1
Mechanics of Fluid
2
3
Chapter 8 Boundary Layer Theory
§ 8–1 Introduction
§ 8–6 Laminar Boundary Layer of smooth Board
Chapter 8 Exercises
§ 8–5 The Momentum Equation of Boundary
Layer and Friction shear Stress
§ 8–4 Variable Thickness of Boundary Layer
§ 8–3 The Motion Differential Equation of
Boundary Layer
§ 8–2 Basic Concept of Boundary Layer
4
第八章 边界层理论
§ 8–1 引言
§ 8–6 光滑平板上的层流边界层
第八章 习题
§ 8–5 边界层的动量方程式和摩擦切应力
§ 8–4 边界层中的各种厚度
§ 8–3 边界层的运动微分方程式
§ 8–2 边界层的基本概念
5
Chapter 8 Boundary Layer Theory
§ 8-1 Introduction
The last chapter introduces Navier-Stokes equation and Reynolds
equation,the differential continuity and these two equations form basic
differential equation which find the solution of viscosity fluid dynamics,
As for they are nonlinear second-order partial differential equations,
Reynolds equation is not still be closed,usually we can not obtain the
accuracy solution,people turn to seek approximate solution,
6
第八章 边界层理论
§ 8-1 引言
上章介绍了纳维 —斯托克斯方程与雷诺方程,它们与连续性微
分方程一起构成求解粘性流体动力学的基本微分方程。由于它们是
非线性的二阶偏微分方程,雷诺方程还无法封闭,所以在一般情况
下不易得到它们的精确解,所以人们转向寻求近似的解答。
7
This chapter introduces boundary layer of plane board for the
approximate of linear surrounding flow and plane board surrounding
flow,
We can obtain the analytic approximate solution when viscosity
fluid moves by two methods as following,one is called,creeping flow
theory” which we neglect inertia force and make basic concept linearity
when, The other is to find boundary layer theory of
resistance force of surrounding flow when,it only considers
flow viscosity inside the boundary layer,and the outside can be
considered the potential flow of the ideal fluid,
1Re ??
1Re ??
8
本章主要研究平板上的边界层,因为流线体绕流与平板绕流
相接近。
粘性流体运动时的解析近似解至今在两种情况下才能获得,
一种是 时,可忽略惯性力,使基本方程线性化,这就是所
谓蠕流理论;另一种是 时,求解物体绕流阻力的边界层理
论,它对流体的粘性仅局限于边界内考虑,而边界层之外的广大
主流区,可当作理想流体的势流。
1Re ??
1Re ??
9
§ 8-2 The Basic Concept of Boundary Layer
The Basic Difference Between Viscid Fluid and Ideal Fluid,viscid fluid has
viscosity,
When viscid fluid flows on stationary fixed boundary,its velocity is 0,with the
increasing of the distance to the fixed boundary,the effect of fixed boundary or
viscosity on flow will be decreased,flow velocity increases,finally approaches the
arrival flow velocity,
0U
The flow thickness which the velocity increase from 0 to 0.99
is called the thickness of boundary layer, 0U?
When Reynolds number of arrival flow is greater,the extent which
has variable velocity is limited to the thinnest layer near the
fixed boundary,which is called boundary layer,dydu
Definition,
10
§ 8-2 边界层的基本概念
粘性流体与理想流体的根本区别, 粘性流体具有粘滞性。
当粘性流体在静止固定边界上流动时,流体在固定边界上的
速度为零,随与固体边界距离的增大,固体边界或粘性对流动的
影响逐渐减小,流速逐渐增大,最后接近来流流速 。
0U
当来流的雷诺数较高时,具有速度变化 的范围只
限于靠近固体边界的极薄的一层内,此薄层称为边界层。
dydu
流速由 0 增加到 0.99 处流体的厚度称为边界层的厚度 。
0U ?
定义,
11
Define friction resistance force of aircraft and naval vessel;
Define coefficient value of theoretical flow velocity on overflow dam;
Define the incorporation point of high velocity flow in steep groove;
Define the flow resistance force and water head loss,
Because with the length increase of plane board,friction loss is also
increased,fluid internal energy is decreased,so flow velocity is,in
order to meet the continuity requirement,the thickness of boundary
layer is increased,
Engineering Application of Boundary Layer Theory,
1,The thickness of boundary layer is smaller than
characteristic length of object,,that is extreme
thickness of boundary layer,
?
l 0,??? ll ??
Characteristics of Boundary Layer,
2,The thickness of boundary layer is increased in
the flow direction on plane board,
12
飞机和舰船的摩擦阻力确定;
溢流坝面理论流速系数值的确定;
陡槽中高速水流掺气点的确定;
水流阻力与水头损失的确定。
1,边界层的厚度 与物体的特征长度 相比是非常小的,
,即边界层极薄。
? l
0,??? ll ??
