
+
=
n
x
n
y
n
nn
p n¨?
H, p 1-34¨a,?1$?i,
s2T¥
p?, n¨?
,(
DB
,E£
ü )
~ ?yvD ?Dy
è,,sin
)(n
yxy p
! =
3
xy cos=

)
2
sin(
π
+= x
)
2
cos(
π
+=
′′
xy )
22
sin(
π
+
π
+= x
)
2
2sin(
π
+= x
)
2
2cos(
π
+=
′′′
xy
)
2
3sin(
π
+= x
LL
)
2
sin(
)(
π
+= nxy
n
)
2
cos()(cos
)(
π
+= nxx
n
] ? V¤
~ ?yvD ?Dy
è,),,(sin
)(nax
ybabxey p1è
! =
3 bxbebxaey
axax
cossin +=

)cossin( bxbbxae
ax
+=
)arctan()sin(
22
a
b
bxbae
ax
=++?=
)]cos()sin([
22
++?+?+=
′′
bxbebxaebay
axax
)2sin(
2222
+++= bxbaeba
ax
LL
)sin()(
2
22)(
+?+= nbxebay
ax
n
n
)arctan(
a
b
=?
~ ?yvD ?Dy
è
.,
1
1
)(
2
n
y
x
y p
!
=
3
]
1
1
1
1
[
2
1
1
1
2
xxx
y
+
+
=
=
]
)1(
)1(
)1(
1
[
2
1
22
xx
y
+
=

LL
]
)1(
)1(
)2)(1(
)1(
1
)2)(1[(
2
1
3
2
3
xx
y

+
=
′′
]
)1(
)1(
)()2)(1(
)1(
1
)()2)(1[(
2
1
11
)(
++
+
+
=
n
n
n
n
x
n
x
ny LL
]
)1(
!
)1(
)1(
!
)1[(
2
1
1
2
1 ++
+
+
=
n
n
n
n
x
n
x
n
]
)1(
!
)1(
)1(
!
[
2
1
11 ++
+
+
=
n
n
n
x
n
x
n
~ ?yvD ?Dy
2,ú¨?
¥
E5,
5¨?
μ
!f
,nvu
)()()(
)()1(
nnn
vuvu ±=±
)()(
)()2(
nn
CuCu =
)()(
0
)()()(
)2()1()()(
!
)1()1(
!2
)1(
)()3(
kkn
n
k
k
n
nkkn
nnnn
vuC
uvvu
k
knnn
vu
nn
vnuvuvu
=


=
++
+
+
′′
+

+=?
L
L
??
D%
T
~ ?yvD ?Dy
è
.,
)20(22
yexy
x
p
! =
3 5? ??
D%
T?
!,,
22
xveu
x
==
0)()(
!2
)120(20
)()(20)(
2)18(2
2)19(22)20(2)20(
+
′′
+

+?=
xe
xexey
x
xx
22
!2
1920
22202
218
2192220
+
+?=
x
xx
e
xexe
)9520(2
2220
++= xxe
x
~ ?yvD ?Dy
W¤E
è¨ú¨?

T
nn
xnx
αα
+?α?αα= )1()1()()4(
)(
L
n
nn
x
n
x
)!1(
)1()(ln)5(
1)(
=
)
2
sin()(sin)2(
)(
π
+= nkxkkx
nn
)
2
cos()(cos)3(
)(
π
+= nkxkkx
nn
)0(ln)()1(
)(
>?= aaaa
nxnx
xnx
ee =
)(
)(
?¨X?¥ú¨?

T,YV
15
1
)(
!
)1()
1
(
+
=
n
nn
x
n
x

,M
}D?ZE, p n¨?
,
~ ?yvD ?Dy
è
.,
1
1
)5(
2
y
x
y p
!
=
3 )
1
1
1
1
(
2
1
1
1
2
+
=
=
xxx
yQ
]
)1(
!5
)1(
!5
[
2
1
66
)5(
+
=∴
xx
y
]
)1(
1
)1(
1
[60
66
+
=
xx
~ ?yvD ?Dy
è,,cossin
)(66 n
yxxy p
! +=
3
3232
)(cos)(sin xxy +=
)coscossin)(sincos(sin
422422
xxxxxx +?+=
xxxx
22222
cossin3)cos(sin?+=
x2sin
4
3
1
2
=
2
4cos1
4
3
1
x?
=
x4cos
8
3
8
5
+=
).
2
4cos(4
8
3
)(
π
+=∴ nxy
nn
~ ?yvD ?Dy
è ).0(,arctan)(
)(n
fxxf p
! =
3
2
1
1
)(
x
xf
+
=

?? 1)()1(
2
=

+? xfx
T¤¨?
? ??
D%

T
H]
H p n
0)1()]([
2
)1(
)1()]([)1()]([
2)2(
2)1(2)(
=
′′
+

+

+

++

xxf
nn
xxfnxxf
n
nn
0)()1()(2)()1(
)1()()1(2
=?+++
+
xfnnxnxfxfx
nnn
'
)0()1()0(
0
)1()1(?+
=
=
nn
fnnf
x } ?

