1
Fluid Mechanics
2
3
§ 2–1 Preface
§ 2–2 Fluid Static Pressure and Its Characters
§ 2–3 Differential Equation of Fluid Equilibrium
§ 2–4 Equilibrium Fluids in Gravity Field
§ 2–5 Calculation and Measure of Static Pressure
§ 2–6 Relative Equilibrium of Liquid
§ 2–7 Total Pressure Acting on Plane of Static Fluids
§ 2–8 Total Pressure Acting on Curved Surface of Static
Fluids
Exercises of Chapter 2
Chapter 2 Fluid Statics
4
§ 2–1 引言
§ 2–2 流体静压强及其特性
§ 2–3 流体平衡的微分方程式
§ 2–4 重力场中的平衡流体
§ 2–5 静压强的计算和测量
§ 2–6 液体的相对平衡
§ 2–7 静止流体作用在平面上的总压力
§ 2–8 静止流体作用在曲面上的总压力
第二章 习 题
第 二 章 流 体 静 力 学
5
§ 2-1 Preface
Fluid statics researches the mechanics rules and applications
of Equilibrium fluids,
Equilibrium
?
a,Fluids have not relative motion
to the earth
b,Fluids have not relative motion
to the moving container,?
The relative
Equilibrium to the
coordinate system,
There are not relative motion among the Equilibrium fluids and
fluids do not appear having viscosity,The static pressure in the
normal direction is the only surface force acting on fluids,
Main tasks in this chapter,Research distributed regulations of
fluid static pressure in space,the total pressure acts on the fixed
wall( such as planes or curved surfaces),etc,Moreover solve some
factual engineering questions basing on this,
6
§ 2-1引言
流体静力学研究平衡流体的力学规律及其应用。
平衡
?
a.流体对地球无相对运动;
b.流体对运动容器无相对运动。 ?
相对于坐标系的相
对平衡
平衡流体相互之间没有相对运动,流体不呈现粘性,作
用在流体上的表面力只有法向的静压强。
本章主要任务,研究流体静压强在空间的分布规律;平衡
流体作用在固壁(平面或曲面)上的总压力等。并在此基础上
解决一些工程实际问题。
7
§ 2-2 Fluid Static Pressure and Its Characters
Definition,
dA
dP
A
Pp
A ??
??
?? 0l im
( 2— 1) In the formula,
—— area of infinitesimal unit
—— the total pressure acting on the surface of
A?
A?P?
Vector expression of fluid static pressure on the surface of
infinitesimal unit is
ApdPd ?? ?? ( 2— 2)
The minus shows that the direction of fluid static pressure goes
along the inner normal direction of the compression face,
Characters,
The magnitudes and directions are all have relation to the
compression face,
p
The pressure in the Equilibrium fluid is called fluid static
pressure,It is expressed by
8
§ 2-2流体静压强及其特性
定义,
dA
dP
A
Pp
A ??
??
?? 0l im
( 2— 1) 式中
—— 微元面积;
—— 作用在 表面上的总压力大小。
A?
A?P?
微元表面上的流体静压力矢量表达式为
ApdPd ?? ?? ( 2— 2)
负号说明流体静压力的方向是沿受压面的内法线方向。
特点,
大小与方向均与受压面有关。
p平衡流体中的压强称为流体静压强,记作
9
Characters of Fluid Static Pressure
p
? np
m
Incise the static fluid into two parts with an arbitrary plane,just
as shown in Figure 2— 1,Take the shadow part as partition,if the
direction of the static pressure at a certain point on incisory plane
doesn’t go along the normal direction but arbitrary,then can be
decomposed tangent component and normal component, The
static fluid dose not undergo shearing stress and pulling force or else
the equilibrium will be destroied,So the only direction of static
pressure is consistent with the normal direction on the acting face,
1,The direction always goes along the inner normal of the
compression face,
10
流体静压强的特性,
p ? np
m
用任意一个平面将静止流体切割分为两部分,如图 2— 1,取
阴影部分为隔离体,如果切割平面上某一点 处静压力方向不是
法线方向而是任意方向的,则 可分解为切向分量 和法向分量
,静止流体即不承受切应力,也不承受拉力,否则将破坏平衡,
所以静压力唯一可能的方向就是和作用面内法线方向一致。
一、静压强方向永远沿着作用面内法线方向。
11
p
np
?
m
Figure2— 1 unit body in
the static fluid
z
x
y
yp
zp
f
np
xp
?n
A
B
C
Figure 2— 2 the infinitesimal
wedge-shaped in the equilibrium
fluid
12
p
np
?
m
图 2— 1静止流体中的单元体
z
x
y
yp
zp
f
np
xp
?n
A
B
C
图 2— 2平衡流体中的微元四面体
13
2,On any points in the static fluid the static pressures in all
directions are equal without relations to the azimuth of acting
face,
Assume that the pressure at a random point of each surface of
the wedge-shaped is expressed by,and respectively,
Then the surface force acting on the infinitesimal wedge-shaped is
xp yp zp
dx dy dz
Select a infinitesimal wedge-shaped OABC in the equilibrium fluid
whose length of sides are,and, As shown in Figure 2— 2,
14
二、静止流体中任何一点上各个方向的静压强大小相等,与作
用面方位无关。
设四面体每个面上任意一点的压强分别用,, 及
表示,则作用在微元四面体表面力为
xp yp zp
dx dy dz 在平衡流体中任取边长为,, 的微元四面体 OABC。
如图 2— 2所示。
15
kd x d yppjd x d zppid y d zpp
kznA B Cpd x d yp
jynA B Cpd x d zp
ixnA B Cpd y d zpPd
nznynx
nz
ny
nx
???
?
?
??
2
1
)(
2
1
)(
2
1
)(
)),c o s (
2
1
(
)),c o s (
2
1
(
)),c o s (
2
1
(
??????
???
???
???
( 2— 3)
16
kd x d yppjd x d zppid y d zpp
kznA B Cpd x d yp
jynA B Cpd x d zp
ixnA B Cpd y d zpPd
nznynx
nz
ny
nx
???
?
?
??
2
1
)(
2
1
)(
2
1
)(
)),c o s (
2
1
(
)),c o s (
2
1
(
)),c o s (
2
1
(
??????
???
???
???
( 2— 3)
17
If the fluids are in balance state,According to,
simplify the formula and get the results,0?? FdFd m
??
0
3
1
0
3
1
0
3
1
???
???
???
dzfpp
dyfpp
dxfpp
znz
yny
xnx
?
?
?
?
( 2— 5)
)(61 kfjfifd x d y d zfdVFd zyxmm ??? ???? ??
( 2— 4)
The mass force on the infinitesimal fluid,
18
流体处于平衡状态,根据,简化后有,0?? FdFd
m
??
0
3
1
0
3
1
0
3
1
???
???
???
dzfpp
dyfpp
dxfpp
znz
yny
xnx
?
?
?
?
( 2— 5)
)(61 kfjfifd x d y d zfdVFd zyxmm ??? ???? ??
( 2— 4)
微元流体上的质量力为,
19
The fluid static pressures on different space points are different
to each other normally, That is to say the fluid static pressure is a
continuous function of space coordinates,
)、,zyxpp (? ( 2— 7)
nzyx pppp ???
( 2— 6)
dz dy dx,
n z y x p p p p
when and go to zero the wedge-shaped lessens to
a point O, The pressures,,and on any points turn into
the fluid static pressure at point O in all directions,So we can get
20
不同空间点的流体静压强,一般来说是各不相同的,即
流体静压强是空间坐标的连续函数。
)、,zyxpp (? ( 2— 7)
nzyx pppp ???
( 2— 6)
dzdydx,、
nzyx pppp,、、
趋于零时,四面体缩到 O点,其上任何一点
的压强 就变成 O点上各个方向的流体静压强,
于是得到
21
§ 2-3 Differential Equation of Fluid Equilibrium
1,Euler’s equilibrium equation
As shown in Figure2— 3,Select a infinitesimal wedge-shaped
ABCDE in the balance fluid whose length of sides are,and
, Assume that the density is and the pressure is at point A,
dx
dz
dy
? p
D
z
A
B
E
o
x
y
Figure 2— 3 infinitesimal hexahedron
Euler put forward the equation in 1755,
C
22
§ 2-3流体平衡的微分方程式
一、欧拉平衡方程式
如图 2— 3,在平衡流体中任取边长为,, 的一个微
元六面体 ABCDE,设 A点的密度为,压强为 。
dx dzdy
? p
D
z
A
B
E
o
x
y
图 2— 3微元六面体
欧拉于 1755年提出。
C
23
Obtain from (1— 17),the mass force of fluid is
)( kfjfifdmFd zyxm
????
???
)( kfjfifd x d y d z zyx ??? ??? ? ( 2— 8)
Obtain from( 2— 2) and( 2— 3),the surface force of fluid is
ApdPd ?? ??
kd x d yppjd x d zppid y d zpp DACABA ??? )()()( ??????
( 2— 9) In this formula
— The pressure at a point on surfaces DC,BD and BC p A
The pressures at a point on surfaces BE,CE and DE,
—,, p p p D C B
24
由( 1— 17)式可得流体的质量力为,
)( kfjfifdmFd zyxm
????
???
)( kfjfifd x d y d z zyx ??? ??? ? ( 2— 8)
由( 2— 2)、( 2— 3)式得流体的表面力为,
ApdPd ?? ??
kd x d yppjd x d zppid y d zpp DACABA ??? )()()( ??????
( 2— 9)
式中
面上一点的压强;、、— BCBDDCp A
面上一点的压强。、、—、,DECEBEppp DCB
25
is given, The pressure is the continuous function of
coordinates in the balance fluid,namely, Expand it
according to the taylor’s formula for multi dimensions continuous
functions and omit the infinitesimal above second order,the result is
pp A ?
? ?zyxpp,,?
dz
z
p
pp
dy
y
p
pp
dx
x
p
pp
D
C
B
?
?
??
?
?
??
?
?
??
?
( 2— 10)
Get from( 2— 9) and( 2— 10)
)( kzpjypixpd x d y d zPd ???? ??????????
( 2— 11)
26
已知,而且压强在平衡流体中是坐标的连续函数,
即,按照多元连续函数的泰勒公式展开并略去
二阶以上无穷小量,可得
pp A ?
? ?zyxpp,,?
dz
z
p
pp
dy
y
p
pp
dx
x
p
pp
D
C
B
?
?
??
?
?
??
?
?
??
?
( 2— 10)
由( 2— 9)、( 2— 10)式可得
)( kzpjypixpd x d y d zPd ???? ??????????
( 2— 11)
27
from( 2— 8) and( 2— 12) we can obtain
0111 ??
?
?
?
?
?
???
?
???
?
?
???
???
?
???
?
?
???
???
?
???
?
?
?? k
z
pfj
y
pfi
x
pfd x d y d z
zyx
???
????
namely
0
1
0
1
0
1
?
?
?
?
?
?
?
?
?
?
?
?
z
p
f
y
p
f
x
p
f
z
y
x
?
?
?
?
( 2— 13)
The formula (2—13) is the differential equation of fluid
equilibrium ( Euler’s equilibrium equation),
physical meaning,
When fluids are in balance the mass force acting on the unit mass
fluid equals to the resultant force of pressure,
According to the condition of fluid equilibrium 0?? F? ( 2— 12)
28
由( 2— 8)及( 2— 12)式可得
0111 ??
?
?
?
?
?
???
?
???
?
?
???
???
?
???
?
?
???
???
?
???
?
?
?? k
z
pfj
y
pfi
x
pfd x d y d z
zyx
???
????

