~ ?yvD ?Dy
? 4 ?
?c
a?
Z? p?
~ ?yvD ?Dy
Ba?f
¥?
?l,)( ?1?f
?Z?
??¥f
xyy =
.)( ?
T?1Af
xfy =
0),( =yxF
)(xfy =
?f
¥A
ù5,?f
?^A?
A ? p
?f
p?E5
¨ˉf
p?E5°¤Z?
H p?,
~ ?yvD ?Dy
è
.,
0
0=
=+?
x
yx
dx
dy
dx
dy
y
eexy
¥?
??¥?f
p?Z?
3, p?Z?
H x
0=+?+
dx
dy
ee
dx
dy
xy
yx
3¤
,
y
x
ex
ye
dx
dy
+
=,0,0 == yx?eZ??
0
00
=
==
+
=∴
y
x
y
x
x
ex
ye
dx
dy
.1=
~ ?yvD ?Dy
è
.),(
1
1
ln)sin(
0=
=
=
+
x
dx
dy
xyy
y
x
xy
p
??¥?f
!Z?
3
¤ p?Z?
H,x
0]ln)1[ln()()cos( =

+?

yxxyxy
? ?¤
0)
1
1
()()cos( =

+

+?
y
y
x
yxyxy
i|
ì} ?

T¤?eZ??,,0 eyx ==
)1()0(
0
eey
dx
dy
x
=

=∴
=
0))0(
1
1( =

y
e
e
~ ?yvD ?Dy
è
.
,)
2
3
,
2
3
(
,3
33
LYVe?
??¥Ei£
ü wL¥ MLZ??
 pV¥Z?1
! wL
C
CxyyxC =+
3, p?Z?
H x
yxyyyx

+=

+ 3333
22
)
2
3
,
2
3
(
2
2
)
2
3
,
2
3
(
xy
xy
y
=


.1?=
p MLZ?1
)
2
3
(
2
3
=? xy
.03 =?+ yx'
2
3
2
3
=? xyELZ?1
,xy ='
A ?YVe?,
~ ?yvD ?Dy
è
.)1,0(,1
44
)¥′? p
! yyxyx
′′
=+?
3
p?¤Z?
H x
)1(044
33
=

+

yyyxyx
¤} ? 1,0 == yx;
4
1
1
0
=

=
=
y
x
y
p?¤
H|Z? x)1(
04)(12212
3222
=
′′
+

+
′′

yyyyyxyx

4
1
1
0
=

=
=
y
x
y,1,0 == yx} ?
.
16
1
1
0
=
′′
=
=
y
x
y
~ ?yvD ?Dy
è
.
),(1
2
2
dx
yd
xyyxey
y
p
??¥?f
!Z? =+=
3
¤ p?Z?
H,x
)1( yxeey
yy

+=

,)(
2
yexyexyeyey
yyyy
′′
+

+

+

=
′′
y
yy
xe
yxeye
y

+

=
′′
1
)(2
2
[
3
32
3
32
)1(
2
)1(
)()1()(2
y
yy
y
yyy
xe
xee
xe
exxee
y
+
=
+?
=
′′

y
y
xe
e
y
=

1
1
T¤?
¥f
¤9
^?i? p?
T
H xyx

,)1(
~ ?yvD ?Dy
=a
p?E
43f
.,
)4(
1)1(
sin
2
3
x
x
xy
ex
xx
y =
+
+
=
ZE
5Z?
H |
, ?a ?¨?f
¥ p?
ZE p?
,
--------
p?E
a¨S?
.)(
)(
¥ f?
?f
Me
a·f
xv
xu
~ ?yvD ?Dy
è
3
]1
4
2
)1(3
1
1
1
[
)4(
1)1(
2
3
+
+
++
+
=


xxxex
xx
y
x
?
T
H |

xxxxy?+++= )4ln(2)1ln(
3
1
)1ln(ln
p?¤

T
H x
1
4
2
)1(3
1
1
1
+
+
+
=

xxxy
y
.,
)4(
1)1(
2
3
y
ex
xx
y
x

+
+
= p
!
~ ?yvD ?Dy
è
3
.),0(
sin
yxxy
x

>= p
!
?
T
H |
¤ xxy lnsinln?=
p?¤

T
H x
x
xxxy
y
1
sinlncos
1
+?=

)
1
sinln(cos
x
xxxyy?+?=


)
sin
ln(cos
sin
x
x
xxx
x
+?=
~ ?yvD ?Dy
B?1
)0)(()()(
)(
>= xuxuxf
xv
)(
)(
1
)(ln xf
dx
d
xf
xf
dx
d
=Q?
)(ln)()( xf
dx
d
xfxf?=


]
)(
)()(
)(ln)([)()(
)(
xu
xuxv
xuxvxuxf
xv

+?

