1
Fluid Mechanics
2
3
Chapter 3 Basis of Fluid Dynamics
§ 3–4 Continuity Equation
§ 3–1 Preface
§ 3–2 Methods to Describe Fluid Motion
§ 3–3 Basic Concepts of Fluid Motion
§ 3–5 Motion Differential Equation of Ideal Fluid
§ 3–6 Bernoulli Equation and Its Application
§ 3–7 System and Control Volume
§ 3–8 Momentum Equation
§ 3–9 Moment of Momentum Equation
Exercises of Chapter 3
4
第三章 流体动力学基础
§ 3–4 连续方程式
§ 3–1 引言
§ 3–2 描述流体运动的方法
§ 3–3 流体运动的基本概念
§ 3–5 理想流体的运动微分方程
§ 3–6 伯努利方程及其应用
§ 3–7 系统与控制体
§ 3–8 动量方程
§ 3–9 动量矩方程
第三章 习 题
5
Chapter 3 Basis of Fluid Dynamics
§ 3-1 Preface
The backgrounds,fundamentals and fundamental equations
of fluid dynamics all have certain relations with each part of
engineering fluid mechanics,so this chapter is the emphases in
the whole lessons,
6
第三章 流体动力学基础
§ 3-1 引言
流体动力学的基础知识,基本原理和基本方程与工程流
体力学的各部分均有一定的关联,因而本章是整个课程的重
点。
7
§ 3-2 Methods to Describe the Fluid Motion
Methods to describe the fluid motion,
1,Lagrange’s method
Definition,
Lagrange’s method is to consider the fluid particles as research
objects and to research the motion course of each particle,and
then gain the kinetic regulation of the whole fluid through
synthesizing motion instances of all being researched objects, The
essential of lagrangian method is a method of particle coordinates,
8
§ 3-2 描述流体运动的方法
描述流体运动的方法,
一,拉格朗日法
定义,
把流体质点作为研究对象,研究各质点的运动历程,然
后通过综合所有被研究流体质点的运动情况来获得整个流体
运动的规律,这种方法叫做拉格朗日法。实质是一种质点系
法。
9
when we use lagrange’s method to describe the fluid motion
the position coordinates of motion particles are not independent
variables but functions of original coordinate a,b,c and time
variable t,that is
? ?
? ?
? ?tcbazz
tcbayy
tcbaxx
,,,
,,,
,,,
?
?
?
?
( 3— 1)
In this formula,a,b,c and t are all called lagrangian variables,
Different particles have different original coordinates,
Difficulties will be met when using lagrange’s method to
analyze fluid motion on math except for fewer instances (such as
researching wave motion),Euler’s method is used mostly in fluid
motion,
10
用拉格朗日法描述流体的运动时,运动质点的位置坐标
不是独立变量,而是起始坐标 a,b,c和时间变量 t 的函数,