0
1
0
1
0
1
?
?
?
?
?
?
?
?
?
?
?
?
z
p
f
y
p
f
x
p
f
z
y
x
?
?
?
?
( 2— 13)
( 2—13)式为流体平衡微分方程式(欧拉平衡方程式)。
物理意义,
当流体平衡时,作用在单位质量流体上的质量力与压力的合
力相平衡。
根据流体平衡条件 0?? F? ( 2— 12)
29
1,Potential function of mass force
0)(1 ???????????? dzzpdyypdxxpdzfdyfdxf zyx ?
( 2— 14)
because, then ? ?zyxpp,,?
? ?dzfdyfdxfdp zyx ??? ? ( 2— 15)
The formula (2—15) is the general one of the Euler’s equilibrium
formula (differential formula of pressure),
For incompressible fluid is constant,Know from math analysis
theory that the right-hand sides in the formula( 2— 15) are certainly
the whole differential of a certain coordinate function,
?
? ?zyxWW,,?
dx dzdyFirst formula( 2— 13) multiplies by, and respectively
and then summate the three results,the end is
30
二、质量力的势函数
0)(1 ???????????? dzzpdyypdxxpdzfdyfdxf zyx ?
( 2— 14)
因,则有 ? ?zyxpp,,?
? ?dzfdyfdxfdp zyx ??? ? ( 2— 15)
( 2—15)式为欧拉平衡方程式的综合式(压强微分公式)。
对于不可压缩流体 常数,根据数学分析理论可知,
( 2— 15)式右端也必是某一坐标函数 的全微
分。
??
? ?zyxWW,,?
dx dzdy将( 2— 13)式分别乘以,, 后相加,则有
31
let
z
W
f
y
W
f
x
W
f
z
y
x
?
?
??
?
?
??
?
?
??
( 2— 16)
?
obtain from formula( 2— 15) and( 2— 16)
namely dWdp ???
? ? dWdzfdyfdxf zyx ?? ???? ( 2— 17)
The coordinate function which satisfy the formula (2-
16) is called potential function of mass force,The mass force is called
mass force with potential,
? ?zyxW,,
Conclusion,
Fluids who Only are acted by the mass force with potential can
keep equilibrium,
32

z
W
f
y
W
f
x
W
f
z
y
x
?
?
??
?
?
??
?
?
??
( 2— 16)
?
由( 2— 15)、( 2— 16)式可得

dWdp ???
? ? dWdzfdyfdxf zyx ?? ???? ( 2— 17)
我们称满足( 2— 16)式的坐标函数 为质量力的
势函数,而质量力称为有势的质量力。
? ?zyxW,,
结论,
只有在有势的质量力作用下流体才能平衡。
33
[example2—1] Try to calculate the potential function of mass force of the
equilibrium fluid in gravity field,
[solution] choose the coordinates system just as shown in Figure 2— 4,
Component forces of unit mass are
dz
z
Wdy
y
Wdx
x
WdW
gfff zyx
?
??
?
??
?
??
???? so,,0
gdz?
)( dzfdyfdxf zyx ????
( 2— 18)
g? z
z
x
yo
Figure 2— 4 component forces of mass in gravity field
Suppose the potential function is zero on the
datum plane, that is to say that
on zero potential plane,So the potential
function of equilibrium fluid in the gravity
field after integral is
gzW ? ( 2— 19)
0?z0?W
34
[例题 2—1]试求重力场中平衡流体的质量力势函数。
[解 ]取如图 2— 4所示的坐标系,则单位质量分力为
dz
z
Wdy
y
Wdx
x
WdW
gfff zyx
?
??
?
??
?
??
???? 于是,,0
gdz?
)( dzfdyfdxf zyx ????
( 2— 18)
gzW ? ( 2— 19)
g? z
z
x
yo
图 2— 4重力场的质量分力
设基准面 处的势函数值为零,即零势面上 。
于是积分可得重力场中平衡流体的力势函数为
0?z 0?W
35
1,Isobaric Surface
Defintion,
on equal pressure plane
Obtain from the formula( 2— 15) the differential equation of
isobaric surface is
0??? dzfdyfdxf zyx ( 2— 20)
The plane consisted by equal pressure points in fluid is called
equal pressure surface,
Cp?
0?dq
36
三、等压面
定义,
在等压面上
由( 2— 15)式可得等压面的微分方程式是
0??? dzfdyfdxf zyx ( 2— 20)
流体中压强相等各点所组成的平面叫做等压面。
Cp?
0?dq
37
characters,
CW ? ( 2— 21)
The surface whose potential function of mass force is constant
is called equipotential surface, so equal pressure surface is also a
equipotential surface,
2.Equal pressure surface is vertical with unit mass force vectors,
0?? sdf ??
( 2— 22)
in it is a arbitrary segment on Equal pressure surface,
So Equal pressure surface is vertical with unit mass force
vectors,
sd?
Change the formula( 2— 20) into the following vector form
0?dp 0?dWSeen from formula( 2— 17) if and
1,equal pressure surface is also a equipotential surface,
38
性质,
CW ? ( 2— 21)
质量力势函数等于常数的面叫作等式面,所以等压面也是等式
面。
2、等压面与单位质量力矢量垂直。
0?? sdf ??
( 2— 22)
式中 是等压面上任意线段。
因而等压面与单位质量力矢量垂直。
sd?
将式( 2— 20)写成矢量形式
0?dp 0?dW由( 2— 17)式可见 时
1、等压面也是等式面;
39
§ 2-4 Equilibrium Fluid in the Gravity Field
Euler’s equation in gravity field,
g d zdWdp ?? ???? ( 2— 23)
1,The basic formula of static pressure of incompressible fluid
0?? gdpdz ?
After integral in continuous region of fluid the
formula is
Cgpz ?? ? ( 2— 24)
So the formula( 2— 23) turns into
For the continuous,homogeneous and incompressible fluid the
density is constant,
40
§ 2-4 重力场中的平衡流体
重力场中的欧拉方程式,
g d zdWdp ?? ???? ( 2— 23)
一、不可压缩流体的静压强基本公式
0?? gdpdz ?
在流体连续区域内积分,则
Cgpz ?? ? ( 2— 24)
因而( 2— 23)式变成
对于连续、均质的不可压缩流体来说,其密度是常量。
41
The formula( 2— 24) is the basic equation of continuous,
homogeneous and incompressible fluid in gravity field,
in the formula
— the plumb coordinate at any point in equilibrium fluids
— static pressure at any point in equilibrium fluids p
z
42
( 2— 24)式是重力场中连续、均质、不可压缩流体的静
压强基本方程式。
式中
— 平衡流体中任何一点的铅垂坐标;
— 平衡流体中任何一点的静压强。 p
z
43
2,Distributed regulation of static pressure
g
pz
g
pz
??
0
0 ???Move the item
ghpzzgpp ?? ????? 000 )( ( 2— 25)
Explain the formula( 2—25),
1.The pressure at any point in static fluid equals to the sum of
surface pressure and the fluid weight on unit area from the
point to the freedom surface of fluid,
2.In static fluid the pressure changes with the depth as linear
regulation,As shown in Figure (2— 5),
3.The isobaric surface in static fluid undergoed only gravity is
horizontal plane (contour plane)。
p
0p gh?
The formula( 2— 24) turns into 00,ppzz ??
According to the boundary conditions on freedom surface of
equilibrium fluid,
44
二、静压强分布规律
g
pz
g
pz
??
0
0 ???移项得
ghpzzgpp ?? ????? 000 )( ( 2— 25)
( 2—25)式说明,
1、静止流体中任一点的压强 等于表面压强 与从该点
到流体自由表面的单位面积上的液体重量 之和。
2、在静止流体中,压强随深度按线性规律变化,如( 2— 5)
所示。
3、只受重力作用的静止液体中的等压面为水平面(等高面)。
p
0p
gh?
则( 2— 24)式化为
00,ppzz ??
根据平衡流体自由表面上的边界条件,
45
Figure 2— 5 The distributed figure of
static pressure
h
0p gh?
p
46
图 2— 5 静压强分布图
h
0p gh?
p
47
3,The geometry and physical meaning of basic formula of static
pressure
g
pz
g
pz
??
2
2
1
1 ???
The manometric tube is in Figure 2— 6, 0— 0 is the datum plane,
See the figure
1?
?2
1z
2z
?2
p
Figure 2— 6 Geometry and physical meaning of the basic
formula of static pressure
?1
p
0 0
48
三、静压强基本公式的几何意义和物理意义
g
pz
g
pz
??
2
2
1
1 ???

