~ ?yvD ?Dy
? 2 ?
f
¥ p?E5
~ ?yvD ?Dy
Baaμaa
¥ p?E5
? ?
i O V?
)9?s
?1
,
ì¥aμaa

5
) V?? ?Tf
,
)(
,)(),(
x
xxvxu
).0)((
)(
)()()()(
]
)(
)(
[)3(
);()()()(])()([)2(
);()(])()([)1(
2



=


+

=


±

=

±
xv
xv
xvxuxvxu
xv
xu
xvxuxvxuxvxu
xvxuxvxu
~ ?yvD ?Dy
£ 
),()()( xvxuxf =
!
h
xfhxf
xf
h
)()(
lim)(
0
+
=


)]()()()(
)()()()([
1
lim
0
xvxuhxvxu
hxvxuhxvhxu
h
h
+?+
++?+=

h
xvxuhxvhxu
h
)()()()(
lim
0
+?+
=

£ 

{
~ ?yvD ?Dy
]
)()(
)(
)(
)()(
[lim
0
h
xvhxv
xu
hxv
h
xuhxu
h
+
+
+?
+
=

)()()()( xvxuxvxu

+?

=
h
xvhxv
xu
hxv
h
xuhxu
h
hh
)()(
lim)(
)(lim
)()(
lim
0
00
+
+
+?
+
=

→→
~ ?yvD ?Dy
£ 
),0)((,
)(
)(
)( ≠= xv
xv
xu
xf
!
h
xfhxf
xf
h
)()(
lim)(
0
+
=


hxvhxv
hxvxuxvhxu
h
)()(
)()()()(
lim
0
+
+?+
=

h
xv
xu
hxv
hxu
h
)(
)(
)(
)(
lim
0
+
+
=

~ ?yvD ?Dy
hxvhxv
xvhxvxuxvxuhxu
h
)()(
)]()()[()()]()([
lim
0
+
++
=

)()(
)()(
)()(
)()(
lim
0
xvhxv
h
xvhxv
xuxv
h
xuhxu
h
+
+

+
=

2
)]([
)()()()(
xv
xvxuxvxu


=
.)( ) V? xxf∴
~ ?yvD ?Dy
w;)(])([)1(
11
∑∑
==

=

n
i
i
n
i
i
xfxf
);(])([)2( xfCxCf

=
′;)()(
)()()(
)()()(])([)3(
11
21
21
1
∑∏

=

++

=


=

=
=
n
i
n
ik
k
ki
n
n
n
i
i
xfxf
xfxfxf
xfxfxfxf
LL
L
~ ?yvD ?Dy
è,sin2
23
¥?
p xxxy +?=
3
2
3xy =

x4?
è
.ln2sin ¥?
p xxy?=
3
xxxy lncossin2=Q
xxxy lncoscos2=

xxx ln)sin(sin2+
x
xx
1
cossin2+
.cos x+
.2sin
1
ln2cos2 x
x
xx +=
~ ?yvD ?Dy
è
.tan ¥?
p xy =
3 )
cos
sin
()(tan

=

=

x
x
xy
x
xxxx
2
cos
)(cossincos)(sin


=
x
xx
2
22
cos
sincos +
= x
x
2
2
sec
cos
1
==
.sec)(tan
2
xx =

'
.csc)(cot
2
xx?=

] ? V¤
~ ?yvD ?Dy
è
.sec ¥?
p xy =
3
)
cos
1
()(sec

=

=

x
xy
x
x
2
cos
)(cos

=,tansec xx=
x
x
2
cos
sin
=
.cotcsc)(csc xxx?=

] ? V¤
è
.
7
3
2
2
¥?
p
+
=
x
x
y
3
22
22
2222
)7(
20
)7(
)7()3()7()3(
=

+

+
=

x
x
x
xxxx
y
~ ?yvD ?Dy
è
).(,
0),1ln(
0,
)( xf
xx
xx
xf

≥+
<
= p
!
3,1)( =

xf
,0
H? <x
,0
H? >x
h
xhx
xf
h
)1ln()1ln(
lim)(
0
+?++
=


)
1
1ln(
1
lim
0
x
h
h
h
+
+=

,
1
1
x+
=
~ ?yvD ?Dy
,0
H? =x
h
h
f
h
)01ln()0(
lim)0(
0
+?+
=


,1=
h
h
f
h
)01ln()]0(1ln[
lim)0(
0
+?++
=

+

+
,1=
.1)0( =

∴ f
.
0,
1
1
0,1
)(
>
+

=


x
x
x
xf
~ ?yvD ?Dy
=aˉf
¥ p?E5
? ?
).()(
,
)]([,)(
)(,)(
00
0
00
0
0
xuf
dx
dy
x
xfyxu
ufyxxu
xx


=
=?=
=?=
=
O ?
1 V?
?5ˉf
V??
7 V?? ?Tf
' yM
1M
 p?
??yM
?WM
 p?
e[?WM
1M
 p? y
TE5
~ ?yvD ?Dy
£
,)(
0
V??? uufy =
)(lim
0
0
uf
u
y
u

=

→?
)0lim()(
0
0
=+

=
→?
αα
u
uf
u
y
#
uuufy?+?