? ?
? ?
? ?tcbazz
tcbayy
tcbaxx
,,,
,,,
,,,
?
?
?
?
( 3— 1)
式中 a,b,c,t 统称为拉格朗日变量,不同的运动质点,
起始坐标不同。
用拉格朗日法分析流体运动,在数学上将会遇到困难。
除少数情况外(如研究波浪运动),在流体运动中多采用欧拉
法。
11
2,Euler’s method
Definition,
When we use Euler’s method to describe fluid motion the motion
factors are continuous differential functions of space coordinates x,y,z
and time variable t, x,y,z and t are called Euler’s variables,So the
velocity field can be expressed by the following formulas,
? ?
? ?
? ?tzyxuu
tzyxuu
tzyxuu
zz
yy
xx
,,,
,,,
,,,
?
?
?
?
( 3— 2)
With a view to the space points in the fluid field( the space full of
motion fluid) without researching the moving course of each particle,
It is to synthesize enough space points to gain the regulation of the
whole fluid by observing the regulations of motion factors of particle
flowing via each space point changing with time which is called
Euler’s method (fluid field method),
12
二、欧拉法
定义,
用欧拉法描述流体的运动时,运动要素是空间坐标 x,y,z
和时间变量 t的连续可微函数。 x,y,z,t 称为欧拉变量,因此
速度场可表示为,
? ?
? ?
? ?tzyxuu
tzyxuu
tzyxuu
zz
yy
xx
,,,
,,,
,,,
?
?
?
?
( 3— 2)
不研究各个质点的运动过程,而着眼于流场(充满运动流体
的空间)中的空间点,即通过观察质点流经每个空间点上的运动
要素随时间变化的规律,把足够多的空间点综合起来而得出整个
流体运动的规律,这种方法叫做欧拉法(流场法)。
13
Pressure field and density field can be expressed as,
? ?
? ?tzyx
tzyxpp
,,,
,,,
?? ?
?
( 3— 3)
( 3— 4)
In the formula( 3— 2) x,y and z are motion coordinates of fluid
particles at time t and namely are functions of time variable t,So
according to the principle of compound function differentiate and also
think over the following formulas,
zyx udt
dzu
dt
dyu
dt
dx ???,,
The acceleration components in direction of space coordinates of x,
y,z are,
z
u
u
y
u
u
x
u
u
t
u
dt
du
a
z
u
u
y
u
u
x
u
u
t
u
dt
du
a
z
u
u
y
u
u
x
u
u
t
u
dt
du
a
z
z
z
y
z
x
zz
z
y
z
y
y
y
x
yy
y
x
z
x
y
x
x
xx
x
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
??
?
( 3— 5)
14
压强和密度场表示为,
? ?
? ?tzyx
tzyxpp
,,,
,,,
?? ?
?
( 3— 3)
( 3— 4)
式( 3— 2)中 x,y,z是流体质点在 t 时刻的运动坐标,即
是时间变量 t 的函数。因此,根据复合函数求导法则,并考虑到
zyx udt
dzu
dt
dyu
dt
dx ???,,
可得加速度在空间坐标 x,y,z方向的分量为
z
u
u
y
u
u
x
u
u
t
u
dt
du
a
z
u
u
y
u
u
x
u
u
t
u
dt
du
a
z
u
u
y
u
u
x
u
u
t
u
dt
du
a
z
z
z
y
z
x
zz
z
y
z
y
y
y
x
yy
y
x
z
x
y
x
x
xx
x
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
??
?
( 3— 5)
15
The vector expression is
? ?uutudt uda ????? ??????? ( 3— 5a)
In it
zkyjxi ?
??
?
??
?
??? ???
?
Accelerate is
consisted by
Local accelerate,which shows the variety of velocity
of fluid particles through fixed space points changing with
time,
Migratory accelerate which shows variance
ratio of velocity brought by the change of space situation
of fluid particles,
tu??
?
? ?uu ?? ??
When using Euler’s method to query variance ratio of other motion
factors of fluid particle changing with time the normal formula is
? ??????? utdtd ?
( 3— 6)
is called total derivative, is called local derivative,is
called migratory derivative,dt
d
t?
? ? ???u?
16
矢量式为
? ?uutudt uda ????? ??????? ( 3— 5a)
其中
zkyjxi ?
??
?
??
?
??? ???
?
加速度的组成
当地加速度 。表示通过固定空间点的
流体质点速度随时间的变化。
迁移加速度 。表示流体质点所在空
间位置的变化所引起的速度变化率。
t
u
?
??
? ?uu ?? ??
用欧拉法求流体质点其它运动要素对时间变化率的一般式子为
? ??????? utdtd ?
( 3— 6)
称 为全导数,为当地导数,为迁移导数。
dt
d
t?
? ? ???u?
17
§ 3- 3 Basic Concepts of Fluid Motion
1,Stationary flow and nonstationary flow
Definition,
In factual engineering problems,motion factors of quite a few un
steady flow changing with time very slowly which can be treated as
steady flow problems approximatively,
Or else it is called nonstationary flow,
0????????? ttptu ?
If all motion factors of each space point on fluid field don’t
change with time,this kind of flow is called steady flow,
that is,
18
§ 3- 3 流体运动的基本概念
一、定常流动与非定常流动
定义,
在实际工程问题中,不少非定常流动问题的运动要素随时
间变化非常缓慢,可近似地作为定常流动来处理。
否则,称为非定常流动。
0????????? ttptu ?
若流场中各空间点上的一切运动要素都不随时间变
化,这种流动称为定常流动。即
19
2,Trace and Streamline
Definition,
?
?
x
y
z
? ?zyx,,?
? ?dzzdyydxxQ ???,,ds
t
dtt?
Figure 3— 1 Trace
o
According to the differential
equation of trace line is
udtds ?
? ? ? ? ? ?zyxu
dz
zyxu
dy
zyxu
dx
zyx,,,,,,
?? ( 3— 7)
When using Lagrange method to describe fluid motion the concept
of trace line is introduced
(1),Trace
On special situation (x,y,z ) the track of a certain fluid particle
moveing with time is shown in Figure 3-1,
20
二、迹线和流线
定义,
?
?
x
y
z
? ?zyx,,?
? ?dzzdyydxxQ ???,,ds
t
dtt?
图 3— 1 迹 线
o
根据 迹线微分
方程 为
udtds ?
? ? ? ? ? ?zyxu
dz
zyxu
dy
zyxu
dx
zyx,,,,,,
?? ( 3— 7)
用拉格朗日法描述流体运动引进迹线概念。
1、迹线
特定位置( x,y,z)处某流体质点随时间推移所走的轨
迹。如图 3— 1所示。
21
?
?
?
?
x
y
z
o
1
2
3
4
Figure 3— 2
streamline
Definition,
(2),Streamline
When using Euler’s method to describe fluid motion vividly the concept of
Streamline is introduced
A streamline is a curve which is drawed on fluid field in a certain instant,On
this curve velocity vector of all particles are tangent with the curve, Just as shown
in Figure 3— 2。
If the formula (3-8) is expressed by projection form, then it is
The differential equation of streamline,
Suppose the velocity vector of a certain point on
srteamline is the micro unit segment
vector on streamline is,
According to the definition of streamline the differential
equation expressed by vector is
,kujuiuu zyx ???? ???
kdzjdyidxsd ???? ???
0?? sdu ?? ( 3— 8)
? ? ? ? ? ?tzyxu
dz
tzyxu
dy
tzyxu
dx
zyx,,,,,,,,,
?? ( 3— 8a)
22
?
?
?
?
x
y
z
o
1
2
3
4
图 3— 2 流 线
2、流线
定义,
流线的微分方程,
设流线上一点的速度矢量为
流线上的微元线段矢量
根据流线定义,可得用矢量表示的微分方
程为
,kujuiuu zyx ???? ???
,kdzjdyidxsd ???? ???
0?? sdu ?? ( 3— 8)
若写成投影形式,则为
? ? ? ? ? ?tzyxu
dz
tzyxu
dy
tzyxu
dx
zyx,,,,,,,,,
?? ( 3— 8a)
用欧拉法形象地对流场进行几何描述,引进了流线的概念。
某一瞬时在流场中绘出的曲线,在这条曲线上所有质点的速
度矢量都和该曲线相切,则此曲线称为流线。如图 3— 2。
23
[example 3—1] Given that the velocity filed is
0?
??
?
z
y
x
u
kyu
kxu
?
? ?0?y In it,k is constant,try to query the streamline equation,
from formula( 3— 8a) we can get
ky
dy
kx
dx
??integral of it is
cxy ?
[solution] According to and we can obtain that the fluid
motion is only limit to the upper half plane of,
0?zu 0?y
xoy
Just as shown in Figure 3— 3,the flowing
streamlines are a group of equiangular hyperbolas
,
?
? ?yx,
x
y
o
Figure 3— 3 hyperbolic streamline
(1)On normal circumstance streamlines can’t intersect,moreover it must be
smoothed curves,
(2)On the condition of steady flow the shape and situation can’t change with
time,
characters of streamline,
24
[例题 3—1]已知速度场为
0?
??
?
z
y
x
u
kyu
kxu
?
? ?0?y 其中 k为常数,试求流线方程。
由式( 3— 8a)有
ky
dy
kx
dx
??
积分上式的流线方程为 cxy ?
如图 3— 3所示,该流动的流线为一族等角双曲线。
流线的性质,
[解 ]根据 及 可知流体运动仅限于 的上半平面。 0?
zu 0?y xoy
?
? ?yx,
x
y
o
图 3— 3双曲流线
( 1)一般情况下,流线不能相交,且只能是一条光滑曲线;
( 2)在定常流动条件下,流线的形状、位置不随时间变化,
且流线与迹线重合。
25
3,Stream tube,stream flow and cross section of flow
Definition,
L
Figure 3— 4
stream tube
1A
2A
1dA
2dA
Figure 3— 5 stream
flow and whole stream
Figure 3— 6 cross section
of flow
(1).Stream tube
Take a random close curve C on fluid field,draw streamlines via every points
on C,the pipe surrounded by these streamlines is called stream tube,As shown in
Figure 3— 4,
Because streamlines can’t intersect fluid particles only can flow in the stream
tube or via the surface of flow pipe on each time but can’t go through the stream
tube, so the stream tube just likes a really tube,
26
三、流管、流束与过流断面
定义,
L
图 3— 4 流管
1A
2A
1dA
2dA
图 3— 5流束和总流 图 3— 6 过 流 断 面
由于流线不能相交,所以各个时刻,流体质点只能在流管
内部或沿流管表面流动,而不能穿越流管,故流管仿佛就是一
根真实的管子。
1、流管
在流场中取任意封闭曲线 C,经过曲线 C的每一点作流线,
由这些流线所围成的管称为流管。如图 3— 4所示。
27
(2) Stream flow
21,dAdA
The summation of all streamlines in stream tube is
called stream flow,
The stream whose sections is infinitesimal is called
elementary flow, As in Figure 3-5 the stream tube
whose section is,
The summation of countless elementary flow is called
whole stream,
Definition,
(3) Cross section of flow
When all the streamlines which consist the streamline tube keep
parallel the cross section is a plane or else the Cross section is a curve
surface,
The transects which keep orthogonal with all the streamlines in
the streamline tube are called cross section of flow,As shown in
Figure 3-6,
Definition,
28
2,流束
3,过流断面
当组成流束的所有流线互相平行时,过流断面是平面;否
则,过流断面是曲面。
21,dAdA
流管内所有流线的总和称为流束。
断面无穷小的流束称为微小流束,(元流)
如图 3— 5中断面为 的流束。
无数微小流束的总和称为总流。
定义,
与流束中所有流线正交的横断面称为过流断面。如图 3— 6所
示。
定义,
29
4.Discharge and average velocity of section
(1),Discharge
Definition,
Two kinds of expressing methods,
The method which is expressed by the fluid volume in unit time is
called volumetric flow rate or discharge,That is ? ?3,Q m s or l s
The method which is expressed by the fluid mass in unit time
is called mass flow,That is, )( skgQ m
The discharge flowing via the random curved surface is
? ? ????? ?? ?? dnuudnuQ ????,c o s( 3— 10)
The fluid quantity through a certain spatial curved surface in unit
time is called Discharge,
In this formula is the cosine of inclination of velocity vector
and the unit vector in normal orientation of infinitesimal area,
? ?nu ??,co s
?dn?
30
四、流量与断面平均速度
1、流量
定义,
两种表示方法,
以单位时间通过的流体体积表示,称为体积流量(流量),
记为 ? ?。或 slsmQ 3
以单位时间通过的流体质量表示,称为质量流量,记作
)( skgQ m
流经任意曲面的流量
? ? ????? ?? ?? dnuudnuQ ????,c o s( 3— 10)
式中 为速度矢量与微元面积 法线方向单位
矢量 的夹角余弦。
? ?nu ??,co s ?d
n?
单位时间内通过某一特定空间曲面的流体量称为流量。
31
(2),Average velocity of section
5, One-,two-,and three dimensional flow
A
dAnu
A
Q A? ???
??
? ( 3— 11)
It is average velocity of section,
The discharge Q flowing across the cross section of flow is divided
by area of cross section A,namely
definition,
The motion factor which is the function of a coordinate is called
one-dimensional flow,
The motion factor which is the function of two coordinates is called
two-dimensional flow,
The motion factor which is the function of three coordinates is
called three-dimensional flow,
definition,
32
2,断面平均流速
五、一元流动、二元流动、与三元流动
A
dAnu
A
Q A? ???
??
? ( 3— 11)
即为断面平均速度。
流经过流断面的体积流量 Q除以过流断面面积 A,即
定义,
运动要素是一个坐标的函数,称为一元流动。
运动要素是二个坐标的函数,称为二元流动。
运动要素是三个坐标的函数,称为三元流动。
定义,
33
§ 3-4 Continuity Equation
Take a infinitesimal hexahedron on a random point in fluid field,
as shown in Figure 3— 7。 The mass of it changes with space and
time,(1)Space change
udydz?
? ?dxu d y d zxu d y d z ?? ???
x
y
z
o
dx
dz
dy
Figure 3 — 7
for example,for the x orientation the mass
flowing into the hexahedron in unit time is
,the mass flowing out of it is
the increased mass is
Also,the increased mass of y and z orientation
are separately
and
d y d zu x?
??
?
??
?
??
?
??
?
?
??? dx
x
d y d zud y d zu x
x
)( ??
? ? dx
x
d y d zu x
?????? ?
?? ?
? ? ? ? dz
z
dxdy u dy
y
dxdz u z y
? ?
?
? ?
?
?
? ? ?
?
?
? ?
?
?
? ? ? ?
34
§ 3-4 连续方程式
在流场的任意点处取微元六面体,如图 3— 7。六面体中
的质量随空间和时间变化。
( 1)空间变化
udydz?
? ?dxu d y d zxu d y d z ?? ???
x
y
z
o
dx
dz
dy
图 3 — 7
例如:对于 x轴方向,单位时间流
入微元六面体的质量为
流出的质量为
其质量增加为
同样 y,z 轴方向的质量增加分别为
d y d zu x?
??
?
??
?
??
?
??
?
?
??? dx
x
d y d zud y d zu x
x
)( ??
? ? dx
x
d y d zu x
?????? ?
?? ?
? ? ? ? dz
z
d x d yudy
y
d x d zu zy
??
?
??
?
?
??
??
?
??
?
?
?? ??,
35
? ? ? ? ? ? ? ? 0?
?
??
?
??
?
??
?
?? dz
z
d x d yudy
y
d x d zudx
x
d y d zu
t
d x d y d z zyx ????
namely ? ? ? ? ? ?
0???????????? zuyuxut zyx ????
( 3— 12)
physical meaning,
The increased quantity of mass in space should equal to the
increased quantity of mass because of the density change,
( 2) Time change
Suppose the quality strength in the infinitesimal hexahedron is
at any time,In unit time it turns into
,because the change of density the increased
mass in the infinitesimal hexahedron in unit time is
According to the law of mass conservation the continuity equation of
fluid motion is,
d x d y d z?
?
? ? 。td x d y d z ?? ?
dxdydz ? ?
? ?
t
dxdydz ? ? ?
36
( 2)时间变化
设任意时刻微元六面体内的质量力为,单位时
间内变为,所以由于密度 的变
化单位时间内微元六面体内增加的质量为
d x d y d z?
? ? td x d y d zd x d y d z ??? ?? ?
? ? 。td x d y d z ?? ?
根据质量守恒定律,流体运动的连续方程式 为,
? ? ? ? ? ? ? ? 0?
?
??
?
??
?
??
?
?? dz
z
d x d yudy
y
d x d zudx
x
d y d zu
t
d x d y d z zyx ????