如图 2— 6所示测压管,令基准面为 0— 0,从图中可看出
1?
?2
1z
2z
?2
p
图 2— 6静压强基本公式的几何意义和物理意义
?1
p
0 0
49
1,Geometry meaning
meaning,
In the equilibrium fluid the piezometer head on each point is
constant,
g
pz
??
g
p
?
See from geometry angle,
z denotes the height from the position of a certain point to the
datum plane, It is called position head,
denotes the height of liquid column which is acted by point
pressure, It is called pressure head,
is called piezometer head,
50
1、几何意义
意义,
平衡流体中,各点的测压管水头是一常数。
g
pz
??
g
p
?
从几何角度看,
z 表示某点位置到基准面的高度,称为位置水头;
表示某点压强作用下液柱高度,称为压强水头;
称为测压管水头。
51
2,phsical meaning,
meaning,
In the equilibrium fluid the whole potential energy is constant,
g
p
?
g
pz
??
z
see from physical angle,
denotes the situation potential energy of unit
gravity fluid,
denotes the pressure potential energy of unit
gravity fluid,
denotes whole potential energy,
52
2、物理意义,
意义,
平衡流体中各点的总势能是一常数。
g
p
?
g
pz
??
z
从物理角度看,
表示单位重力流体的位置势能;
表示单位重力流体的压强势能;
表示总势能。
53
§ 2-5 Calculation and Measure of quiet pressure
1.Calculation of static pressure
? ??
pressure
calculation basis
?
Absolute pressure
Gage pressure definition,
International prescribes that 1 standard atmosphere pressure equals to
101325, On engineering the engineering atmosphere pressure is
used, 1 engineering atmosphere pressure equals to 2m
?
。241081.9 m??
The pressure using absolute vacuum as basis to calculate is called absolute pressure,sign p。
The pressure using local atmosphere pressure as basis to
calculate is called relative pressure.sign,or 0 0 < > e p
In it
ae ppp ??
( 2— 26)
The absolute pressure which is less than local pressure is
called vacuum pressure (degree of vacuum ),sign
pppp aeV ???? ( 2— 27)
e p
vP
0P>
e p
a p
54
§ 2-5 静压强的计算和测量
一、静压强的计算
? ??
压强 计算基准
?
绝对压强
相对压强
2m?国际上规定,1标准大气压强 =101325 。
工程上采用工程大气压强,1工程大气压强 = 。
241081.9 m??
定义,
以完全真空为基准计算的压强称为绝对压强,记作 p。
以当地大气压强 为基准计量的压强称为相对压强,
记作 。
其中
ae ppp ??
( 2— 26)
流体的绝对压强比当地压强小多少的压强称为真空
压强(真空度),记作
pppp aeV ???? ( 2— 27)
0P>
ap
ep 00eepp><或 。
Vp。
55
[example 2—2] The double ends of glass tube in the closed water
container open,As shown in Figure (2— 7),Given that when the glass
tube extends the depth h=1.5m under water surface,no air across the
glass tube into container and no water into glass tube,Try to calculate the
absolute pressure and gage pressure on the water surface in the
container at this time,0p 0ep
[solution] Apply the formula (2— 25) at a point on water surface in
container and on the bottom of glass tube,namely
apghp ?? ?0 when there is not specific explain 1local atmosphere pressure is
considered as 1 engineering atmosphere pressure,so
ghpp a ???0
2N /m8 3 3 8 5?
5.181.91 0 0 09 8 1 0 0 ????
ap
get from formula( 2— 26)
ghppp ae ????? 00
2N /m1 4 7 1 5
5.18.91 0 0 0
??
????
0p
ap
Figure 2— 7 of
example 2— 2
56
[例题 2—2]封闭盛水容器中的玻璃管两端开口,如图( 2— 7)所示
,已知玻璃管伸入水面以下 h=1.5m时,既无空气通过玻璃管进入容
器,又无水进入玻璃管。试求此时容器内水面上的绝对压强 和
相对压强 。 0p
0ep
[解 ] 将式( 2— 25)用于容器内水面上任一点和玻璃管底部,