=


)(ln)()(ln xuxvxf?=Q
~ ?yvD ?Dy
?a??
Z?
??¥f
¥?
.
,
)(
)(
?¥f
?N1??
Z?
?
W¥f
1"D ?? ??
Z? xy
ty
tx
=
=
ψ
è ?
=
=
,
,2
2
ty
tx
2
x
t =
22
)
2
(
x
ty ==∴
4
2
x
=
xy
2
1
=


h ??
ù5 h? ?
4íEh? ? p
t
~ ?yvD ?Dy
),()(
1
xttx
== μ?? ??¥Qf
!f
)]([
1
xy
=∴?ψ
,0)(,)(),( ≠

== ttytx?ψ? O? V?
!f
?ˉf
#Qf
¥ p?E5¤
dx
dt
dt
dy
dx
dy
=
dt
dx
dt
dy 1
=
)(
)(
t
t
ψ


=
dt
dx
dt
dy
dx
dy
='
,
)(
)(
?Z?
=
=
ty
tx
ψ
~ ?yvD ?Dy
,
)(
)(
=¨ V? ?f
ψ=
=
ty
tx
)(
2
2
dx
dy
dx
d
dx
yd
=
dx
dt
t
t
dt
d
)
)(
)(
(

ψ

=
)(
1
)(
)()()()(
2
tt
tttt

ψ?ψ


′′′
′′′
=
.
)(
)()()()(
32
2
t
tttt
dx
yd
ψ?ψ

′′′
′′′
='
~ ?yvD ?Dy
è
3
dt
dx
dt
dy
dx
dy
=
t
t
cos1
sin
=
taa
ta
cos
sin
=
2
cos1
2
sin
2
π
π
=∴
π
=t
dx
dy
.1=
.Z?
)¥ ML p?L
2)cos1(
)sin(
π
=
=
=
t
tay
ttax
~ ?yvD ?Dy
.),1
2
(,
2
ayaxt =?==
ππ
H?
p MLZ?1
)1
2
(=?
π
axay
)
2
2(
π
+= axy'
~ ?yvD ?Dy
è
3
.)2(;)1(
,
2
1
sin
,cos
,
,,
0
0
2
0
0
0
¥
vl
?
H Y
¥?Z_
?
H Y p
?Z?1?

?
?
?[
?9 b ¥E ?
t
t
gttvy
tvx
v
=
=
α
α
α
x
y
o
v
x
v
y
v
0
v
.
,
)1(
0
0
V? ML¥|
q ?Q?
H Y¥ MLZ_E
H Y¥?Z_'
t
t
~ ?yvD ?Dy
)cos(
)
2
1
sin(
0
2
0

α

α
=
tv
gttv
dx
dy
α
α
cos
sin
0
0
v
gtv?
=
.
cos
sin
0
00
0
α
α
=∴
=
v
gtv
dx
dy
tt
àZ_¥s
1
H Y
? yxt,)2(
0
00
)cos(
0 ttttx
tv
dt
dx
v
==

α== αcos
0
v=
00
)
2
1
sin(
2
0 tttty
gttv
dt
dy
v
==

α==
00
sin gtv?= α
H Y
?¥
1
0
t∴
22
yx
vvv +=
2
0
2
00
2
0
sin2 tggtvv +?= α
~ ?yvD ?Dy
è
3
.
sin
cos
3
3
V
U¥f
¥=¨?
p?Z?
=
=
tay
tax
dt
dx
dt
dy
dx
dy
=
)sin(cos3
cossin3
2
2
tta
tta
=
ttan?=
)(
2
2
dx
dy
dx
d
dx
yd
=
)cos(
)tan(
3