? ? ? ? ? ? 0?
?
??
?
??
?
??
?
?
z
u
y
u
x
u
t
zyx ????
( 3— 12)
物理意义,
空间上质量的增加量应该等于由于密度变化而引起的质量增
加量。
37
( 1) Steady compressible fluid, then formula ( 3—
12) turns into 0??? t?
0)()()( ????????? zuyuxu zyx ???
( 3— 13)
0????????? zuyuxu zyx ( 3— 14)
In column coordinate system continuity equation is
? ? ? ? ? ? 0?
?
???
?
??
?
??
?
?
tr
u
z
u
r
u
r
u rzr ???
?
?? ?
( 3— 15)
In it are components of velocity u on coordinates,
zr uuu,,? zr,,?
In sphere coordinate system continuity equation is
? ? ? ? 0
s i n
c o t2 ?
?
??
?
???
?
???
?
?
??
?
?
?????? ???
r
u
r
u
r
u
r
u
r
u
t
rr
( 3— 15a)
( 2) incompressible fluid, is constant,then formula(3— 12)
turns into
?
38
( 1)恒定压缩性流体,,则式( 3— 12)变为
0??? t?
0)()()( ????????? zuyuxu zyx ???
( 3— 13)
0????????? zuyuxu zyx
( 3— 14)
在柱坐标系中,连续方程式为
? ? ? ? ? ? 0?
?
???
?
??
?
??
?
?
tr
u
z
u
r
u
r
u rzr ???
?
?? ?
( 3— 15)
式中 是速度 u 在 坐标上的分量。
zr uuu,,? zr,,?
在球坐标系中,连续方程式为
? ? ? ? 0
s i n
c o t2 ?
?
??
?
???
?
???
?
?
??
?
?
?????? ???
r
u
r
u
r
u
r
u
r
u
t
rr
( 3— 15a)
( 2)非压缩性流体,常数,则式( 3— 12)变为 ??
39
§ 3-5 Motion Differential Equation of Ideal Fluid
At last section the continuity equation was discussed,It reflects
the conditions that velocity field of fluid motion must satisfy,It is a
kinematics equation,Now let us analyze the kinematics relations
between the stress and motion of fluid, That is to build the
kinematics equation of ideal fluid
1,Motion Differential Equation of Ideal Fluid( Euler’s equation)
dzdydx,,
? ?zyxA,,
Consider the infinitesimal right-angled hexahedron whose length
of sides are,as shown in Figure 3— 8, In it the coordinate
of point A is, the outside forces act on this right-angled
hexahedron are two kinds, surface pressure and quality strength
Suppose the unit quality strengths on the x,y and z orientation are
and the density of the fluid is, then three
components of acceleration are
?
。dtdudtdudtdu zyx,,
,,z y x f f f
40
§ 3-5 理想流体的运动微分方程
上节讨论了连续性方程,它反映了流体运动速度场必须
满足的条件,这是一个运动学方程。现在我们分析流体受力
及运动之间的动力学关系,即建立理想流体动力学方程。
一、理想流体运动微分方程(欧拉方程)
设在 x,y,z轴方向上的单位质量力为 又设
流体的密度为,加速度的三个分量为,,,zyx fff
?
。dtdudtdudtdu zyx,,
dzdydx,,
? ?zyxA,,
考虑如图 3— 8所示的边长为 的微元直角六面体,
其中角点 A坐标为,作用在此直角六面体上的外力有
两种,表面压力和质量力。
41
According to the newton’s second law the
motion equation on x orientation is
After simplifying the upper formula the result is
dt
du
z
p
f
dt
du
y
p
f
dt
du
x
p
f
z
z
y
y
x
x
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
( 3— 16) In a similar way
x
y
z
p
p
p
dyypp ???
dyypp ???
dzxpp ???
Figure 3 — 8
dt
du dxdydz
dydz x p p pdydz dxdydz f x
?
?
?
?
? ?
?
?
?
? ? ? ?
In this formula ? ? is pressure。 z y x p p,,?
42
根据牛顿第二定律得 x方向的运动方程式为
dt
dud x d y d zd y d z
x
ppp d y d zd x d y d zf
x ?? ???
??
?
?
?
????
式中
? ?为压强。zyxpp,,?
上式简化后得
dt
du
z
p
f
dt
du
y
p
f
dt
du
x
p
f
z
z
y
y
x
x
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
( 3— 16)
同理
x
y
z
p
p
p
dyypp ???
dyypp ???
dzxpp ???
图 3 — 8
43
Substitute the formula (3— 5) into the formula( 3— 16) the
result is
the upper two formulas are motion differential equation of ideal
fluid, They are also called Euler’s motion differential equation,
In this formula x,y,z and t are four variables, are
functions of x,y,z and t and are unknown quantity, are
also functions of x,y and z,they are normally known,
zyx uuu,,,?
zyx fff,,
z
u
u
y
u
u
x
u
u
t
u
z
p
f
z
u
u
y
u
u
x
u
u
t
u
y
p
f
z
u
u
y
u
u
x
u
u
t
u
x
p
f
z
z
z
y
z
x
z
z
y
z
y
y
y
x
y
y
x
z
x
y
x
x
x
x
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
( 3— 17)
?
44
将式( 3— 5)代入式( 3— 16)则得
上面二式即是理想流体运动的微分方程式,也叫做欧拉
运动微分方程式。
式中 x,y,z,t为四个变量,为 x,y,z,t的函
数,是未知量。 也是 x,y,z的函数,一般是已知的。 zyx uuu,,,?
zyx fff,,
z
u
u
y
u
u
x
u
u
t
u
z
p
f
z
u
u
y
u
u
x
u
u
t
u
y
p
f
z
u
u
y
u
u
x
u
u
t
u
x
p
f
z
z
z
y
z
x
z
z
y
z
y
y
y
x
y
y
x
z
x
y
x
x
x
x
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
( 3— 17)
?
45
on column coordinate system Euler’s motion differential
equation is
?
( 3— 18)
z
u u
r
u u
r
u u
t
u
z
p f
r
u u
z
u u
r
u u
r
u u
t
u
r
p f
r
u
z
u u
r
u u
r
u u
t
u
r
p f
z
z
z z
r
z
z
r
z r
r
z
r r
r
r
r
?
? ?
?
? ?
?
? ?
?
? ?
?
? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ?
? ? ?
? ?
?
? ? ?
?
? J
?
?
?
2
in the formula,and are components of velocity u on
coordinate axis,
are components of outside force of unit mass on the
coordinate axis of respectively, zr,,?
zr fff,,?
zr,,?
u r ? u ? ? u z ?
46
在柱坐标系中,欧拉运动微分方程为
z
u
u
r
u
u
r
u
u
t
u
z
p
f
r
uu
z
u
u
r
u
u
r
u
u
t
u
r
p
f
r
u
z
u
u
r
u
u
r
u
u
t
u
r
p
f
z
z
zz
r
z
z
r
zr
r
z
rr
r
r
r
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
???
??
?
???
?
?J
?
?
?
2
?
( 3— 18)
又式中 是速度 u 在 坐标轴上的分量。
分别是单位质量的外力在 坐标轴上的分量 。 zr,,?zr fff,,?
zr,,?,,rzu u u?
47
§ 3-6 Bernoulli Equation and Its Application
Bernoulli equation is the embodiment of the law of conversation
and translation of energy in fluid mechanics,
1,Bernoulli equation of the ideal fluids
0???????????? tptututu zyx
Multiply the formula( 3— 16) by separately and
then summate all the end,so we can obtain dzdydx,,
dz
dt
du
dy
dt
du
dx
dt
du
dz
z
p
dy
y
p
dx
x
p
dzfdyfdxf
zyx
zyx
???
?
?
?
?
?
?
?
?
??? )(
1
)(
?
(3— 19)
Under the steady conditions
48
§ 3-6 伯努利方程及其应用
伯努利方程是能量守恒与转换定律在流体力学中的具体
体现。
一、理想流体的伯努利方程
0???????????? tptututu zyx
将式( 3— 16)中各式分别乘以 。相加得 dzdydx,,
dz
dt
du
dy
dt
du
dx
dt
du
dz
z
p
dy
y
p
dx
x
p
dzfdyfdxf
zyx
zyx
???
?
?
?
?
?
?
?
?
??? )(
1
)(
?
(3— 19)
在稳定条件下
49
so
zzyyxx
zyx duuduuduudz
dt
dudy
dt
du
dx
dt
du ?????
)(21)(21 2222 uduuud zyx ????
substitute it into the formula ( 3— 19),the end is
)(
2
1
)(
)(
1
)(
2uddpdzfdyfdxf
dz
z
p
dy
y
p
dx
x
p
dzfdyfdxf
zyx
zyx
?????
?
?
?
?
?
?
?
?
???
?
?
in additional,when fluid keeps in steady flow the streamlines and
traces are coincident and particles moves along streamlines,So the
velocity components of streamlines are
。dtdzudtdyudtdxu zyx ??? ;;
50
此外,稳定流时流线与迹线重合,质点沿流线运动,故流线
上速度分量为 。
dt
dzu
dt
dyu
dt
dxu
zyx ??? ;;
因此
zzyyxx
zyx duuduuduudz
dt
dudy
dt
du
dx
dt
du ?????
)(21)(21 2222 uduuud zyx ????
代入式( 3— 19)
)(
2
1
)(
)(
1
)(
2uddpdzfdyfdxf
dz
z
p
dy
y
p
dx
x
p
dzfdyfdxf
zyx
zyx
?????
?
?
?
?
?
?
?
?
???
?
?
51
physical meaning,
The kinetic energy of unit gravity fluid or is called specific kinetic energy,—
The pressure energy of unit gravity fluid or is called specific energy of pressure,—
The potential energy of unit gravity fluid or is called specific energy of position —
g
u
g
p
z
2
2
?
cgugpz ??? 2
2
?
(3— 20)
The formula( 3— 20) is Bernoulli Equation of the unit quality incompressible
fluid along streamlines under the steady flow conditions,
For random two points on the same streamline the upper formula can be
rewrited as
g
u
g
pz
g
u
g
pz
22
2
222
2
111 ?????
??
( 3— 21)
the integral for it
For the incompressible fluid whose quality strength is only the gravity the upper
orientation of z axis is positive,So the upper formula can be rewrited as
, ? ? 0
2
11 2 ???? uddpg d z
?
52
对于质量力只有重力的不可压缩流体,z 轴垂直向上为正,
则上式可写成,积分上式得 ? ? 0
2
11 2 ???? uddpg d z
?
cgugpz ??? 2
2
?
(3— 20)
式( 3— 20)就是单位质量不可压缩理想流体在稳定流条件
下沿流线的伯努利方程式。
对于同一流线上任意两点,上式可写成
g
u
g
pz
g
u
g
pz
22
2
222
2
111 ?????
??
( 3— 21)
物理意义,
或简称比动能。单位重力流体的动能,—
或简称比压能。单位重力流体的压能,—
或简称比位能。单位重力流体的位能,—
g
u
g
p
z
2
2
?
53
2,Bernoulli equation on the collection of stream
g d Qgugpzg d Qgugpz ???? ???????? ??????????? ?? 22
2
22
2
2
11
1
???? ????????? ??????????? ? 2211 2
3
2
2
2
21
3
1
11
1
1 22 AAAA dAg
uggdA
g
pzgdA
g
ugdAu
g
pzg ??
?????
( 3— 22)
in it, after doing integral we obtain that the
whole mechanical energy relationship through two cross sections of
whole fluid is
2211 dAudAudQ ??
g d Q? Multiply each item of the formula( 3— 21) by, then the mechanical energy relationship of the whole fluid through two
cross sections of flow of infinitesimal streamline tube in unit time is
In practice we often need to solve the whole fluid flowing
problems,Such as the problems that fluids flow in pipes or channels,
So we need extend it to the whole fluid by doing integral on cross
section of flow additionally,
54
二、总流上的伯努利方程
g d Qgugpzg d Qgugpz ???? ???????? ??????????? ?? 22
2
22
2
2
11
1
???? ????????? ??????????? ? 2211 2
3
2
2
2
21
3
1
11
1
1 22 AAAA dAg
uggdA
g
pzgdA
g
ugdAu
g
pzg ??
?????
( 3— 22)
其中,积分得通过总流两过流断面的总机
械能之间的关系式为
2211 dAudAudQ ??
g d Q? 将式( 3— 21)各项同乘以,则单位时间内通过
微元流束两过流断面的全部流体的机械能关系式为
在工程实际中要求我们解决的往往是总流流动问题。如流
体在管道、渠道中的流动问题,因此还需要通过在过流断面上
积分把它推广到总流上去。
55
in it
( 1) is the summation of potential energy and
pressure energy which go through the cross section of fluid in unit time,
u d Agpzg A? ???????? ? ??
On the suddenly changed section, the of each point is
not constant and do integral of it difficultly,
On the gradual change section the distribution of the dynamical
pressure accords to the static pressure approximately,the
of each point is constant,
g
pz
??
g
pz
??
QgpzgudAgpzgudAgpzg
AA ?? ?
?
?
?
???
? ??
???
?
???
? ??
???
?
???
? ?
??????
( 3— 33)
So if choose a area of waterway on gradual change sections,
then
56
其中
( 1) 它是单位时间内通过总流过流断面的
流体位能和压能的总和。
u d Agpzg A? ???????? ? ??
在急变流断面上,各点的 不为常数,积分困难。
在渐变流断面上,流体动压强近似地按静压强分布,各点
的 为常数。
g
pz
??
g
pz
??
QgpzgudAgpzgudAgpzg
AA ?? ?
?
?
?
???
? ??
???
?
???
? ??
???
?
???
? ?
??????
( 3— 33)
因此,若将过流断面取在渐变流断面上,则积分
57
( 2) is the summation of fluid mechanical energy
which go through the cross section of whole fluid in unit time,
Because the velocity distribution on cross section is difficult to
confirm the average velocity is often used to denote the factual
kinetic energy on engineering, namely
dAgug
A? 2
3
?
?
QggAggdAgug
A 222
233 ??
????? ???
( 3— 34)
in the formula is the kinetic-energy correction factor, ?
A
dA
u
Q
g
g
dA
g
u
g
AA ??
?
?
?
?
?
?
??
3
2
3
2
2 ?
?
?
?
? ( 3— 35)
On engineering calculation is often used, 0.1??
58
( 2) 它是单位时间内通过总流过流断面的流体
动能的总和。由于过流断面上的速度分布一般难以确定,工程
上常用断面平均速度 来表示实际动能,即
dAgug
A? 2
3
?
?
QggAggdAgug
A 222
233 ??
????? ???
( 3— 34)
式中 为动能修正系数 ?
A
dA
u
Q
g
g
dA
g
u
g
AA ??
?
?
?
?
?
?
??
3
2
3
2
2 ?
?
?
?
? ( 3— 35)
工程计算中常取 。 0.1??
59
substitute the formulas( 3— 34) and( 3— 35) into( 3— 33),
simplify it when considering the stable flow, the end is
321 QQQ ??
gg
pz
gg
pz
222
2
22
2
2
11
1
????
? ?????
( 3— 36)
This is the Bernoulli equation of collection stream of ideal fluid,
21
2
222
2
2
111
1 22 ???????? hgg
pz
gg
pz ??
?
??
?
( 3— 37)
where
So the factual Bernoullis equation of whole fluid is
The factual fluid has viscosity,Because the internal frictional
resistances between the fluid layers do work a portion of mechanical
energy is consumed and turns into heat energy,
The average energy loss of unit gravity fluid between two
areas of waterway 1 and 2 on whole fluid,
— 2 1 ? ? h
60
将式( 3— 34)、( 3— 35)代入式( 3— 33)中考虑到稳定
流动时,,化简后得
321 QQQ ??
gg
pz
gg
pz
222
2
22
2
2
11
1
????
? ?????
( 3— 36)
这就是 理想流体总流的伯努利方程 。
21
2
222
2
2
111
1 22 ???????? hgg
pz
gg
pz ??
?
??
?
( 3— 37)
式中
失。重力流体的平均能量损两个过流断面之间单位、总流上— 2121 ??h
因此 实际流体总流的伯努利方程为,
实际流体有粘性,由于流层间内摩擦阻力作功会消耗部分机
械能转化为热能。
61
3,Applications of bernoulli equation
[example3—2] The relative position of a fire fighting hose,
nozzle and pump is expressed in Figure 3— 9。 The exit pressure of
pump (the pressure on point A) is 2 atmosphere (gage pressure ),
The section diameter of discharge tube of pump is 50mm; The
diameter of the nozzle exit is 20mm; the head loss of fire hose is
supposed 0.5m; the water head loss of nozzle is 0.1m。 Try to
query the velocity of flow on nozzle exit,displacement of pump
and the pressure on point B,
pump A
B
C
0.2m
3m
Figure 3— 9 for example 3— 2
(1) Normal irrigation calculation
62
三、伯努利方程的应用
[例题 3—2]一救火水龙带,喷嘴和泵的相对位置如图 3— 9。
泵出口压力( A点压力)为 2个大气压(表压),泵排出管断面直
径为 50mm;喷嘴出口 C 的直径 20mm;水龙带的水头损失设为
0.5m;喷嘴水头损失为 0.1m。试求喷嘴出口流速、泵的排量及 B
点压力。
泵 A
B
C
0.2m
3m
图 3— 9 例 3— 2 图
1、一般水力计算
63
[solution] The energy equation for A and C sections are
CA
CC
C
AA
A hgg
pz
gg
pz
???????? 22
22 ?
?
?
?
The horizontal face across the point A is datum plane, so
and (in air)
,The specific gravity of water is Acceleration of
gravity is ; the height of water column is
,namely ;
m2.3,0 ?? CA zz 0,Pa1096.12 8 ???? cA patp
3Ν9 8 0 0,mg? ?
2m / s8.9?g
m6.01.05.0 ???? ? CAh
CCC
A
C
CA dA
dc
A
A ????? 16.0
50
20 22 ??
?
??
?
???
?
??
?
???
substituting each variable into the energy equation,we get
? ? 6.0
8.9202.38.92
16.0
9 8 0 0
108.920 224 ?
??????
??? CC ??
64
[解 ] 取 A,C两断面写能量方程,
CA
CC
C
AA
A hgg
pz
gg
pz
???????? 22
22 ?
?
?
?
通过 A点的水平面为基准面,则 ;
(在大气中);水的重度
重力加速度 ; 水柱,即
m2.3,0 ?? CA zz
0,Pa1096.12 8 ???? cA patp 3Ν9 8 0 0,mg? ?
2m / s8.9?g m6.01.05.0 ???? ? CAh
CCC
A
C
CA dA
dc
A
A ????? 16.0
50
20 22 ??
?
??
?
???
?
??
?
???
将各量代入能量方程后,得
? ? 6.0
8.9202.38.92
16.0
9 8 0 0
108.920 224 ?
??????
??? CC ??
65
the velocity of flow of nozzle exit is ? ?
m1 8, 0 6 sC? ?
The displacement of pump is
? ? 2 30,0 2 ml1 8,0 6 0,0 0 5 6 8 5,6 84 s s
CCQA ??? ? ? ? ? ? in order to calculate the pressure on point B,choose B and C
sections to calculate, namely
CB
CC
C
BB
B hgg
pz
gg
pz
???????? 22
22 ?
?
?
?
Do horizontal datum plane across point B, then
m0,0, 2m ; 0, 1 6 0, 1 6 1 8, 0 6 2, 8 9 ; 0, 1 m ;sB C B A C Cz z h? ? ? ???? ? ? ? ? ? ? ?
Substitute them into the equation
? ? ? ? 1.0
8.92
06.1802.0
8.92
89.2
98000
22
???????? Bp
The pressure is
? ?1, 6 5 a tBp ?
66
解得喷嘴出口流速为 。 ? ?m1 8, 0 6
sC? ?
而泵的排量为
? ? 2 30,0 2 ml1 8,0 6 0,0 0 5 6 8 5,6 84 s s
CCQA ??? ? ? ? ? ?
为计算 B点压力,取 B,C两断面计算,即
CB
CC
C
BB
B hgg
pz
gg
pz
???????? 22
22 ?
?
?
?
通过 B点作水平面基准面,则
m0,0, 2m ; 0, 1 6 0, 1 6 1 8, 0 6 2, 8 9 ; 0, 1 m ;sB C B A C B Cz z h? ? ? ??? ? ? ? ? ? ? ?
代入方程得
? ? ? ? 1.0
8.92
06.1802.0
8.92
89.2
98000
22
???????? Bp
解得压力
? ?1, 6 5 a tBp ?
67
(2 ) Throttle flowmeter
Now use venturi as an example to deduce the formula of calculating the
flux,
Venturi is a kind of apparatus to measure the fluid flux in the conduit under
pressure.It is consisted by three parts,They are slick constricted section,throat
and expansion section,As shown in Figure 3— 10,
,
The fluid section contracts as the liquid in the conduit flows via the throttle
equipment,The increasing of velocity of flow and the falling of pressure on the
contracting section bring the differential pressure on the forward and backward
of the throttle equipment,
fundamental principles,
species,hole-plate,nozzle and conic (venturi )
Figure 3— 12 venturi flowmeter
?
?
0 0
1
1
2
2
h
?
m?
1z 2z
68
2, 节流式流量计
下面以文丘利管为例,推导流量计算公式。
文丘利管是一种测量有压管道中流体流量的仪器,它由光
滑的收缩段、喉道和扩散段三部分组成。如图 3— 10所示。
当管路中液体流经节流装置时,液流断面收缩,在收缩断
面处流速增,压力降低,使节流装置前后产生压差。
基本原理,
分类,孔板、喷嘴和圆锥式(文丘利管)
图 3— 12 文丘里流量计
?
?
0 0
1
1
2
2
h
?
m?
1z 2z
69
Choose sections 1— 1and 2— 2, Calculation points are all on
conduit,Datum plane 0— 0 is on a fixed position under the conduit and
assume, For the two areas of waterway 1— 1and 2— 2
Bernoulli equations of whole fluid are 0.121 ?? ??
gg
pz
gg
pz
22
2
22
2
2
11
1
?
?
?
? ?????
Obtain from continuity equation
2211 AAA ??? ??
Connect above two formulas to obtain
??
?
?
??
?
?
???
?
?
?
?
?
??
?
?
??
?
?
?
???
?
?
??
?
?
?
g
p
z
g
p
zg
A
A ??
? 2211
2
2
1
1 2
1
1
70
取断面 1— 1和 2— 2,计算点均取在管道上,基准面 0— 0
置于管道下方某一固定位置,并取 。对 1— 1、
2— 2两过流断面列总流的伯努利方程有
0.121 ?? ??
gg
pz
gg
pz
22
2
22
2
2
11
1
?
?
?
? ?????
由连续性方程可得
2211 AAA ??? ??
联立上面二式可得
??
?
?
??
?
?
???
?
?
?
?
?
??
?
?
??
?
?
?
???
?
?
??
?
?
?
g
p
z
g
p
zg
A
A ??
? 2211
2
2
1
1 2
1
1
71
So the volume flux through the flowmeter is
?
?
?
?
?
?
??
?
?
??
?
?
????
?
?
??
?
?
?
???
?
?
??
?
?
??
g
p
z
g
p
zg
A
A
A
AQ
??
? 2211
2
2
1
1
11 2
1
Consider the influence of fluid viscosity the right of the above
formula should multiply a auxiliary value of flux m,
then
??
?
?
??
?
?
????
?
?
??
?
?
?
???
?
?
??
?
?
?
g
p
z
g
p
zg
A
A
A
Q
??
m 2211
2
2
1
1 2
1
( 3— 38)
) (normally 99, 0 ~ 95, 0 ? m
72
故通过流量计的体积流量为
?
?
?
?
?
?
??
?
?
??
?
?
????
?
?
??
?
?
?
???
?
?
??
?
?
??
g
p
z
g
p
zg
A
A
A
AQ
??
? 2211
2
2
1
1
11 2
1
考虑到流体粘性的影响,上式右端需乘以一个流量修正系数
)。(一般 99.0~95.0?mm