apghp ?? ?0
当地大气压强 在没有特别说明情况下,一般以 1个
工程大气压强计。故
ghpp a ???0
2N /m8 3 3 8 5?
5.181.91 0 0 09 8 1 0 0 ????
ap
由式( 2— 26)求得
ghppp ae ????? 00
2N /m1 4 7 1 5
5.18.91 0 0 0
??
????
0p
ap
图 2— 7例 2— 2图
57
2,Static pressure of fluid
?
Metal
Electrical logging
Liquid column
the measure instruments of
static pressure of fluid
The measurement precision of liquid column instrument is high and the
range is lower, It adapts to the experiment place with low pressure,
The typic liquid column instrument
Figure 2— 9 U shape tube manometer
ghP e ??
As shown in Figure 2— 8 the gage pressure in water can be measured
(1),manometric tube
0p
ap
?
A
h
Figure 2— 8 Manometric tube
ap
0p
A
p
?
1 2
m?
1h
2h
58
二、流体静压强
?
金属式
电测式
液柱式
流体静压强的测量仪器
液柱式仪表测量精度高,量程小,适用于低压实验场所。
常用的液柱仪表
图 2— 9U形管测压计;ghP e ??如图 2— 8可测水中大于大气压的相对压强
1、测压管
0p
ap
?
A
h
图 2— 8 测压管
ap
0p
A
p
?
1 2
m?
1h
2h
59
2,U shape tube manometer
22
11
ghpp
ghpp
ma ?
?
??
??
12 ghghppp mae ?? ????
( 2— 28)
Because points 1 and 2 of U shape tube are on a same isobaric
surface, from this the relative pressure at point A is
21 pp ?
When the fluid being measured is gas,because the density of
gas is relative small the last item in the above formula can
be ignored, 1
gh?
1h 2h
when the pressure of fluid being measured is relative large the U
shape tube manometer is usually used to obtain and in the
continuous and at rest Hg,According to the formula( 2— 25)
60
2,U 形管测压计
22
11
ghpp
ghpp
ma ?
?
??
??
12 ghghppp mae ?? ????
( 2— 28)
由于 U形管 1,2两点在同一等压面上,,由此可
得 A点的相对压强 21 pp ?
当被测流体为气体时,由于气体的密度比较小,上式
最后一项 可以忽略不计。
1gh?
1h 2h
当被测流体压强较大时,常采用图 2— 9所示的 U形管测压
计在连续静止的汞中读出, 。根据( 2— 25)式
61
3.Differential manometer
Definition,
? ? ghpp ?? ???? 21 ( 2— 29)
Upside the conduit there is water column
differential manometer with counter U shape tube
,Ignore the density of air,then the calculation
formula is
gHpp ??? 21 ( 2— 30)
Compare the formula( 2— 29) and( 2— 30) on precondition of
the instrument tube is definite,the range of Hg differential
manometer is bigger,but the precision of water column differential
manometer is higher,
The instrument being used to measure the pressure between two points
is called differential manometer,As shown in Figure 2— 10.Below the
hose there is a Hg differential manometer with U shape tube,It’s
calculation formula is
Figure 2— 10 Differential
manometer
h
H
??
2p1p
62
3、差压计
定义,
? ? ghpp ?? ???? 21 ( 2— 29)
管道上部为倒 U 形管式水柱差计,忽略空
气密度,则计算公式为,
gHpp ??? 21 ( 2— 30)
比较( 2— 29)及( 2— 30)式,在仪器管一定的前提下,汞
差压计量程大,而水柱差压计的准确度高。
测量两点压强差的仪器叫做压差计。如图 2— 10所示。
水管下部为 U形管式汞差压计,它的计算公式为,
图 2— 10差压计
h
H
??
2p1p
63
4,Micromanometer
The instrument being used to measure the less pressure or pressure
difference is called micromanometer,The instrument is shown in
Figure 2— 11 is one kind,
Definition,
2p
h?
h
1p
1A
l
?
2A
?
Figure 2— 11 Inclined micro-manometer
64
4,微压计
测量较小压强或压强差的仪器叫做微压计。如图 2— 11所示
就是其中一种。
定义,
2p
h?
h
1p
1A
l
?
2A
?
图 2— 11 倾 斜 式 微 压 计
65
So get from formula( 2— 25)
h
The inclined micromanometer consisted by a glass tube ( the
area of cross section is ) whose obliquity can be adjusted
and a small container with liquid (the area of cross section is,If
the entrance pressures of inclined tube equals to the entrance
pressure of container then the liquid surfaces in container and in
inclined tube are even,When don’t equal to such as,
then the liquid surface of inclined tube will ascend and the
liquid surface of container will descend,
?
21 pp <
2A
1p 2p
2p
1p
1A
h?
)(12 hhgpp ???? ? ( 2— 31)
Because the descending volume in container equals to the
ascending volume in inclined tube,namely
lAAh
2
1??
( 2— 32)
and
?sinlh ? ( 2— 33)
obtain from formulas( 2— 31),( 2— 32) and( 2— 33)
lAAgpp )( s in
2
1
12 ??? ??
( 2— 34)
66
因此,由( 2— 25)可得
倾斜式微压计是由一根倾角 可调的玻璃管(横截面面
积为 )和一个盛液体的小容器(横截面面积为 )组成。
如果斜管入口压强 和容器入口压强 相等,则容器内液面
与斜管中的液面齐平;当 和 不相等时,例如,则
斜管中液面将上升,容器内液面下降 。
?
21 pp <
h
2A
1p 2p
2p1p
1A
h?
)(12 hhgpp ???? ? ( 2— 31)
由于容器内液面下降的体积与斜管中液面上升的体积相等,
即有
lAAh
2
1??
( 2— 32)

?sinlh ? ( 2— 33)
由( 2— 31)、( 2— 32)、( 2— 33)式得
lAAgpp )( s in
2
1
12 ??? ??
( 2— 34)
67
§ 2-6 Relative Equilibrium of liquid
Definition,
Except the equilibrium problems of fluid in gravity field there
two kinds of circumstances on engineering,
1,Containers do linear motion at a
uniform acceleration
y
z
o
horizontal datum
a?
ma?g?
?
?
Figure 2— 12 linear motion at
uniform acceleration ?
a
In Figure 2— 12,the container
with liquid does linear motion
downwards at uniform acceleration
along the inclined plane which
makes an angle with the level
plane
If the container with liquid or machine part have relative motion to
the fixed coordinate system on earth,but no relative motion between
the liquid particles there,This motion state is called relative equilibrium,
68
§ 2-6 液体的相对平衡
定义,
除了重力场的流体平衡问题外,工程上常见的有如下两种,
一、容器作匀加速直线运动
y
z
o
水平基面
a?
ma?g?
?
?
图 2— 12匀加速直线运动
?
a
如图 2— 12,盛有液体的容器沿着与水平基面成 角的斜面
向下以匀加速度 作直线运动。
若盛液体的容器或机件对地面上的固定坐标系有相对运动,但
液体质点彼此之间却没有相对运动,这种运动状态称为相对平衡。
69
According to the activity method the mass forces on the
equilibrium fluid particles are
The fictitious inertial force contrary to the direction
of acceleration
gravity
According to Figure 2-12 the component forces of unit
mass are
gaf
af
f
z
y
x
??
?
?
?
?
s i n
c o s
0
?
( 2— 35)
70
根据动静法,成相对平衡流体质点上的质量力有
与加速度方向相反的虚构惯性力;
重力。
由图 2— 12可得单位质量分力为
gaf
af
f
z
y
x
??
?
?
?
?
s i n
c o s
0
?
( 2— 35)
71
Substitute the formula (2— 35) into the (2— 20),the result is
namely
??? t a ns inc o s ??? ag adydz
0)s i n(c o s ??? dzgadya ?? ( 2— 36)
Do integral to the above formula
(1),Equation of isobaric surface
czgaya ??? )s i n(c o s ??
( 2— 37)
?
mf
The isobaric surfaces ( including free surfaces) are a group of
parallel surfaces which makes an angle with the level surface,The
group of surfaces should keep vertical with the unit mass force,
Explain,
,Because and are all constant is a fixed value,?a g ?
72
将( 2— 35)式代入( 2— 20)式可得

??? t a ns inc o s ??? ag adydz
0)s i n(c o s ??? dzgadya ?? ( 2— 36)
积分上式得
1、等压面方程
czgaya ??? )s i n(c o s ??
( 2— 37)
因 都是常数,故 是一定值。 ag.,? ?
?
mf
等压面(包括自由表面)是与水平基面成倾角 的一族
平行平面,这族平面应与单位质量力 相垂直。
说明,
73
(2),Distributed regulation of static pressure
Substitute formula( 2— 35) into( 2— 15),that is
? ?? ?dzgadyadp ??? ??? s i nco s
Do indefinite integral
? ?? ? Cgazayp ???? ??? s i nco s
According to the boundary condition
0,0,0 ppzy ???
? ?? ?gazaypp ???? ??? s i nco s0 ( 2— 38)
when or we can get that container does horizontal or
vertical uniform acceleration motion,As shown in Figure( 2— 13),
0??
2
?
direction of motion
level basis level basis
? a?
g?
direction of
motion
Figure 2— 13 Two specific instances of container doing uniform acceleration
linear motion,
z
y?
a
g
z
y
74
2、静压强分布规律
将( 2— 35)式代入( 2— 15)式中即得
? ?? ?dzgadyadp ??? ??? s i nco s
作不定积分得
? ?? ? Cgazayp ???? ??? s i nco s
根据边界条件
0,0,0 ppzy ???
? ?? ?gazaypp ???? ??? s i nco s0 ( 2— 38)
当 或 时,即可得出容器水平或垂直匀加速直线
运动。如图( 2— 13)所示。
0??
2
?
运动方向
水平基面 水平基面
? a?
g?
运动方向
图 2— 13 容 器 匀 加 速 直 线 运 动 的 两 种 特 例
z
y?
a
g
z
y
75
2,Containers rotate at constant angular speed
y
r?2?
z
?
o
?
?o
x
x
y
? r y
r?2?
g?
R
Figure 2— 14 Container doing rotating motion at
definite angular speed
In the similar way with the analysis of the
container doing uniform acceleration motion
the components of unit mass force are
gf
yrf
xrf
z
y
x
??
??
??
22
22
s i n
c o s
???
???
?
( 2— 39)
As shown in Figure 2— 14 the container with liquid rotates
the vertical axis z, When the motion keeps stable the liquid forms
free surface just as shown in the Figure,There have not relative
motion between particles along any longer,
76
二,容器作等角速回转运动
y
r?2?
z
?
o
?
?o
x
x
y
? r y
r?2?
g?
R
图 2— 14容器作等角速回转运动
与容器作匀加速直线运动分析相同。
单位质量分力为,
如图 2— 14所示,盛有液体的容器绕铅直轴 z作回转运动,
待运动稳定后,液体形成如图所示的自由表面,质点之间不
再有相对运动。
gf
yrf
xrf
z
y
x
??
??
??
22
22
s i n
c o s
???
???
( 2— 39)
?
77
(1) Equation of isobaric surface
022 ??? gdzyd yxd x ??
Do indefinite integral
cgzyx ??? 22
2222 ??
namely
cgzr ??2
22? ( 2— 40)
Explain,
The equal pressure surfaces are a group of spinning
paraboloidals winding axis z,
Substitute formula( 2— 39) into formula( 2— 20),the
result is
78
1、等压面方程
022 ??? gdzyd yxd x ??
作不定积分得
cgzyx ??? 22
2222 ??