T¤?w
T
7
+=?
=
=∴
12,)!2()1(
2,0
)(
)(
knk
kn
xf
k
n
~ ?yvD ?Dy
1al2
??f
¥?
? V[?è
'
?f
¥ p?
T

p?E5 p,
1o,? ?s3?f
¥ˉ2,
ú¨?
¥?l#t ?il ;
ú¨?
¥
E5 ( ??
D%
T );
n¨?
¥ pE ;
1.°¤E ;
2.W¤E,
~ ?yvD ?Dy
± I5
1a
af
 ?l×
=
,

1A V? 
2A? V?

3?B? V?
2a
! ?? O 
)(xg
′ )()()(
2
xgaxxf?=
p,
)(af
′′
~ ?yvD ?Dy
± I5 13s
? ?1ê4
^ 
3
è
3
2
)( xxf =
),( +∞?∞∈x
 )? V?
0=x
×)1(
2
)( xxf =
),( +∞?∞∈x
?l×
=)) V? ×)2(
~ ?yvD ?Dy
± I5 23s
)(xgQ
V?
)()()()(2)(
2
xgaxxgaxxf

+?=


)(xg
′′
Q
?B?i#¨?l p )(af
′′
)(af
′′
ax
afxf
ax


=

)()(
lim
0)( =

af
ax
xf
ax

=

)(
lim
)]()()(2[lim xgaxxg
ax

+=

)(2 ag=
~ ?yvD ?Dy
Ba A b5
a
!
n
x
x
y
ln
= 5 y

@@@@@@@@@@
a
!
x
y
1
cosln= 5 y

@@@@@@@@@@
a
! xxy += 5 y

@@@@@@@@@@
a
!
tt
tt
ee
ee
y
+
= 5 y

@@@@@@@@@
a
! )999()2)(1()(= xxxxxf KK 5
 )0(f

@@@@@@@@@@
=a p/
f
¥?

a )1tanh(
2
xy?= 
a=y sinhar )1(
2
x 
5B
~ ?yvD ?Dy
a =y coshar )(
2x
e 
a
x
xey
cosh
sinh= 
a
2
)
2
(arctan
x
y = 
a
x
ey
1
sin
2
= 
a
2
1
2
arcsin
t
t
y
+
= 
~ ?yvD ?Dy
Ba A b5
a
!
t
e
t
y
sin
= 5 y
′′
@@@@@@@@@
a
! xy tan=
5 y
′′
@@@@@@@@@
a
! xxy arctan)1(
2
+= 5 y
′′
@@@@@@@@
a
!
2
x
xey =
5 y
′′
@@@@@@@@@
a
! )(
2
xfy =
)(xf
′′
i5 y
′′
@@@@@@@@@
a
!
6
)10()( += xxf
5 )2(f
′′′
@@@@@@@@@
a
!
nn
nnn
axaxaxax +++++

1
2
2
1
1
K

n
aaa,,,
21
K ?
^è

5
)(n
y @@@@@@@@@@@
a
! )()2)(1()( nxxxxxf= K
5 )(
)1(
xf
n+
@@@@@@@@@@@@
5=
~ ?yvD ?Dy
=a p/
f
¥=¨?

a
x
xx
y
42
3
++
=  
a xxy lncos
2
=  
a )1ln(
2
xxy ++= 
?a
kV
ydy
dx

=
1
?
a
32
2
)( y
y
dy
xd

′′
=  
a
5
2
3
3
)(
)(3
y
yyy
dy
xd

′′′′
′′
= 
1a£f
xx
ececy
λλ?
+=
21
 λ
1
c 
2
c
^è


@1"
T 0
2
=?
′′
yy λ 
~ ?yvD ?Dy
?a/
f
¥O¨?

a xey
x
cos=  
a
x
x
y
+
=
1
1
 
a
23
2
3
+?
=
xx
x
y 
a xxxy 3sin2sinsin= 
~ ?yvD ?Dy
Baa
1
ln1
+
n
x
xn
 a
xx
1
tan
1
2
 a
xxx
x
+
+
4
12

a
t
2
cosh
1
 a
=aa
)1(cosh
2
22
x
x
 a
22
2
24
++ xx
x

a
1
2
4
2
x
x
e
e
 a )sinh(cosh
2cosh
xxe
x
+ 
a
2
arctan
4
4
2
x
x+
 a
x
e
xx
1
sin
2
2
2
sin
1

5Bs?
~ ?yvD ?Dy
a
>
+
<
+
=

1,
1
2
1,
1
2
2
2
2
2
t
t
t
t
y 
~ ?yvD ?Dy
Baa te
t
cos2
 a xxtansec2
2

a
2
1
2
arctan2
x
x
x
+
+  a )23(2
2
2
xxe
x
+ 
a )(4)(2
222
xfxxf
′′
+

 a
a !n  a )!1( +n 
=aa
3
2
5
8
4
3
4
++ xx 
a
2
2
cos2sin2
ln2cos2
x
x
x
x
xx 
a
2
3
2
)1( x
x
+

5=s?
~ ?yvD ?Dy
?aa )
4
cos()2(
π
nxe
xn
+  
a
1
)1(
!2
)1(
+
+
n
n
x
n
 
a )2(],
)1(
1
)2(
8
![)1(
11

++
n
xx
n
nn
n
 
a )
2
2sin(2[
4
1 π
+
n
x
n

 )]
2
6sin(6)
2
4sin(4
π
+?
π
+
n
x
n
x
nn