??
?
?
??
?
?
????
?
?
??
?
?
?
???
?
?
??
?
?
?
g
p
z
g
p
zg
A
A
A
Q
??
m 2211
2
2
1
1 2
1
( 3— 38)
73
(3),Pitot tube
Pitot tube is a apparatus which transforms the kinetic energy of
fluid into pressure energy and then uses manometer to measure the
motion velocity of fluid 。 It is usually used to measure the velocity of
flow in the cannal,open channal and air conduit and also to measure
the object motion velocity in fluid such as ships and airplanes etc
?
V
?/p
h gV 2/2
simple pitot
gV2
2
V
?
V
h
??1
2
complex pitot 1,2
Pitot tube have simple one and complex one,Their organ and
measurement principle are shown in the below figures,
74
3,毕托管
毕托( Pitot)管是指将流体动能转化为压能,进而通过测压
计测定流体运动速度的仪器。常用于测量河道、明渠、风管中的
流速,还可测量物体在流体中的运动速度,如船舶、飞机等的航
行速度测量可用毕托管。
毕托管有简单和复合之分,其机构及测量原理如图所示。
?
V
?/p
h gV 2/2
简易毕托管
复合毕托管 1,2
gV2
2
V
?
V
h
??1
2
75
The simple pitot tube was designed based on the principle that the
surface of liquid in the tube ascends because the velocity of stagnation
of arrest point is zero and the kinetic energy transforms the pressure
energy,
There are two kinds of instances when using complex pitot 1 to
measure velocity of fluid,
is called coefficient of velocity of flow,normally
In the formula
Because of the disturbance of pitot structure to the fluid field correction
formula is necessary as do exactly calculation,
Its theory formula of velocity of flow
,academic velocity of flow Factual velocity of flow
。 ~ = 0.99 0.97 ?
= 2 ? ? gh V 2 ? ? gh V
2 ) ( 2 ) ( 2 0 0 ? ? ? ? ? ? ? gh p p p p g V
76
简易毕托管是依据驻点流速为零,其动能转变为压力能,从
而使管内液面上升的原理设计成的。
种情况:测量流体速度时,分两用复合毕托管
。~=称为流速系数,一般,
理论流速
实际流速
=式中
应对公式修正的扰动,在精确计算时由于毕托管结构对流场
其理论流速公式为
1
0, 9 90, 9 7
2
2
2
)(2)(
2
00
??
?
??
?
?
?
?
?
?
?
gh
V
ghV
gh
pppp
gV
77
The pitot tube used on engineering must be demarcated
strictly to explain measure conditions and fluid kinds,Moreover in
order to lessen the measure error installation should be done
according to the specification,
h g V
h g g V
?
?
?
? ?
?
? ?
? ?
? ? ? ? ? ?
2
? ? ? ? ? ? ? ? ? >> ?,2
) ( 2 ) ( 2
1
Air is in the tube ) (
Liquid is in the tube ) (
78
hgV
hg
g
V
?
?
?????
?
??
?
??
?
?
????>>?
??
?
??
?
2
,2
)(
2
)(2
1
管中为气体)(
管中为液体)(
工程中使用的毕托管都必须经过严格标定,说明测量条
件和流体种类,而且在安装时应按说明书要求去做,以减少
测量误差。
79
§ 3-7 System and Control Volume
In fluid mechanics system means to the fluid group consisted by the
determinate fluid particles,As shown in Figure 3— 11,
All out of the system are called outside,
The real or ostensible surface divides the system and outside is called the
border of the system,
A
D
B
C
Figure 3 — 11 system
The border of system moves with fluid and the
volume of system,the shape and magnitude of the
border surface can change with time,
On the border of system there is not mass exchange,
that is to say no borders for fluid to flow in or flow out
of the system,
Characters,
Definition,
The borders of system endures the surface force that outside acts on the system,
On the borders of system there is energy exchange,That is to say there are borders
for energy to flow in or flow out of system,
80
§ 3-7 系统与控制体
在流体力学中,系统是指由确定的流体质点所组成的流
体团。如图 3— 11所示。
系统以外的一切统称为外界。
系统和外界分开的真实或假象的表面称为系统的边界。
A
D
B
C
图 3 — 11 系 统
系统的边界随流体一起运动,系统的体
积、边界面的形状和大小可以随时间变化。
系统的边界处没有质量交换,即没有流
体流进或流出系统的边界。
在系统的边界上受到外界作用在系统上
的表面力。
在系统的边界上可以有能量交换,即可
以有能量输入或输出系统的边界。
特点,
定义,
81
Relative to any coordinate system to say,the changeless volume
of any space in which there are fluids to transflux is called control
volume,
The border surfaces of control volume are called control faces,
They are always closed surfaces,
Definition,
Use system to research fluid motion means adopts Lagrange
viewpoints,In fluid mechanics Euler’s method is used to research
fluid motion commonly except some specific circumstance,
Correspond to this the concept of control volume is import,
The control faces relative to coordinate system are changeless,
On control faces there are mass exchanges,that is to say there are
control faces to flow in or flow out,
On control faces other objects except control volume act on the
fluid in control volume,
On control faces there can have energy exchange,that is to say
there can have control faces to import or export energy,
The characters of control faces,
82
使用系统来研究流体运动意味着采用拉格朗日的观点。
在流体力学中,除个别情况下,一般采用欧拉法研究流体运
动。与此相应,引入了控制体的概念。
相对于某个坐标系来说,有流体流过的固定不变的任何空
间的体积称为控制体。
控制体的边界面称为控制面。它总是封闭表面。
控制面相对于坐标系是固定的。
在控制面上可以有质量交换,即可以有流体流进或流出
控制面。
在控制面上受到控制体以外物体施加在控制体内流体上
的力。
在控制面上可以有能量交换,即可以有能量输入或输出
控制面。
定义,
控制面的特点,
83
§ 3-8 Momentum Equation
Momentum equation is the embodiment on fluid mechanics of
momentum theorem in theoretical mechanics,It reflects the relations
between the momentum changes and acting forces of fluid motion
and its virtue is on that it need not to know the course in flowing
range but only to know the flowing circumstance on the border faces,
In fluid field according to concrete questions
choose a control volume purposefully,Just the
dashed as shown in Figure 3— 12,Makes its some
control faces coincides with the changeless border
to calculate acting forces and other control faces
are decided by the convenience of choose values,
)1(
)2(
1A
2A
?
Figure 3— 12
Momentum equation
1,Momentum equation expressed by Euler’s method
84
§ 3-8 动量方程
动量方程是理论力学中的动量定理在流体力学中的具体体
现,它反映了流体运动的动量变化与作用力之间的关系,其优
点在于不必知道流动范围内部的过程,而只需要知道边界面上
的流动情况即可。
在流场中针对具体问题,有目的地选择
一个控制体,如图 3— 12中虚线所示。使它的
一部分控制面与要计算作用力的固定边界重
合,其余控制面则视取值方便而定。控制体
一经选定,其形状、体积和位置相对于坐标
系是不变的。
)1(
)2(
1A
2A
?
图 3— 12 动量方程
一、用欧拉法表示的动量方程
85
The control volume once be decided its shape,volume and position
relative to coordinate system are changeless,
Assume that the fluid system coincides with the control volume
V at time t and on any space points in control volume the velocity of
fluid particle is and the density is, so the beginning
momentum of fluid system at time t is, After time
the original fluid system moves to the real line position, The end
momentum of this fluid system at time is
u? ?
tV
dVu ?
?
?
??
???? ?? t?
tt ??
? ? ? ?
? ??????
???????
????
?
?
?
?
?
?
???????
?
?
?
?
?
??
??
AttV
AAttV
dAuutdVu
dAuutdAuutdVu
???
?????
??
???
21
86
? ? ? ?
? ??????
???????
????
?
?
?
?
?
?
???????
?
?
?
?
?
??
??
AttV
AAttV
dAuutdVu
dAuutdAuutdVu
???
?????
??
???
21
设 t 时刻流体系统与控制体 V重合,且控制体内任意空间
点上的流体质点速度为,密度为,则流体系统在 t 时刻
的初动量为,经过 时刻以后,原流体系
统运动到实线所示位置,这个流体系统在 时刻的末动
量为
u? ?
tV
dVu ?
?
?
??
???? ?? t?
tt ??
87
In the formula
? ??? ??
1A
dAuut ???
( namely part 1 in figure 3— 12) — the influent
momentum that non-original fluid system flows via
the control face,
? ??? ??
2A
dAuut ???
( namely part 2 in figure 3— 12) — the effluent
momentum that the original fluid system flows via
the control face,
21 AAA ??
— all control faces in control volume,So
the momentum of all particles in control volume
at time,
— dV u
t t V
?
?
?
?
?
?
? ?
??? ? ?
tt ??
? ? ? ?
??
???
??
??? ????
?
?
??
??
??
?
??
?
??
?? ??????????
??
?? A
tVttV
t
dAuutdVudVutdt nmdF ????
??
???1lim
0
1A
2A
So
? ???????
?
????? dAuudVutF
V
???? ??
This is the momentum equation expressed by Euler’s method,
88
式中
的动量;时刻控制体中所有质点— ttdVu
ttV
???
?
?
?
?
?
??
??? ??
? ??? ??
1A
dAuut ???
(即图 3— 12中部分 1) — 非原流体系统经控制面
流入的动量; 1A
? ??? ??
2A
dAuut ???
(即图 3— 12中部分 2) — 原流体系统经控制面
流出的动量;
2A
21 AAA ?? — 控制体的全部控制面。
于是
? ? ? ?
??
???
??
??? ????
?
?
??
??
??
?
??
?
??
?? ??????????
??
?? A
tVttV
t
dAuutdVudVutdt nmdF ????
??
???1lim
0