cgzr ??2
22? ( 2— 40)
说明,
等压面是一族绕 z 轴的旋转抛物面。
将式( 2— 39)代入式( 2— 20)中,得
79
(2)Distributed regulation of static pressure
Substitute the formula( 2— 39) into the formula ( 2— 15),
result is ? ?gdzyd yxd xdp ??? 22 ???
Do indefinite integral, then
czgyxp ???
?
?
???
? ???
22
2222 ??
?
czgr ???
?
?
???
? ??
2
22?
?
( 2— 41)
The integration constant in the formula can be decided by the
following three circumstances,
(2.1) Closed container, The pressure on liquid surface is,as
shown in the Figure ( 2— 15)
0p
Substitute the boundary condition into
( 2— 41),the result is 0,0,0 ppzr ???
???
?
???
? ??? z
g
rgpp
2
22
0
?? ( 2— 42)
80
2、静压强分布规律
将式( 2— 39)代入式( 2— 15)中得
? ?gdzyd yxd xdp ??? 22 ???
作不定积分,则
czgyxp ???
?
?
???
? ???
22
2222 ??
?
czgr ???
?
?
???
? ??
2
22?
?
( 2— 41)
式中积分常数可以根据如下三种情况来确定。
( 1)密封容器,液面上的压强为 。(如图 2— 15)
0p
边界条件 代回( 2— 41),得 0,0,0 ppzr ???
???
?
???
? ??? z
g
rgpp
2
22
0
?? ( 2— 42)
81
(2.2) Container is filled with liquid and the center of coping contacts atmosphere,(
as shown in Figure 2— 16)
Substitute the boundary conditions into the formula( 2— 41)
appzr ???,0,0
???
?
???
? ??? z
g
rgpp
a 2
22?
?
( 2— 43)
(2.3) Container is filled with liquid and the borders of coping contacts atmosphere,(
as shown in Figure 2— 17)
Substitute the boundary conditions into the formula 2— 41)
appzRr ???,0,
? ? ???????? ???? zrRggpp a 2222?? ( 2— 44)
r
z
o
R
0p
?
Figure2— 15 Closed
container
?
R
r
z
Figure 2— 16 The container
whose center of coping has hatch
ap
r
?
R
z
Figure 2— 16 The container
whose border of coping has hatch
ap
82
( 2)容器盛满液体,顶盖中心接触大气。(如图 2— 16)
边界条件 代回( 2— 41)得
appzr ???,0,0
???
?
???
? ??? z
g
rgpp
a 2
22?
?
( 2— 43)
( 3)容器盛满液体,顶盖边缘接触大气。(如图 2— 17)
边界条件 代回( 2— 41)得
appzRr ???,0,
? ? ??
?
?
???
? ???? zrR
ggpp a
22
2
2
?? ( 2— 44)
图 2— 15 密封容器
?
R
r
z
图 2— 16顶盖中心开口容器
ap
r
?
R
z
图 2— 16顶盖边缘开口容器
ap
z
o
R
0p
?
83
§ 2-7 Whole Pressure Acting
on The Plane of Static Fluid
Definition,
1.The magnitude and
direction of total-
pressure
o
m
Dl
Cl
A
D
C
C
C
L
L
dA
?
?
l
b
d
F
cgh?
gh?
ch h ?
a e
Figure 2— 18 total pressure acting on the
plane
As shown in Figure 2— 18,
the plane and liquid surface
form an angle, ?
A
The force acting on the wall of static fluid is called fluid static
pressure,
84
§ 2-7 静止流体作用在平面上的总压力
定义,
一、总压力大小和方向
o
m
Dl
Cl
A
D
C
C
C
L
L
dA
?
?
l
b
d
F
cgh?
gh?
ch h ?
a e
图 2— 18作用在平面上的总压力
如图 2— 18所示,平面 与液面倾斜成 角。 ?A
静止流体作用在壁面上的力称为流体静压力。
85
Choose the infinitesimal area, then the fluid static press on
infinitesimal area is
A?
y d Agg h d Ap d AdF ??? s i n??? ( 2— 45) Summate to the equilibrium system of forces and then the whole
press on plane A is
?? ?? AA y d AgdFF ?? s i n
AFygF cc ?? ??? s i n
( 2— 46)
In the formula denotes the area moment of area to the axis
It equals to the product of area and its centre coordinate of figure,
Then take as static water pressure at point C of centre of figure,
Then
?A ydA ox
cy
cF
A
A
Explain,
Acting direction of total pressure
The total pressure acting on the plane with arbitrary shape equals to
the product of the area of the plane and the pressure on centre of figure,
according to the specific characters of static pressure it is necessary
to point to the acting face vertically,
86
取微元面积,则微元面积上的流体静压力大小为 A?
y d Agg h d Ap d AdF ??? s i n??? ( 2— 45)
对平衡力系求和,则可得平面 A上的总压力为
?? ?? AA y d AgdFF ?? s i n
AFygF cc ?? ??? s i n
( 2— 46)
说明,
总压力 F的作用方向,
式中 代表面积 对 轴的面积矩,它等于面积 与
其形心坐标 的乘积。则以 代表形心 C处的静水压力,则
?A ydA ox
cy cF
A A
作用在任意形状平面上的总压力大小等于该平面的面积与其
形心处压力的乘积。
根据静压力的特性,必然是垂直地指向这个作用面。
87
2,Acting point of total pressure
The coordinate in direction y of press center D
Ay
I
Ayg
Ig
Agh
dAyg
F
y d F
y
c
x
c
m
c
AA
D ????
??
??
??
?
??
s in
s ins in
2( 2— 47)
According to the parallel axis theorem of the moment of inertia,
AyII ccx 2??
( 2— 48)
Substitute it into formula( 2— 47),then
c
c
c
D yAy
Iy ?? ( 2— 49)
In the formula is the moment of inertia of area of
plane to the axis, xA IdAy ?? 2ox
A
for, so,the center of press is below the
centre of figure, the distance between them is,
0>AyI
c
c
cD yy >
Ay
I
c
c
D
C
The action spot of whole press is called the press center,sight D
Definition,
88
二、总压力的作用点
压力中心 D在 y方向上的坐标
Ay
I
Ayg
Ig
Agh
dAyg
F
y d F
y
c
x
c
m
c
AA
D ????
??
??
??
?
??
s in
s ins in
2( 2— 47)
根据惯性矩的平行移轴定理 AyII
ccx 2??
( 2— 48)
代回式( 2— 47)则
c
c
c
D yAy
Iy ?? ( 2— 49)
式中 是平面面积 对 轴的惯性矩。
xA IdAy ?? 2
oxA
因为,所以 即压力中心 恒在平面形
心 的下方,其间距为 。
0>AyI
c
c cD yy >
Ay
I
c
c
D
C
总压力的作用点称为压力中心,记作 D点。
定义,
89
1H
2H
1l
0l
31
l
32
l
P
1P
2P
?
2l
Figure 2— 19 for example
2— 3
[solution] the difference of total
pressure press of the liquid on left
and right of the total pressure system
acting on the strobe,namely
21 FFF ??
so

?
?
s i n
,
2;
s i n
,
2
2
22
2
2
1
11
1
1
H
blbA
H
H
H
blbA
H
H
c
c
???
???
[example 2—3]As shown in Figure 2— 19,two sides a
rectangular strobe undergo the press of water, The depth of water
on left is and the depth of water on right is,the
strobe and the water surface form an angle, Assume the width
of strobe is, try to calculate the whole press acting on the
strobe and its action spot,
mH 5.41 ? mH 5.22 ?
045??
mb 1?
90
[例题 2—3]如图 2— 19所示,一矩形闸门两面受到水的压
力,左边水深,右边水深,闸门与水面
成 倾斜角。假设闸门的宽度,试求作用在闸门
上的总压力及其作用点。
mH 5.41 ? mH 5.22 ?
045?? mb 1?
1H
2H
1l
0l
31
l
32
l
P
1P
2P
?
2l
图 2— 19例 2— 3图
[解 ]作用在闸门上的总压力系左右两边液体总压力之差,