=? α)(
0
5
x
y
x

→? 0
lim ])([lim
0
0
x
u
x
u
uf
x
+

=
→?
α
x
u
x
u
uf
xxx
α+

=
→?→?→? 000
0
limlimlim)(
).()(
00
xuf?
′′
=
~ ?yvD ?Dy
w< ),(),(),( xvvuufy ψ? ===
!
.
)]}([{
dx
dv
dv
du
du
dy
dx
dy
xfy
=
= ¥?
15ˉf
ψ?
è,sinln ¥?
pf
xy =
3
.sin,ln xuuy ==Q
dx
du
du
dy
dx
dy
=∴ x
u
cos
1
=
x
x
sin
cos
= xcot=
~ ?yvD ?Dy
è,)1(
102
¥?
pf
+= xy
3
)1()1(10
292

+?+= xx
dx
dy
xx 2)1(10
92
+=,)1(20
92
+= xx
è,arcsin
22
2
22
¥?
pf
a
xa
xa
x
y +?=
3 )arcsin
2
()
2
(
2
22

+

=

a
xa
xa
x
y
22
2
22
2
22
2
2
1
2
1
xa
a
xa
x
xa
+
=
.
22
xa?=
)0( >a
~ ?yvD ?Dy
è
.)2(
2
1
ln
3
2
¥?
pf
>
+
= x
x
x
y
3
),2ln(
3
1
)1ln(
2
1
2
+= xxyQ
)2(3
1
2
1
1
2
1
2

+
=


x
x
x
y
)2(3
1
1
2
+
=
xx
x
è,
1
sin
¥?
pf
x
ey =
3
)
1
(sin
1
sin

=

x
ey
x
)
1
(
1
cos
1
sin

=
xx
e
x
.
1
cos
1
1
sin
2
x
e
x
x
=
~ ?yvD ?Dy
?aQf
¥?
? ?
.
)(
1
)(
,
)(,0)(
)(
y
xf
I
xfyy
Iyx
x
y

=

=≠

=
Oμ
=9 V?
? uW
*

¥Qf
O
=??a V?
 uW ?Tf
' Qf
¥?
??°¤f
?
¥?
,
~ ?yvD ?Dy
£,
x
Ix∈ ? |
xx?[9
ó
¥??? V?? )(xfy =
,0≠?y
?
^μ
,
1
y
x
x
y
=
,)( ??xfQ
),0(0 →?→?∴ xy 0)( ≠

y???
x
y
xf
x
=


→? 0
lim)(
y
x
y
=
→?
1
lim
0
)(
1
y?

=
.
)(
1
)(
y
xf

=

'
),0(
x
Ixxx ∈?+≠?
~ ?yvD ?Dy
è,arcsin ¥?
pf
xy =
3
,)
2
,
2
(sin
=??a V?
ππ
∈=
y
IyxQ
,0cos)(sin >=

yy O
=μ )1,1(?∈∴
x
I
)(sin
1
)(arcsin

=

y
x
ycos
1
=
y
2
sin1
1
=
.
1
1
2
x?
=
.
1
1
)(arccos
2
x
x
=

] ? V¤;
1
1
)(arctan
2
x
x
+
=

.
1
1
)cot(
2
x
x
+
=

arc
~ ?yvD ?Dy
è,log ¥?
pf
xy
a
=
,0ln)( ≠=

aaa
yy
O,),0(
=μ +∞∈∴
x
I
)(
1
)(log

=

y
a
a
x
aa
y
ln
1
=
.
ln
1
ax
=
3
,),(
=??a V? +∞?∞∈=
y
y
IaxQ
+Y1
.
1
)(ln
x
x =

~ ?yvD ?Dy
1a+? è0
è,||ln ¥?
pf
xy =
xx
yxxx
1
)1(
1
),ln(||ln0 =
=

=<
H?
x
yx
1
,),0()0,( =

+∞?∞∈∴
=μ U
3
x
yxxx
1
,ln||ln0 =

=>
H?
~ ?yvD ?Dy
è
.
sin
¥?
pf
x
xy =
)
sin
ln(cos
)
1
sinln(cos
sin
lnsin
x
x
xxx
x
xxxey
x
xx
+?=
+?=


3
xxxx
eexy
x
lnsinlnsin
sin
===Q
è
.
)(
),sin(
3
2
xd
dy
xy p
! =
)cos(
3
2
)cos(
3
2
)(
2
3
1
3
2
3
x
x
tt
dt
dy
xd
dy
=?==∴
3 )sin(
3/23
tytx == 5
7
~ ?yvD ?Dy
?al2
?i,
);()(])()([ xvxuxvxu