? ?
VA
F u d V u u d At ???? ? ??? ??? ??
这就是欧拉法表示的动量方程。
89
In the formula
?F? — resultant forces of all outside forces act on fluid in control volume,
dVut
V
????? ??
— the variance ratio of fluid momentum to time in
control volume, When it keeps permanent flowing this
item is zero,It reflects the non permanent character of
fluid motion,
? ??? ?
A
dAuu ???
— algebraic sum of the momentum which passes all
control faces in unit time, Because the momentum
flows out of the control volume is positive and the
momentum flows in the control volume is negative,
So this item also can be said to be a difference of outflow
momentum and inflow momentum in control volume in
unit time (the only outflow fluid momentum ),
90
式中
?F? — 作用在控制体内流体上所有外力的合力;
dVut
V
????? ?? — 控制体内流体动量对时间的变化率。当定
常流动时,该项为零。它反映了流体运动
的非定常性;
? ??? ?
A
dAuu ???
— 单位时间内通过全部控制面的动量代数和。因
为从控制体流出的动量为正,流出控制体的动
量为负,所以该项也可以说是单位时间内控制
体流出动量与流入动量之差(净流出的流体动
量)。
91
Inside the resultant outside force acts on fluid in control volume
equals to the sum of variance ratio to time that the fluid momentum flow
out of the control volume and fluid momentum in control volume in same
interval,
dt
The momentum theorem of control volume,
2,The momentum equation of steady incompressible whole fluid
The stream tube of the constant incompressible whole fluid is shown in
Figure 3— 13,choose the orientation of stream lines as positive orientation of
nature coordinate s, Choose the whole fluid stream tube expressed by dashed in
figure as control volume,So on the whole control volume surfaces there are
momentum exchange,Let the average velocity of these two areas of waterway
are,,
21 uu ??
Figure 3— 13 momentum
equation of exporting whole
fluid
simplify the formula( 3— 39) to be
? ?
? ? ? ? 1 2 1 2
1 1 2 2
1 2
u u Q u u Q
A d u u A d u u A d u u F A A
A
s
? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ?
? ? ? ? ? ?? ?
? b?
? ? ?
92
在 时间内,作用在控制体内流体上的合外力等于同
时间间隔内从控制体净流出的流体动量与控制体内流体动
量对时间的变化率之和。
dt
定常不可压缩总流流束如图 3— 13
所示。把流线方向取为自然坐标 s 的正
向,取如图中虚线所示的总流流束为控
制体,则总控制体表面上有动量交换。
令这两个过流断面上的平均速度为 。
21,uu ??
? ?
? ? ? ?1212
1122
12
uuQuuQ
AduuAduuAduuF
AA
A
s
????
??????????
????
??? ?????
?b?
???
(3— 40)
x
y
z
0 1A
2A1
1
2
21u
2u
s
图 3— 13导出总流的动量方程 式( 3— 39)可化简为
控制体的动量定理,
二、定常不可压缩总流的动量方程
93
in the formula is the auxiliary value of momentum brought
by using average velocity to calculate momentum, Under normal
onflow circumstance,
b
1?b3,Application of momentum equation
The Figure 3— 14 expresses a level turn pipeline,Because liquid
flow changes orientation in curve bend and the momentum changes
the press forces will be brought to act on tube well, So when
designing the conduit this acting force must be considered on the turn
position and try to balance it to avoid the conduit broken,
(1) The force that fluid acts on syphon
1
1
2
2
1P
2p
2u
1u x
y
R
b
?
Figure 3— 14 level
syphon
F ? A u
h
Figure 3— 15 the counter
pressure of jet
94
式中 为用平均速度计算动量而引起的动量修正系数,
在常见的湍流情况下 。 b 1?b
三,动量方程的应用
1
1
2
2
1P
2p
2u
1u x
y
R
b
?
图 3— 14 水 平 弯 管
F ? A u
h
图 3— 15 射 流 的 背 压
图 3— 14表示一水平转弯的管路,由于液流在弯道改变了流
动方向,也就改变了动量,于是就会产生压力作用于管壁。因此
在设计管道时,在管路拐弯处必须考虑这个作用力,并设法加以
平衡,以防管道破裂。
1、流体作用于弯管的力
95
Now we use momentum equation to confirm this kind of acting force,
? ?
? ? ? ????
???
c o s1c o s
c o sc o s
21
21
????
????
QuAppR
uuQRApAp
x
x
In a similar way, for y axis orientation
??? s i ns i n2 QuApR y ??
So according to formula ( 3— 40),we obtain
? ?uuQ ??? c o s
xRApAp ?? ?co s21
The change of momentum via x axis
Summation of acting forces via x axis
We use two parts to analyze,
From above formulas and can be obtained and then R can
be calculated,xR yR
x
y
yx R
RRRR 1-22 tg,??? ?
96
现在我们用动量方程来确定这种作用力。
? ?
? ? ? ????
???
c o s1c o s
c o sc o s
21
21
????
????
QuAppR
uuQRApAp
x
x
同理,对于 y 轴方向有
??? s i ns i n2 QuApR y ??
从以上公式可求出 与,从而可以计算 R。
xR yR
于是按式( 3— 40),有
? ?uuQ ??? c o s
xRApAp ?? ?co s21
沿 x 轴方向的动量变化为
沿 x 轴方向的作用力总和为
我们用两个分量来分析,
x
y
yx R
RRRR 1-22 tg,??? ?
97
(2) The counter pressure of jet( reverse thrust)
In the container of Figure 3— 5 on the position of depth equals h below the
liquid surface there is a outflow hole whose area is A and much smaller than the
area of liquid surface,On the precondition of the outflow hole is very small we
assume that the outflow process can be regarded as approximate stationary flow in
a very short time, At this time the outflow velocity of ideal fluid is,
At this instantaneousness the momentum change of level orientation of fluid will
decided by momentum flows out from container in unit time,This
momentum change certainly equals to resultant force of pressure which container
wall acts on the fluid via level orientation at magnitude,orientation and situation,
The flowing fluid acts a level thrust counter to outflow velocity on container wall
reversely,The magnitude of this force equals to the variance ratio of momentum of
fluid in container,That is
2AuQu ?? ?
gh2?m
A g hAuF ?? 22 ??
the magnitude of reverse thrust of jet( counter pressure ) certainly equals to the
double stationary pressure of fluid at outflow hole, If container can move the jet can
conquer the resistance of container motion and can make container move to reverse
orientation of fluid effluence velocity,
Indicate,
98
表明,
射流反推力(背压)的大小恰好等于出流孔处的流体静压力
的两倍。如果容器能够运动,射流就可能克服容器移动的阻力,
而使容器向流体射出速度的反方向运动。
A g hAuF ?? 22 ??
图 3— 5的容器在液面下深度等于 h 处有一比液面面积小得
多的出流孔,其面积为 A,在出流孔很小的前提下,假使只就
一段很短的时间来看,其出流过程就可以当作近似的稳定流看
待。这时理想流体的出流速度将是,这一瞬时,容器
由流体水平方向的动量变化将决定于单位时间内由容器流出来
的动量 。这一动量变化当然在大小上、方向上、位
置上恰好等于器壁在水平方向加在流体上的压力合力。流动流
体则反过来对容器壁上作用一个方向与出流速度相反的水平推
力。这个力的大小也就等于容器内流体的动量变化率,即
2AuQu ?? ?
2, 射流的背压(反推力)
2u gh?
99
§ 3-9 Moment of Momentum Equation
Momentum equation
confirm The magnitude of acting force
between fluid and borders,
Moment of momentum
equation
confirm The situation of acting force
between fluid and borders,
Assume is radius vector from a reference point to action spot of
fluid velocity vector, Then use this vector to have operation
with two ends of momentum equation, The moment of momentum
equation is
r?
r?u?
? ? ? ??????? ???????
AV
u d AurdVurtFr ?????? ??( 3— 41)
M? the left end of formula is the resultant momentum of resultant force on control volume to origin of coordinate, The first item of
right end is the variance ratio of moment of momentum in control
volume to time,When fluid are in stationary flow the first item
equals to zero, The second item of right end of equation is the fluid
moment of momentum difference of flowing out and flowing in the control faces or the only moment of momentum equation in the
cross the control faces,
100
§ 3-9 动量矩方程
动量方程 确定 流体与边界之间作用力大小;
动量矩方程 确定 流体与边界之间作用力位置;
设 为某参考点至流体速度矢量 的作用点的矢径,则用
此矢量 对动量方程两端进行矢性积运算,可得动量矩方程为
r?
r?
u?
? ? ? ??????? ???????
AV
u d AurdVurtFr ?????? ??
( 3— 41)
等式左断是控制体上合外力对于坐标原点的合力矩 。
等式右端第一项是控制体内动量矩对时间的变化率。在定常
流动时,第一项等于零。等式右端第二项是通过控制面流出
与流入的流体动量矩之差,或通过控制面的净动量矩。
M?
101
Now take a centrifugal water pump or a blower fan with stable
rotate speed as an example to deduce the moment of momentum
equation at stationary flow in turbine
?
1
2
1r
2r
1u?
1??
1w?
2w?
2u?
2??
Figure 3— 16 the velocity triangle of impeller
1— entrance ;
2— exit;
— velocity of following;
— the relative velocity of fluid in
impeller ;
— the absolute velocity of fluid
u
w
?
As shown in Figure 3— 16,choose all impeller flowing area
between the column face of impeller’s exit and entrance and impeller’s
side wall as control volume,
102
现以定转速的离心式水泵或风机为例来推导叶轮机中的
定常流动的动量矩方程。
?
1
2
1r
2r
1u?
1??
1w?
2w?
2u?
2??
图 3— 16叶轮的速度三角形
1— 入口;
2— 出口;
— 牵连速度;
— 流体在叶轮内的相对速度;
— 流体的绝对速度。
u
w
?
如图 3— 16所示,取叶轮出、入口的圆柱面与叶轮侧壁之
间的整个叶轮流动区域为控制体。
103
Assume the number of impeller laminas is limitless and the
thickness of each lamina is limitless thin then the relative velocity of
fluid between the laminas must along the tangent orientation of lamina
molded lines, So when using moment of momentum equation on
turbine we should use absolute velocity to replace the particle velocity
in formula (3— 41), Because the stationary motion the moment of
momentum equation of stationary flow in turbine is
? ? ? ? ? ? dArdArdArM
AAA
????????? ?????? ??????
12
??????? ( 3— 42)
Seen from velocity triangle in figure 3— 16
? ? ????? c o s,s i n rrrr ??? ????
So formula( 3— 42) can be expressed
? ?111222 co sco s ????? rrQM ??
104
假定叶轮叶片数目无限多,每个叶片的厚度均为无限薄,则
流体在叶片间的相对速度 必沿叶片型线的切线方向。于是将动
量矩方程式用于叶轮机时,需用绝对速度 代替( 3— 41)式中
的质点速度。由于定常运动,故得叶轮机中的定常流动的动量矩
方程
? ? ? ? ? ? dArdArdArM
AAA
????????? ?????? ??????
12
??????? ( 3— 42)
由图 3— 16所示的速度三角形可以看出
? ? ????? c o s,s i n rrrr ??? ????
因而式( 3— 42)可以写成
? ?111222 co sco s ????? rrQM ??
105
because the angular speed of turbine is
2
2
1
1
r
u
r
u
r
u ????
So the power of turbine is
? ?121222 co sco s ?????? uuQMP ??? ( 3— 43) or
? ? HuuggQP ??? 111222 c o sc o s1 ????? ( 3— 44)
This is the basic equation of pump and blower fan,It was first
obtained by Euler in 1754 so it is also called Euler’s equation,
For the turbine machine ( such as water turbine etc.) the fluid
flows into the inner margin 1 from outer margin 2 of impeller,the
basic equation is
? ?222111 c o sc o s1 ???? uugH ??
( 3— 45)
106
因为叶轮机的角速度为
2
2
1
1
r
u
r
u
r
u ????
故叶轮机的功率
? ?121222 co sco s ?????? uuQMP ??? ( 3— 43)