21 FFF ??
因此

?
?
s i n
,
2;
s i n
,
2
2
22
2
2
1
11
1
1
H
blbA
H
H
H
blbA
H
H
c
c
???
???
91
So
?
?
?
???
s in2s in2
2
2
2
1
2211
g b Hg b HAghAghF
cc ????
????
?
???
?
???
9 7 0 3 04 3 3 1 61 4 0 3 4 6
707.02
5.219800
707.02
5.419800 22
Because the coordinate of pressure center on rectangular plane
LbLL LbLAy Jyy
c
c
cD 3
2
)2(
12
2
3
?????
According to the resultant moment theorem do moment to the
axis who across point O and keeps vertical with figure,
?? s in3s in333
2
2
1
1
2
2
1
10
HFHFlPlFFI ????
So
m54.2707.0970303 5.2433165.41 4 0 3 4 6s i n3 22110 ??? ?????? ?P HFHFl
This is the distance from action spot of total pressure acting on the
strobe to the lower end of strobe,
92
所以
?
?
?
???
s in2s in2
2
2
2
1
2211
g b Hg b HAghAghF
cc ????
????
?
???
?
???
9 7 0 3 04 3 3 1 61 4 0 3 4 6
707.02
5.219800
707.02
5.419800 22
由于矩形平面压力中心坐标
LbLL LbLAy Jyy
c
c
cD 3
2
)2(
12
2
3
?????
根据合力矩定理,对通过 O点垂直于图面的轴取矩,得
?? s in3s in333
2
2
1
1
2
2
1
10
HFHFlPlFFI ????
所以
m54.2707.0970303 5.2433165.41 4 0 3 4 6s i n3 22110 ??? ?????? ?P HFHFl
这就是作用在闸门上的总压力的作用点距闸门下端的距离。
93
§ 2-8 Total Pressure Acting on
Curved Surface of static Fluids
The pressure acting on the curved surface of static fluid is a complicated system of
spacial forces,The questions to calculate its total pressure become the compound
questions of system of spacial forces,Now take dualistic curved surface as example to
explain the calculation method of its total pressure,
dP
dA
zA
xA
xo
z
b
a
c
ch h
dP zdP
xdP
xdA
zdA
dA
?
?
Figure 2 - 20 total pressure acting on the curved
surface
Assume the area of a dualistic curved surface is, its generatrix is vertical to
the paper surface, the left undergoes the pressure of the static liquid,as shown in
Figure 2 - 20
abA
ghdAdF ??
dA
h
Take a infinitesimal area
on the curved surface, The
submerged depth at the
center of figure is, then
the total pressure of fluid
acting on the infinitesimal is
94
§ 2-8 静止流体作用在曲面上的总压力
静止流体作用在曲面个微元面积上的压力为一复杂的空
间力系,求其总压力的问题便成为空间力系的合成问题。下
面以工程中常见的二元曲面为例,说明确定其总压力的计算
方法。
ghdAdF ??
dP
dA
zA
xA
xo
z
b
a
c
ch h
dP zdP
xdP
xdA
zdA
dA
?
?
图 2— 20作用在曲面上的总压力
设有一面积为 的二元曲面,其母线垂直于纸面,左侧
承受静止液体压力作用,如图 2— 20所示,在曲面上任取一微元
面积,其形心点的淹没深度为,则流体作用在微元上的
总压力 为
ab
dA
A
h
95
1,The magnitude and direction of total pressure
Explanation of formula( 2— 50),
The horizontal component of fluid acting on the curved surface
equals to the total pressure of fluid acting on the vertical projection
plane of the curved surface,
xA
xx dAghdAdF ?? ?? co s
So the horizontal component of the total pressure (fore) is
xcA xx AghhdAgF ?? ?? ?
( 2— 50)
In the formula
x
?
dAAssume the normal of infinitesimal area and axis forms an
angle, then the horizontal component of the infinitesimal is
(1) The horizontal component of total pressure
The area of the projection on plane yoz of area A of
curved surface
— A x
the submerged depth of the center of figure — x c A h
96
一、总压力的大小和方向
xx dAghdAdF ?? ?? co s
故总压力的水平分力为
xcA xx AghhdAgF ?? ?? ?
( 2— 50) 式中
平面上的投影面积;在曲面面积— y o zAA x
的形心点的淹没深度。— xc Ah
式( 2— 50)说明,
流体作用在曲面上总压力的水平分力等于流体作用在该曲
面的铅垂投影面 上的总压力。
xA
? dA x设 为微元面积 的法线与 轴的夹角,则微元水平分力
1、总压力的水平分力
97
Explanation,
ab
zF
The vertical component of the total pressure acting on the
curved surface equals to the liquid weight of its press volume,
(2) The vertical component of total pressure
The vertical component acting on the infinitesimal is
zz g h d Ag h d AdF ??? ?? s i n
( 2— 51)
so the vertical component of whole press is
?? A zz hdAgF ?
( 2— 51)
In the formula
So
gVF z ?? ( 2— 52)
the volume of liquid column on curved surface,is
called pressure volume, sign

V
ab hdA
A z ?
98
2、总压力的垂直分力
作用在微元上的垂直分力为
zz g h d Ag h d AdF ??? ?? s i n
( 2— 51)
故总压力的垂直分力为
?? A zz hdAgF ?
( 2— 51)
式中
。力体,记作上的液柱体积,称为压曲面— Vabh d AA z?