+



.
)(
)(
]
)(
)(
[
xv
xu
xv
xu




s
f
p?
H,s???
¨P·?
p,
Qf
¥ p?E5 
?i? ?Hq ;
ˉf
¥ p?E5

?if
¥ˉV?, ?s3? ?
P¨ y
?E ;
X
p?¥f
, Vs3?'?f
,è
D'?f
¥aμaa
,
~ ?yvD ?Dy
± I5
p wL
D à
ü?
¥ MLZ?,
3
2 xxy?=
x
? )(uf 
0
u ? V? )(xgu= 
0
x V? O
)(
00
xgu = 5 )]([ xgf 
0
x )


1
A V? 
2
A? V? 
3
?B? V?
1a
2a
~ ?yvD ?Dy
± I5 13s
2
32 xy?=

7
0=

y
032
2
= x
3
2
1
=x
3
2
2
=x
M?1
9
64
,
3
2

9
64
,
3
2
p MLZ?1
9
64
=y
9
64
=y

~ ?yvD ?Dy
± I5 23s
? ?1ê4
^ 
3
è ||)( uuf =  )? V?
0=u
|
xxgu sin)( ==
) V?0=x
|sin|)]([ xxgf =
 )? V?
0=x
×)1(
|
4
)( xxgu ==
) V?0=x
44
||)]([ xxxgf ==
) V?0=x
×)2(
~ ?yvD ?Dy
°z A b5
a
! xxy sin?= 5 y

@@@@@@@@@@
a
!
x
eay
xx
2
3?+= 5
dx
dy
@@@@@@@@@@
a
! )13(
2
+?= xxey
x

5
0=x
dx
dy
@@@@@@@@@@
a
! 1sectan2?+= xxy
5 y

@@@@@@@@@
a
!
55
3
)(
2
x
x
xfy +
==
5
)0(f

@@@@@@@@
a wL xy sin
2
+
π
=  0=x )¥ ML àD x ?_
¥C?1@@@@@@@@@
5B
~ ?yvD ?Dy
?z 9
/
òf
¥?


a
2
1
1
xx
y
++
=  a
110
110
+
=
x
x
y  
a
2
1
csc2
x
x
y
+
=  a
t
t
xf
+
=
1
1
)(
p )4(f

 
a )0,0( >>
= ba
a
x
x
b
b
a
y
bax


~z  p
tL cbxaxy ++=
2
 μ

ü ML¥?

?z  wL
x
xy
1
+= D x à??)¥ MLZ?

~ ?yvD ?Dy
Ba A b5
a
!
4
)52( += xy
5 y

@@@@@@@@@@@
a
! xy
2
sin=
5 y

@@@@@@@@@@@@
a
! )arctan(
2
xy =
5 y

@@@@@@@@@@@@
a
! xy cosln=
5 y

@@@@@@@@@@@@
a
!
xx
y
2tan
10= 5 y

@@@@@@@@@@@@
a
! )(xf V? O )(
2
xfy = 
5
dx
dy
@@@@@@@@@@@
a
!
x
k
exf
tan
)( =
5 )(xf

@@@@@@@@@@
 ? ef =

4
π
5 =k @@@@@@@@@@@
5=
~ ?yvD ?Dy
=a p/
f
¥?

a
x
y
1
arccos=  a
x
x
y
2sin
= 
a )ln(
22
xaxy ++=  a )cotln(csc xxy?= 
a
2
)
2
(arcsin
x
y =  a
x
ey
arctan
= 
a
x
x
y
arccos
arcsin
=  a
x
x
y
+
=
1
1
arcsin 
?a
! )(xf  )(xg V? O 0)()(
22
≠+ xgxf
pf
)()(
22
xgxfy += ¥?

1a
! )(xf  0=x ) V? O 0)0( =f  0)0( ≠

f
? )(xF  0=x ) V?£
ü [])(xfF  0=x )
9 V?
~ ?yvD ?Dy
Baa )cos
2
sin
( x
x
x
x +  a
2
2
ln3
x
eaa
xx
++ 
a 2?  a )tansec2(sec xxx +  a
25
3
 a
4
π

=aa
22
)1(
21
xx
x
++
+
 a
2
)110(
10ln210
+
x
x

a
22
2
)1(
]2cot)1[(csc2
x
xxxx
+
++
 a
18
1

a )(ln)()()(
x
ba
b
a
a
x
x
b
b
a
bax

?a )
4
4
,
2
(
2
a
acb
a
b?

1a 022 = yx 022 =+? yx 
5Bs?
~ ?yvD ?Dy
Baa
3
)52(8 +x  a x2sin  a
4
1
2
x
x
+

a xtan?  a )2sec22(tan10ln10
22tan
xxx
xx
+ 
a )(2
2
xfx

 a xxke
kx
k
21tan
sectan

2
1

=aa
1
22
xx
x
 a
2
2sin2cos2
x
xxx?

a
22
1
xa +
 a xcsc 
a
2
4
2
arcsin2
x
x
 a
)1(2
arctan
xx
e
x
+

5=s?
~ ?yvD ?Dy
a
22
)(arccos12 xx?
π
 a
)1(2)1(
1
xxx?+

?a
)()(
)()()()(
22
xgxf
xgxgxfxf
+

+