? ? HuuggQP ??? 111222 c o sc o s1 ????? ( 3— 44)
这是泵与风机的基本方程。它首先由欧拉在 1754年得到,
故又称欧拉方程。
对于涡轮类机械(如水轮机等),流体从叶轮外缘 2流入内
缘 1,基本方程为
? ?222111 c o sc o s1 ???? uugH ??
( 3— 45)
107
example3—3 the axes of a changing size syphon are on a same
level plane, The corner is and diameter turns from dA= 200
mm into dB= 150 mm,when the flux is the pressure is
try to query the acting force of current to segment AB
and don’t consider the loss of syphon segment,
o60??
sQ /m1.0 3?
2K N /m 18?Ap
solution,for the acting force questions of fluid and borders,
normally need to unite continuous equation,energy equation and
momentum equation,
A
y
xo
Q
? xR
yR
B
Figure of example 3— 3
2
2
2
m/s 66, 5 4
m/s 18, 3 4
1
? ?
? ?
p
d
Q V
d
Q V
V V
B
B
B
A
A
B A
?
?
use energy equation to calculate ) (
and
use continuous equation to Calculate ) (
108
例题 3—3 一变径弯管,轴线位于同一水平面,转角,直
径由 dA= 200 mm 变为 dB= 150 mm,在流量 时,
压强,求水流对 AB 段弯管的作用力。不计弯管段
的水头损失。
o60??
sQ /m1.0 3?
2K N /m 18?Ap
解,求解流体与边界的作用力问题,一般需要联合使用连续性
方程,能量方程和动量方程。
2
22
2
2
K N / m 03.7)
22
(
2
m / s 66.5
4
m / s 18.3
4
1
????
??
??
g
V
g
V
pp
p
d
Q
V
d
Q
V
VV
BA
AB
B
B
B
A
A
BA
?
?
?
用能量方程计算)(
和用连续性方程计算)(
A
y
xo
Q
? xR
yR
B
例题 3— 3 附图
109
Ax Bx x
Ay By y V V Q F ) ( ? ? ? ?
,4
4 4
x
y
y x
y x
R
R R R R R
R
1 2 2 tan,
KN 598,0 KN 538,0
? ? ? ?
? ?
?
B y B B V Q R d p 2 ) 0 sin ( sin ? ? ? ? ? ? ?
? A B x B B A A
V V Q R d p d p 2 2 ) cos ( cos ? ? ? ? ? ? ? ? ?
Substitute known data into it
Substitute outside force and velocity of flow and pay attention to
the positive and diverse of force and velocity of flow,
y R x R
AB
3
V V Q F ) ( ? ? ? ?
,then momentum equation at x and y orientation are and
Take out segment as partition and prescribe the positive
orientation of coordinate, Assume the orientation of reverse force
) (
2
2 2 KN/m 03, 7 ) 2 2 ( ? ? ? ? g
V
g
V p p B A
A B ?
110
x
y
yx
yx
ByBB
ABxBBAA
AyByy
AxBxx
yx
R
R
RRR
RR
VQRdp
VVQRdpdp
VVQF
VVQF
yxRR
AB
122
2
22
t a n,
KN 5 9 8.0,KN 5 3 8.0
)0s i n(s i n
4
)c o s(c o s
44
)(
)(
3
?
???
??
????
????
???
???
?
???
?
???
??
?
?
代入已知数据可求得
性,注意力和流速的正负代入题中的外力和流速
程:两个坐标方向的动量方和的方向,写和反力
坐标正方向,假定弯管作为隔离体取出,规定将流段)(
111
solution,( 1) for the fixed nozzle and lamina,
the pressure of jet equals to pressure of air all
around, According to energy equation if don’t
consider water head loss the value of flow
velocity on each section should keep constant,
u
?
?d
Figure of example
3— 4