gVF z ?? ( 2— 52)
说明,
ab zF作用在曲面 上的总压力的垂直分力 等于其压力体的
液重。
99
(3) total pressure
magnitude,
22
zx FFF ??
? ( 2— 53)
direction,
a r c ta n x
z
F
F? ?
( 2— 54)
100
3、总压力
大小,
22
zx FFF ??
? ( 2— 53)
方向,
a r c ta n x
z
F
F? ?
( 2— 54)
101
2.The action spot of total pressure
Figure2— 21 The resultant force of total pressure on the curved
surface
The action line of total pressure necessary passes the crossing
point of these two action lines and makes an angle of with the
vertical line because the action line of vertical component of total
pressure passes the center of gravity of press volume and the action
line of horizontal component passes the pressure center of and
they all point to the compression face ( as shown in Figure 2— 21
), The crossing point that the action line of total pressure and
the curved surface is the action spot on the curved surface of total
pressure
xA
?D
D
a
b
?
F zF
xF
D?
D
102
二、总压力的作用点
a
b
?
F zF
xF
图 2— 21 曲面总压力的合力
D?
D
由于总压力的垂直分力作用线通过压力体的重心,水平分
力的作用线通过 的压力中心,且均指向受压面,故总压力
作用线必通过这两条作用线的交点,且与垂线成 角。(见图
2— 21)这条总压力的作用线与曲面的交点 就是总压力在曲
面上的作用点。
xA
?D
D
103
3,pressure volume
Tthe pressure volume is the pure geometry volume determined by
the integral formula, It has not relations with that if there is
liquid in the volume on earth,Such as four column faces in
Figure 2— 22,Assume their scales are equal completely and the
distances below the liquid surface are equal too,then the volume of
pressure volume are equal completely,
?A zhdA
ab
a b c dVV ? explanation,
?a ?a ?a ?a
b b
b b
c c c cdddd
Figure 2— 22 Pressure volume on curved surface
The liquid weight of pressure volume is not necessary the factual
gravity of liquid in the pressure volume, It is only a fabled notion,
104
三、压力体
压力体是由积分式 所确定的纯几何体积,它与这块
体积中究竟有无液体没有关系。例如图 2— 22所示的四个柱面
,假设它们本身尺寸完全相同,而且柱面在液面下的距离也
完全相同。则压力体体积 也完全相同。
?A zhdA
ab
a b c dVV ?
说明,
?a ?a ?a ?a
b b
b b
c c c cdddd
图 2— 22 曲 面 上 的 压 力 体
压力体液重并不一定是压力体内实际具有的液体重力,只是
一个虚构概念。
105
Figure 2 — 23 for example
2 — 4
水 水
2m
4m
[solution] calculate on two parts of left one and right one
NAghF xcx 78400)14(29800111 ?????? ?
The vertical component is
11 gVF z ??
N6 1 5 0 0
4
42
119800 2
?
?
?
??
?
? ????? ?
[Example2—4] as shown in Figure 2— 23.There is a rounded
rotating door whose length is 1m( in direction vertical to door and
diameter is 4m,There is water on two sides and the depth of
upper reaches is 4m and the depth of lower reaches is 2m,Calculate
the total pressure acting on the door and the position of the action
line,
D
the left part,the horizontal component
106
图 2 — 23 例 2 — 3 图
水 水
2m
4m
[解 ]分左右两部分计算
左部:水平分力
NAghF xcx 78400)14(29800111 ?????? ?
垂直分力
11 gVF z ??
N6 1 5 0 0
4
42
119800 2
?
?
?
??
?
? ????? ?
[例题 2—4]如图 2— 23。有一圆形滚门,长 1m(垂直园面方
向),直径 为 4m,两侧有水,上游水深 4m,下游水深 2m,求
作用在门上的总压力的大小及作用线的位置。
D
107
The resultant force is
? ? ? ? NFFF zx 996406150078400 2221211 ?????
74506150078400 0
1
1
1 ???? a r c tgF
Fa r c tg
z
x?
The right part,
The horizontal component is
NAghF xcx 1 9 6 0 0)12(19 8 0 0222 ?????? ?
The vertical component is
NFgVF zz 3 0 7 5 021 122 ??? ?
The resultant force is
? ? ? ? NFFF zx 3 6 4 7 03 0 7 5 01 9 6 0 0 222 22 22 ?????
The action line across the center makes an angle with the
vertical line,1?
108
合力
? ? ? ? NFFF zx 996406150078400 2221211 ?????
74506150078400 0
1
1
1 ???? a r c tgF
Fa r c tg
z
x?
右部,
水平分力
NAghF xcx 1 9 6 0 0)12(19 8 0 0222 ?????? ?
垂直分力
NFgVF zz 3 0 7 5 021 122 ??? ?
合力
? ? ? ? NFFF zx 3 6 4 7 03 0 7 5 01 9 6 0 0 222 22 22 ?????
作用线通过中心与铅垂线成角度 。
1?
109
The action line across the center makes an angle with the
vertical line, 2?
7403 6 4 7 03 0 7 5 0 0
2
2
2 ???? a r c tgF
Fa r c tg
z
x?
The total horizontal component is
? ????? NF x 588001960078400
The total vertical component is
? ????? NF z 9 2 2 5 03 0 7 5 06 1 5 0 0
Resultant force is
? ? ? ? ?????? 1 0 9 4 0 09 2 2 5 05 8 8 0 0 2222 zx FFF
058800a r c t a n a r c t a n 3 2 3 0
92250
x
z
F
F? ?? ? ?
110
作用线通过中心与垂线成角度 。 2?
7403 6 4 7 03 0 7 5 0 0
2
2
2 ???? a r c tgF
Fa r c tg
z
x?
总水平分力,
? ????? NF x 588001960078400
总垂直分力,
? ????? NF z 9 2 2 5 03 0 7 5 06 1 5 0 0
合力
? ? ? ? ?????? 1 0 9 4 0 09 2 2 5 05 8 8 0 0 2222 zx FFF
058800a r c t a n a r c t a n 3 2 3 0
92250
x
z
F
F? ?? ? ?
111
Exercises of Chapter 2
solution,The key of this problem is to calculate the pressures of
water and oil respectively and then summate the two ends,The
solution should begin from the given conditions,The atmosphere
pressure are equilibrium,So adopt the gage pressure to calculate
usually,
2—1 In the closed container there is oil whose specific weight is 0.8,
,The water is under the oil,,In the
manometric tube the number of Hg liquid level is,Calculate
the pressure on the liquid level in the container,。
mm3001 ?h mm5002 ?h
mm4 0 0?h
p
112
第二章 习 题
解,此题的关键要把油水产生的压强分别计算后相加。
解题应先从已知条件开始计算,而且大气压力自相平衡,
故通常采用相对压强计算。
2—1 封闭容器中盛有比重为 0.8的油,,下面为水,
,测压管中汞液面读数,求容器中液面压
强 。
mm3001 ?h
mm5002 ?h mm4 0 0?h
p
113
d p
c 1h
2h
a
b
h
Oil
Water
Hg
Figure for
exercise 2— 1
2
1 2
1
2
KN/m 1, 46
3, 0 8, 0 81, 9 5, 0 81, 9 4, 0 4, 133
0
?
′ ′ ? ′ ? ′ ?
? ? ? \
? ?
? ?
? ?
?
h h h p p
h p p
h p p
h p p
p
d
c d
b c
a b
a
oil water Hg
oil
water
Hg
- ? ? ?
?
?
?
114
2
12
1
2
K N / m 1.46
3.08.081.95.081.94.04.1 3 3
0
?
???????
???\
??
??
??
?
hhhpp
hpp
hpp
hpp
p
d
cd
bc
ab
a
油水汞



- ???
?
?
?
d p
c 1h
2h
a
b
h



2— 1题 附图
115
h
mm40?D
4mm=d
2—2 The upside of micro manometer of cup type is oil,,and the underpart is water,The diameter of cup is and
the diameter of hose is, If import water column whose
pressure is, what is the water head?
3K N / m 0.9=o i l?
1 0 m m12 =pp ?
1p 2p
h? h?
h
Oil
Water
Figure for 2— 2
solution,the key point of this question is that the changed values of liquid level in two cups are all and the volume of added or
deceased liquid equals to the volume formed by the
water level difference in the hose,
h?
Magnify the pressure to 11 times the original one on making use of micro manometer and increase the
measure precision,
- (
Calculate the pressure on equal pressure surface and also
let them equal to each other,
namely,
oil water oil water
oil water oil
mm 109 9 99, 0 81, 9 81, 9 10
) 99, 0 ( ) 2
2
005, 0 2 4 4 2
1 2
2 1
2
2 2 2
? ′ ? ′ ?
? ? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
h
h h h h p p
h p h h p
h D hd h d h D h
? ? ? ?
? ? ?
? ?
116
2—2 杯式微压计,上部盛油,,下部为水,圆
杯直径,圆管直径,若接入压力
水柱时,水位差 应为多少?
3K N /m 0.9=油?
mm40?D 4mm=d 1 0 m m12 =pp ?
h
解,此题要点为左右两杯中液面变化值均为,且增加和减
少的液体体积等于管内水面差形成的体积。
h?
倍,提高了测量精度。差值近利用微压计放大了原压
-(
令其相等对等压面分别求压强并
即:
油水油水
油水油
11
mm1 0 9
999.081.9
81.910
)99.0()2
2
0 0 5.0
2
44
2
12
21
2
2
22
?
??
?
?
??????
?????
???
??
h
hhhhpp
hphhp
h
D
hd
h
dhDh
????
???
??
1p 2p
h? h?
h


题 2— 2 附图
117
2—3 The width of rectangular strobe AB is 1.0 m,The depth of left oil is and the depth of water is,
The tilt angle of strobe is, Calculate the total pressure of the liquid on strobe and the position of action spot,m11 ?h m22 ?h K N / m84.7 3?o i l?o60??
solution,Assume the boundary point of oil and water on strobe is
point E,the action spot of total pressure is point D,In order to
calculate the position of action spot decompose the total pressure of
liquid into three parts,the areas of strobe contacting
with oil and water are respectively 321,,PPP 。 a n d
EBAE FF
KN 3, 45,KN 66, 22 2
KN 11, 18,KN 53, 4 2 1
KN/m 46, 27,KN/m 84, 7
m 310, 2 866, 0 2 sin
m 155, 1 866, 0 1 sin
3 2 1 3
2 1
2
2
2
1
2 2
2 1
? ? ? ? ? ? ?
? ? ? ?
? ? ? ? ?
? ? ?
? ? ?
P P P P F P P P
F p P F p P
h p p h p
h F
h F
EB
E B
EB E AE E
E B E
EB
AE
water oil ? ?
?
?
118
2—3 矩形闸门 AB,宽 1.0 m,左侧油深,水深,
,闸门倾角,求闸门上液体总压力及
作用点位置。
m11 ?h m22 ?h
K N / m84.7 3?油? o60??
解,设闸门上油水分界点为 E点,总压力的作用点为 D点,为了
便于求作用点位置,将液体总压力 P分解为 三部分。
闸门与油和水接触的面积分别为
321,,PPP
。和 EBAE FF
KN 3.45,KN 66.22
2
KN 11.18,KN53.4
2
1
K N / m 46.27,K N / m 84.7
m 3 1 0.2
8 6 6.0
2
s i n
m 1 5 5.1
8 6 6.0
1
s i n
3213
21
2
2
2
1
22
21
?????
?
?
????
?????
???
???
PPPPF
PP
P
FpPFpP
hpphp
h
F
h
F
EB
EB
EBEAEE
EBE
EB
AE
水油
??
?
?
119
when calculate the action spot use the moment equilibrium
equation, Namely three components doing moment to a point
equal to the total pressure doing moment to a point,
m 033, 2 sin
m 348, 2
sin
1 )]
3
2 ( )
2 ( 3
2 [
2 1 3
2
1 2 1 1
? ?
?
? ? ? ? ?
?
?
D D
D
D
y h
y
h h P h h P h P Py
Substitute data and
solve out
A
1p
2p
3p
E
B
2h
1h
?
oil
water
Figure for exercise 2— 3
120
求作用点时,用力矩平衡方程,即三个分力对某点取矩
等于总压力对同一点取矩。
m 0 3 3.2s in
m 3 4 8.2
s in
1
)]
3
2
()
2
(
3
2
[ 21321211
??
?
?????
?
?
DD
D
D
yh
y
hhP
h
hPhPPy
代入数据并解得
A
1p
2p
3p
E
B
2h
1h
?