=
ta
t
tta
t
sincos3
sec
2
2
=
ta
t
sin3
sec
4
=
~ ?yvD ?Dy
?al2
?f
p?E5 °¤Z?
H p? ;

p?E Z?
H |
,??f
¥ p?
E5 p? ;
?
Z? p?,
Lé

^ ?¨ˉf
p?E5 ;
~ ?yvD ?Dy
± I5
!
=
=
)(
)(
ty
tx
ψ
?
)(
)(
t
t
y
x
ψ


=

)0)(( ≠

t?
V?
)(
)(
t
t
y
x
ψ
′′
′′
=
′′

$
~ ?yvD ?Dy
± I53s
?
()
xx
y
dx
d
y

=
′′
dx
dt
dt
yd
x

=
)(
1
)(
)(
tt
t
t

ψ




=
~ ?yvD ?Dy
°z A b5
a
! 01552
223
=+?+? yxyyxx ??
 y
^ x¥
f
5
)1,1(
dx
dy
@@@@@@@@ =
2
2
dx
yd
@@@@@@@@
a wL 7
33
=?+ xyyx ?
)¥ MLZ?
^@@@@@@@@@@@
a wL
=
=
tty
ttx
sin
cos

2
π
=t )¥ELZ?@@@@@@@@
a X?
=
=
tey
tex
t
t
sin
cos

5
dx
dy
@@@@@@
3
π
=t
dx
dy
@@@@@@
a
!
yx
exy
+
=
5
dx
dy
@@@@@@@@
5
~ ?yvD ?Dy
=a p/
Z?
??¥?f
Z¥=¨?
2
2
dx
yd

a
y
xey += 1 
a )tan( yxy += 
a
y
x
xy =  )00( >> yx  
?a¨
p?E5 p/
f
¥?

a
2
x
xy = 
a
5
4
)1(
)3(2
+
+
=
x
xx
y 
a
x
exxy?= 1sin 
]
)1(2
cot
1
[1sin
2
1
x
x
x
e
e
x
x
exx
+?
]
1
5
3
4
)2(2
1
[
)1(
)3(2
5
4
+
++
+
xxxx
xx
)1ln2(
1
2
+
+
xx
x
3
22
)1(ln
)1(ln)1(ln
+
+?+
yxy
xxyy
)(cot)(sec2
32
yxyx ++
3
2
)2(
)3(
y
ye
y
~ ?yvD ?Dy
1a p/
?
Z?
??¥f
¥=¨?
2
2
dx
yd

a
=
=
tby
tax
sin
cos

a

=

=
)()(
)(
tftfty
tfx

! )(tf ′′ i O?1
,
?a p??
Z?
=
+=
tty
tx
arctan
)1ln(
2
??¥f
¥
 ?¨?
3
3
dx
yd

Ba
! )( xf
@
xx
fxf
3
)
1
(2)( =+  p )( xf


2
1
2
x
+
3
4
8
1
t
t?
)(
1
tf
′′
ta
b
32
sin
~ ?yvD ?Dy
ta??
E=??J/¥  úl
H¥
q_
ê?
RY/J/- ú[ úl
H¥
q_
2?
Rù/?B??
/M ¥
q1
$
?a
£? ?
'
ü
?°?
ü¥??? ? ?

q1
sò ?Z
ü?

'1
ü
H 
V

6¥
q1
$ 
204.0
25
16

π
-2.8
~ ?yvD ?Dy

Baa
3
4

5210
)(1020846
2
2


+



xxy
yxyyyxxyx
 
a 02311 =?+ yx a 0
22
=+?
ππ
yx  
a 32,
sincos
cossin

+
tt
tt
 a
yx
yx
ex
ye
+
+

=aa
3
2
)2(
)3(
y
ye
y
 
a )(tan)(csc2
32
yxcyx ++  
a
3
22
)1(ln
)1(ln)1(ln
+
+?+
yxy
xxyy

5s?
~ ?yvD ?Dy
?aa )1ln2(
1
2
+
+
xx
x
 
a ]
1
5
3
4
)2(2
1
[
)1(
)3(2
5
4
+
++
+
xxxx
xx
 
a ]
)1(2
cot
1
[1sin
2
1
x
x
x
e
e
x
x
exx
+? 
1aa
ta
b
32
sin
 a
)(
1
tf
′′

?a
3
4
8
1
t
t?

Ba
2
1
2
x
+ 
ta  úl
H

?a 204.0
25
16

π

üs