example 3—4 try to query the formula of calculating impulse
force of jet to curly symmetrical lamina,

conclusion,The acting force of fluid acts on syphon equals to the
reverse force of syphon and orientation is reverse,namely

4
R R ? ? ?
) cos 1 (
) cos (
? ? ?
? ? ? ?
? ? ? ?
? ?
Q R F
Q R
So thrust of jet is
Assume jet section is A,flow velocity is u,flux is Q and corner of
lamina is a, according to momentum equation the reverse force
of lamina is
112
。相反,即
方向弯管的反力大小相等,流体对弯管的作用力与结论:)(
4
RR ???
例题 3—4 求射流对弯曲对称叶片的冲击力计算公式。
解, ( 1)对于喷嘴和叶片均为固定的情况,
射流的压强等于周围气体的压强,根据
能量方程式,如果不计水头损失,各断面流
速值应保持不变。
)c o s1(
)c o s(
???
????
??
????
??
QRF
QR
QA
故射流的推力为:
的反力为根据动量方程式,叶片
,,叶片转角为,流量为,流速为设射流断面为
u
?
?d
例题 3— 4 附图
113
So on engineering in order to increase the thrust of jet the corner of
many laminas all bigger than 90 degree, Such as the shape of the
laminas of stream turbine,which is designed according to this
principle,
Conclusion,see from the deduced jet thrust formula the corner of
lamina has quite influence on thrust,The thrust when a is 180
degree is twice as much as the thrust when a is 90 degree,
) (
3
at this time the power of lamina motion outputs is
As nozzle is fixed and lamina recedes at a speed u the flux and
flow velocity relative to lamina could be used to calculate
) cos 1 ( ) (
) cos 1 ( ) (
) cos 1 )( (
) 2 (
2
2
? ? ?
? ? ?
? ? ?
? ? ? ?
? ? ?
? ? ?
u u A Fu N
u A
u Q F
114
依此原理进行设计的。汽轮机的叶片形状就是
以提高射流的推力,如片的转角都大于因此在工程中有许多叶
倍。时射流推力的=时射流产生的推力是为影响很大,
对推力片的转角推力公式可以看出,叶结论:由推导出的射流)(
功率为:这时,叶片运动输出的
流量和流速计算:
对于叶片的向后退的情况,可用相度对喷嘴固定,叶片以速
,90
2 90 1 8 0
3
)c o s1()(
)c o s1()(
)c o s1)((
)2(
0
oo
2
2
??
?
???
???
???
????
???
???
uuAFuN
uA
uQF
u
115
Exercises of Chapter 3
Solution:( 1) tale the nozzle exit as norm to list the energy
equation at section 1— 1 and 2— 2,
s/m 0 1 7 4.0
4
m / s 86.8
2
00040
22
3
2
2
2
2
2
2
2
2
2
2
2
1
1
1
??
?
?????
?????
VdQ
V
g
V
g
V
z
p
g
V
z
p
?
??
?1 1
A
2
2
D
C
B
m2
m4
m3
?
?
?
?
Figure of exercise 3— 1
3— 1 The diameter of syphon known is 150 mm,the form is as shown
in the figure, the diameter of nozzle exit is 50mm, Query the flux
of syphon and the pressure value at point A,B,C and D,
2 d
116
第三章 习 题
3— 1 已知虹吸管的直径 d=150 mm,布置形式如图所示,喷嘴
出口直径,不计水头损失,求虹吸管的输水流量及
管中 A,B,C,D 各点压强值。
mm 502 ?d
解:( 1)取喷嘴出口为基准,列 1— 1
和 2— 2断面的能量方程,
s/m 0 1 7 4.0
4
m / s 86.8
2
00040
22
3
2
2
2
2
2
2
2
2
2
2
2
1
1
1
??
?
?????
?????
VdQ
V
g
V
g
V
z
p
g
V
z
p
?
??
?1 1
A
2
2
D
C
B
m2
m4
m3
?
?
?
?
习题 3— 1 附 图
117
2
2
2
KN/m 95, 3
KN/m 1, 20
KN/m 48, 0 4
?
? ?
? ?
D
C
B
p
p
p According to (3) method
obtain
)(
2
2 2
2 m/s 984, 0 ) ( ? ? ? ? ? D C B A d
d V V V V V
According to continuity equation )(
2
2 2
1
1
1
KN/m 2,68
0494, 0 3 0 4 0
2 2
3
?
? ? ? ? ?
? ? ? ? ?
A
A
A
A
A
p
p
g
V z p
g
V z p
List energy equation at 1-1and section A )(
?
? ?
118
2
2
2
2
22
1
1
1
22
2
K N / m 95.3
K N / m1.20
K N / m 48.0 3 4
K N / m 2.68
0 4 9 4.03040
22
11 3
m / s 9 8 4.0)(
2
?
??
??
?
?????
?????
?????
D
C
B
A
A
A
A
A
DCBA
p
p
p
p
p
g
V
z
p
g
V
z
p
A
d
d
VVVVV
)部方法,可得按第()(
断面能量方程和—列)(
根据连续方程)(
?
??
119
?
h?
Hg
D d
H
air
water
Figure of exercise 3— 2
mm25??h
3— 2 The diameter of air hose D is 100 mm and specific weight of
air is, Install a thin pose to connect with pool on
laryngeal whose diameter is d= 50 mm and the drop in level is
H=150 mm,When the number of mercury gauge is
begin absorb water into hose from pool, Ask how much is the flux
of air at this time without considering the loss of water head?
3 N/m 12? ?
List energy equation at positions 1 and 2 and query speed,
into above formula and solve it
The pressure on throat
the wind pressure on piezometer tube ) ( solution:
(2)
1
=- - 水 N/m 5, 1471 2 2 H p ? ?
)= - 气 汞 N/m 7,3331 ( 2 1 h p ? ? ? ?
Substitute continuous equation
+ +
2 2
(3)
2
2
2
2
1
1
V p V p
2
2
1 2 d
D V V ?
?
? ?
120
3— 2 风管直径 D=100 mm,空气重度,在直径 d= 50
mm 的喉部装一细管与水池相连,高差 H=150 mm,当汞测压
计中读数 时,开始从水池中将水吸入管中,问此时
空气流量为多大?
2N /m 12??
mm25??h
代入上式,解得由连续方程
++
两处能量方程,求速度,列
=--
喉部压力
)=-
测压管处风压)(解:

气汞
22
21 ( 3 )
N / m 5.1 4 7 1
( 2 )
N / m 7.3 3 3 1(
1
2
2
12
2
2
2
2
1
1
2
2
2
1
d
D
VV
V
p
V
p
Hp
hp
?
?
?
??
??
?
??
?
h?
Hg
D d
H
空气

题 3— 2 附 图
121
12
1 22
22
22
22
3
1
( ) 2 ( 3 3 3 1,7 1 4 7 1,5 ) 2 9,8
100
[ ( ) 1 ] 1 2 [ ( ) 1 ]
50
22.87 m / s
( 4 ) d isc h a r g e
3,1 4 0,1
22.87 0.18 m / s
44
p p g
V
D
d
D
QV
?
?
? ? ? ?
??
??
?
?
? ? ? ?
122
s/m 18.0
4
1.014.3
87.22
4
( 4 )
m /s 2 2, 8 7
]1)
50
1 0 0
[(12
8.92)5.1 4 7 17.3 3 3 1(
]1)[(
2)(
3
22
1
2
2
2
2
2
2
21
1
?
?
???
?
?
???
?
?
?
?
D
VQ
d
D
gpp
V
?
?
流量
123
3— 3 The pipeline of discharging water shows in figure and the known
diameter are, The number of mercury
gauge is,try to query flux and the number of pressure gage
without considering the resistance,
,mm 75,mm 100,mm 125 321 ??? ddd
mm 1 7 5?? h
solution:( 1) take interface of two
piezometer tubes as section 1— 1 and
section 2— 2 and assume the drop in level
of two sections is h,
? 1d
1
1
2
2
h
h?
2d
3d
3— 3 Figure
) 1 (
) ( 2 2 2
) 2 (
2 1
4
2
1
2
1 2
2
2 2
2
1 1
? ? ? ? ?
? ?
water
hg
water
water water water
Know from (1)
+ + +
List the energy equation of two sections
?
?
?
? ? ?
h h p p
d
d
g
V p
g
V p
g
V h p
( 2 1 ? ? ? ? ? water water hg )
Obtain the differential pressure of two points
from hydrostatics
? ? ? h h p p
124
3— 3 泄水管路如图所示,已知直径
汞比压计读数,不计阻力,求流量和压力表读数。
,mm 75,mm 100,mm 125 321 ??? ddd
mm 1 7 5?? h
解:( 1)取两个测压管接口处
为 1— 1,2— 2断面,并设两断面
高差为 h
)1( 1
)(
222
)2(
(
21
4
2
1
2
12
2
22
2
11
21
????
?
??
?????



水水水
水水汞
)中可知由(
+++
列两断面能量方程

压差由流体静力学可得两点
?
?
?
???
???
hh
pp
d
d
g
Vp
g
Vp
g
V
h
p
hhpp
题 3— 3 附图
? 1d
1
1
2
2
h
h?
2d
3d
125 KPa 7,78
KN/m 7,78 N/m 05,78692 ) ( 2
2 2
4
2 2 2
2
2
3
2
3
2
2
?
? ? ? ?
? ?
p
V V p
g
V p
g
V
namely
then the number
of pressure gage
) List the energy equation on the sections of pressure gage
and nozzle exit

? ?
m/s 21, 15 4,m/s 6,8 4
l/s 67s / m 067,0 4, 3
2
3
3 2
2
2
3
2
1
1
? ? ? ?
? ? ?
d
Q V
d
Q V
d V Q Qflux ) (
? ?
?
m/s 475,5
1 ) 100 125 [( 1000
) 9800 8, 9 13600 ( 175, 0 2
] 1 ) [(
( 2
4 4
2
1
1
1
?
?
? ′ ′ ?
?
? ? ?
d
d
h V
V

Substitute it into equation (2),solve out
water
water hg
?
? ?
126 K P a 7.78
K N / m 7.78 N / m 05.7 8 6 9 2)(
2
22
4
m / s 21.15
4
,m / s 6.8
4
l/s 67s/m 067.0
4
, 3
m / s 475.5
1)
100
125
[(1 0 0 0
)9 8 0 08.91 3 6 0 0(175.02
]1)[(
(2
2
222
2
2
3
2
3
2
2
2
3
3
2
2
2
3
2
1
1
44
2
1
1
1
?
????
??
????
???
?
?
???
?
?
??
?
p
VVp
g
Vp
g
V
d
Q
V
d
Q
V
d
VQQ
d
d
h
V
V

则压力表读数
出口断面能量方程)列压力表断面和喷嘴(
流量)(

得)中方程,解出代入(

水汞
?
?
??
?
?
??
127
NOTE,the data on pressure gage is relative pressure and it is called gage
pressure on engineering,And the scale on dial plate is often denoted by
,the relations between it and should be grasped,
M P ao r K P a,Pa
2N/m
3— 4 a syphon nozzle as shown in figure,The diameter of syphon is D =75 mm
and the diameter of nozzle exit is d =25 mm, The number of pressure gage
, 2K N /m 60?
M?
mm 300
mm 300
N 100
2V
2
2
1
1
y Mp
1V x
Figure of exercise 3— 4
try to query the strained instance of bolts beyond
,middle and below the standard point,The center
distance on the cross of four bolts is 150 mm and
the weight of syphon and water is 100 N, the
acting position is shown as in Figure,
solution,this problem mains on energy equation and
synthetically applies the continuous equation,energy
equation and moment of momentum equation,
( 1) take the fluid surrounded by entrance section,exit section and wall of syphon
as control volume, List the momentum equation at x and y orientation,
GR
AVpAVRVVQApR
y
xx
?
???????
)()( 12112221211 ???
128
注:压力表测得数据为相对压强,工程上称之为表压。又表
盘刻度常用 表示,应掌握其与 的关系。 M P a K P a,Pa 或 2N/m
3— 4 如图所示一弯管喷嘴,管径 D =75 mm,喷嘴出口直径
d =25 mm,压力表读数,求法点上、中、下螺
栓的受力情况。四个螺栓对角中心距为 150 mm,弯管及水重
100 N,作用位置如图示。
2K N / m 60?M?
解:此题是以动量方程为主,连续
性方程、能量方程、动量矩方程综
合运用的问题。
( 1)以弯管入口和出口截面以管
壁面包围的流体为控制体,列 x 轴
和 y 轴方向的动量方程。
mm 300
mm 300
N 100
2V
2
2
1
1
y Mp
1V
x
题 3— 4 附 图
GR
AVpAVRVVQApR
y
xx
?
???????
)()( 12112221211 ???
129
m/s 255,1,m/s 29,11
) (
2 2 2
2
1 2
2
1
2
2 1
1
1
2
1
2
2
2
2 2
2
2
1 1
1
? ?
?
? ? ? ? ? ? ? ? ?
V V
d
d V V
p z
g
V V
g
V p z
g
V p z
and known data into it,obtain Substitue
List the energy equation of sections (take nozzle axex as norm) ) (
? ? ?
N 6,83 4
N 43, 334,N 43,334 3
? ? ?
? ? ? ? ? ?
x
x x x
R F
R R R
the orientation is leftwards and pull the bolts The pull on each bolt is,
) substitute them into (1),(
130
N 6.83
4
N 43.334,N 43.334 13
m / s 255.1,m / s 29.11
)(
22
2
22 11 2
12
2
1
2
21
1
1
2
1
2
2
2
22
2
2
11
1
?
?
?
??????
??
?
??
?
??????
x
xxx
R
F
RRR
VV
d
d
VV
p
z
g
VV
g
Vp
z
g
Vp
z
拉力,每个螺栓受力为方向向左,对螺栓产生
)中公式求得)代入((
及已知数据,解得:代入
线为基准)断面能量方程(喷嘴轴—,—列)(
???
131
N 53,158 93, 74 6, 83
N 6,83
N 67,8 93, 74 6, 83
? ? ? ? ?
? ? ? ? ?
F F f
F f
F F f

= =
= the stresses on each
bolt are respectively



N 93,74 15, 0 24, 11,
m) N ( 24,11
3, 0 100 3, 0 025, 0 4 29, 11 1000
4
2 2
2 2 2
2
2
2 2
2
2 2 2 2
? ? ? ? ? ? ? ?
×
? ?
? ′ × ? ? ?
? ? ?
l
M F M l F
Gx y A V M
y A V y QV Gx M
so the outside momentum is clockwise,
The influence of syphon and weight of water do momentum to
origin of coordinate,The anticlockwise orientation is positive,
) (
? ?
? ?
×
132
N 53.15893.746.83
N 6.83
N 67.893.746.83
N 93.74
15.0
24.11
,
m)N( 24.11
3.01003.0025.0
4
29.111000
4
22
222
2
2
22
2
2222
?????
?????
??
?
?????
???
????????
???
FFf
Ff
FFf
l
M
FMlF
GxyAVM
yAVyQVGxM

==
=各螺栓受力分别为
故外力矩为顺时针。
时针为正对坐标原点取矩,以逆
弯管及水重产生的影响)(



?
?
??
133
134