题 2— 3 附图
121
2—4 The shape of the curved surface is 3/4 of a column,It’s radius r is 0.8 m and width is 1m,It is at h=2.4 m under the water
surface, Calculate the whole press of liquid acting on the curved
surface,
solution,first calculate the horizontal component and vertical component of the total pressure respectively and then synthesize
them,1.the horizontal component, The directions of the whole
presses on plane bc and dc are contrary and counteract to each
other,The direction of total pressure on plane ab is rightward,The
value is
KN 7.158.0)4.04.2(81.9)2( ????? rrhP x ? 2.the vertical total pressure,Calculating the vertical total
pressure should understand the notions of virtual pressure volume and factual pressure volume, The pressure volume on curved
surface ab is abgf whose direction of it is upward,
the pressure volume on bc is cbgf whose direction is upward
the pressure volume on cd is dcef whose direction is downward
After algebraic addition the whole pressure is shown as the shadow in the figure and it’s direction is downward, It’s value is
KN 63.33)43( 2 ??? rhP rz ??
122
2—4 曲面形状为 3/4个圆柱,半径 r= 0.8 m,宽度为 1m,
位于水面下 h=2.4 m 深处。求曲面所受的液体总压力。
解,对曲面求总压力应分别求水平分力和垂直分力,然后再
合成。
1、水平总压力,bc 和 dc 面上总水平压力方向相反,互
相抵消,曲面 ab 上的总压力方向向右,其值为
KN 7.158.0)4.04.2(81.9)2( ????? rrhP x ?
2、垂直总压力 求垂直总压力时应把虚、实压力体的概
念理解清楚,曲面 ab 上的压力体为 abgf,方向向上;
bc 上的压力体为 cbgf,方向向上;
cd 上的压力体为 dcef,方向向下;
代数相加后总压力体如图中阴影所示,作用方向向下,
其值为
KN 63.33)43( 2 ??? rhP rz ??
123
2 2 2 23, to ta l p r e s s u r e 3 3, 6 3 1 5, 7 3 7, 1 5 K NzxP P P? ? ? ? ?
4, t h e a n g l e i s f o r m e d b y t o t a l p r e s s u r e a n d h o r i z o n t a l d i r e c t i o n
3 3, 6 3
a r c t a n a r c t a n 6 5
1 5, 7
oz
x
P
P
P
? ??=
?
a
b
c
d
e f g
h
Figure for exercise 2— 4
124
KN 15.377.1563.33 3 2222 ????? xz PPP总压力、
o
x
z
P
P
P
65
7.15
63.33
a r c t a na r c t a n
4
??=
与水平方向的夹角总压力、
?
?
a
b
c
d
e f g
h
题 2— 4 附图
125
2—5 A water container (the hatch is rectangular) moves up along
a chamfer whose obliquity is whit an acceleration
,Calculate the angle formed by the liquid surface and the
container’s wall,
o30?? 2m /s 2?a
?
solution,According to the total difference equation
) s i n(c o s
,0 is l i q u id of s u r f a c e t h eof e q u a t i o n t h e
0 p r e s s u r e r e la t i v e ( t h e 0 0,0w h e n
,) s i nc o s(
isr e s u l t t h ei t f o r i n t e g r a l do
a n d e q u a t i o n d i f f e r e n c e t o t a l t h ei n t o t h e ms u b s t i t u t e
s i n,0,c o s f o r m u l a i n t h e
)(
zagzxa
p
cpzx
czagzxap
gaffaf
dzfdyfdxfdp
zyx
zyx
??
???
??
?
????
?
????
??????
??????
???
,),时

a
x
z
?
?
Figure for exercise
2— 5
126
2—5 一盛水容器(矩形敞口),沿 斜面向上作加速
运动,加速度,求液面与壁面夹角 。
o30??
2m /s 2?a ?
解,由全微分方程
) s i n(c o s,0
0 ( 0 0,0
,) s i nc o s(
s i n,0,c o s
)(
zagzxap
cpzx
czagzxap
gaffaf
dzfdyfdxfdp
zyx
zyx
??
???
??
?
?????
????
??????
??????
???
液体表面方程
,相对压强),时当
,得代入全微分方程并积分
式中
a
x
z
?
?
题 2— 5 附图
127
o
ag
al
z
l
ag
al
z
i
l
x
ag
xa
z
7.52
t a n
s i n
1
t a n
2
2
t a n
,
)s i n(2
isr e s u l t t h e
,i t n t o
c o s2
s h i p r e l a t i o n t h es u b s t i t u t e,
s i n
c o s
?
?
?
?
?
?
?
?
??
??
?
?
?
?
?
?
??
?
128
o
ag
al
z
l
ag
al
z
l
x
ag
xa
z
7.52
t a n
s i n
1
t a n
2
2
t a n
,
)s i n(2
,
c o s2
,
s i n
c o s
?
?
?
?
?
?
?
?
??
??
?
?
?
?
?
?
??
?
代入得由几何关系
129
2—6 A rotating container (cylindrical ) is filled with some water,If D=300 mm,H=500 mm and h=300 mm are given,ask that what the
rotate speed n is when the surface of water just reaches the upper
margin?
Figure for exercise
2— 6
D
z
h
H
?
fromheight
solution,When solve the questions about relative equilibrium of rotation the key knowledge point that the volume surrounded by the
spinning paraboloidal is the half of its circumscribing cylindrical
should be clear,the al paraboloid the forming after that suppose
r/min 4, 178 2 60
1/s 68, 18 m/s 8, 2 2
2 z
is al paraboloid of surface free of equation the
is container of top the to vertex the
2
? ?
? ? ? ?
?
?
?
?
n
r
V gz V g
V
mm 400 ) ( 2 ? ? ? h H z,) ( 4 4 2 1
2 2
? ? ? ? h H D z D
z
130
D
z
h
H
?
2—6 一旋转容器(圆柱形),装部分水,若已知 D=300 mm,
H=500 mm,h=300 mm,求转速 n 为多少时,水面恰好达到容器
的上缘?
解,这类求旋转相对平衡问题时,应知道形成的旋转抛物面
所围成的体积是其外接圆柱形体积的一半这个知识点。
r / m i n 4.1 7 8
2
60
1 / s 68.18
m / s 8.22
2
z
mm 4 0 0)(2,)(
442
1
2
22
??
??
??
?
?????
?
?
?
??
n
r
V
gzV
g
V
hHzhH
D
z
D
z
抛物面的自由表面方程
到容器顶高度为设形成抛物面后,顶点
题 2— 6 附图
131
2—7 A cylindrical container which is filled with water, A open
manometric tube is installed on the center of its coping, Ask that
when the container rotates as how much is the upward total
pressure of liquid acting on the coping?
?
solution,
D
?
h
Figure for
exercise 2— 7
)
2
( p iscoping on the pressure of regulation
d distribute thezero,is coping on the point each of z Because
,) 2 (
isresult the,it for integral andequation
difference total the into them substitute
,,formula n the
) (
equation difference total by the decided be
can container of coping on the acting pressure the
2 2
2 2
2 2
h
g
r
c gz r p
g f y f x f i
dz f dy f dx f dp
z y x
z y x
? ?
0 r ?,0 z ? ? ? ?
? ? ? ?
? ? ?
? ?
c h p ? ? ? ? ?
? ?
?
时,when
132
2—7 一圆柱容器装满水,顶盖中心装敞口测压管,当以 旋
转时,顶盖受到多大的向上液体总压力?
?
解,
)
2
(
0,0,)
2
(
,,
)(
22
22
22
h
g
r
p
z
chprzcgz
r
p
gfyfxf
dzfdyfdxfdp
zyx
zyx
??
???????
????
???
?
?
?
?
?
??
?
分布规律为均为零,故顶盖上压强因顶盖上各点
时,当
代入并积分得
式中
确定。
由全微分方程液体对顶盖上的压强可
D
?
h
题 2— 7 附图
133
2
0
22
2
0
2 4 2
th e p r e ss u r e o n th e c o p in g c h a n g in g w ith s o d o in te g r a l to it
2
( ) 2
2
6 4 4
D
D
r
P p rd r
r
h rd r
g
DD
h
g
?
?
??
? ? ?
??
??
??
??
?
?

134
h
D
g
D
r d rh
g
r
r d rpP
r
D
D
464
2)
2
(
2
242
2
0
22
2
0
?
?
??
?
?
?
?
?
??
??
??
?
?
变化,可积分求之顶盖上压强随
135
136