因为随着平板长度的增加,摩擦损失亦增加,流体内部的能
量减少,流速亦减少,为了满足连续条件,边界层的厚度增大。
边界层理论在实际工程中的应用,
边界层的特点,
2,边界层的厚度 在平板上沿流动方向增加。
13
3,laminar flow section,transition section and turbulent flow
section also exists in the boundary layer,under the transition
section and turbulent flow section,there also exists a bottom layer
of laminar flow,As shown in Fig.8-1,0
?
0U
0U
0U
x
y
x
crx
0?
Laminar Flow
Boundary Layer
Transition
Section
Turbulent Flow
Boundary Layer
Bottom Layer of
Laminar Flow
Fig.8-1 Boundary Layer Structure
14
3,边界层中也存在着层流区、过渡区和紊流区,过渡区
和紊流区下面也存在一个层流底层 。如图 8—1所示。
0?
0U
0U
0U
x
y
x
crx
0?
层流边界层 过渡区 紊流边界层
层流底层
图 8—1 边 界 层 结 构
15
With the thickness increase of boundary layer,restriction effect of
viscosity on flow in the boundary layer is decreased,and inertia
function is increased,Laminar flow will turn into turbulent flow
when viscosity can not control water particle motion,just like the
flow in the cylindrical pipe,this phenomenon is called transition of
boundary layer,and there exists a bottom layer of flow under the
transition section and turbulent flow section,
0?
Assuming flow velocity in main flow is,the distance to the
front of plane is x,the Renault number is 0U
v
xU
x
0Re ?
( 8—1)
Usually we take Reynolds number at transition point is
5105Re ??c
( 8—2)
16
随着边界层厚度的增加,粘性对边界层内流体的约束作
用减小,而惯性作用增大。当粘性作用控制不住水质点的运
动时,就和流体在圆管中流动一样,由层流转变成紊流,此
现象称为边界层转捩,并且在过渡区和紊流区下面存在一层
流底层 。
0?
假设主流中流速为,到平板前端的距离为 x,这时
的雷诺数为 0U
v
xU
x
0Re ?
( 8—1)
一般取转捩点的雷诺数为
5105Re ??c
( 8—2)
17
4,The flow extent of viscid flow is classified into tow
sections with different properties by boundary layer,
The section which is out of boundary layer is looked as ideal flow
section,otherwise is viscid flow section,
18
4,边界层将粘性流体的流动范围分成性质完全不同的两
个区。
边界层以外的区可视为理想流动区,边界层内视为粘性流
动区。
19
§ 8-3 The Motion Differential Equation of Boundary Layer
Assume,
0
1
1
2
2
2
2
2
2
2
2
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
y
u
x
u
y
u
u
x
u
u
y
u
x
u
v
y
p
y
u
u
x
u
u
y
u
x
u
v
x
p
yx
y
y
y
x
yy
y
y
x
x
xx
?
?
( a)
( b)
( c) ?
( 8—3)
Hence,N—S motion equation and continuity equation are
changed into
① Flow is steady; ② Plane flow; ③ Gravity function exists which
can be neglected; ④ Incompressible flow,
20
§ 8-3 边界层的运动微分方程式
假设,
0
1
1
2
2
2
2
2
2
2
2
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
y
u
x
u
y
u
u
x
u
u
y
u
x
u
v
y
p
y
u
u
x
u
u
y
u
x
u
v
x
p
yx
y
y
y
x
yy
y
y
x
x
xx
?
?
( a)
( b)
( c) ?
( 8—3)
于是,N—S运动方程式和连续方程式变为
① 流动是恒定的; ②平面流动; ③质量力只有重力作用,
且可以忽略;④不可压缩流体。
21
111~,1~,1~ ?????? xuuxuu ( 8—4)
According to formula( 8—3c),then
1~yu y??
( 8—5)
According to formula( 8—3c)
?? ~0 dyxuu y ? ????
( 8—6)
?
According to formula( 8-6) we know,is equivalent to the
quantity class of,according to formula( 8-5) we know,
is equivalent to the quantity class of y,so y is equivalent to the
quantity class of 。 then
yu
?
yu
In order to simplify the differential group above,analyze the quantity class of
equation terms,neglect the low quantity class terms,shown as Fig.8-2,Assuming
the characteristic length of object is,the main flow velocity is,the thickness
of boundary layer is define the equivalent quantity class with as 1,define
the equivalent quantity class with as,and,then we have
l 0U
? 0Ul、
? 1????
22
111~,1~,1~ ?????? xuuxuu ( 8—4)
由式( 8—3c),得
1~yu y??
( 8—5)
又由式( 8—3c)
?? ~0 dyxuu y ? ????
( 8—6)
? 由式( 8—6)可知,相当于 的量级,由式( 8—5)可知,
相当于 y 的量级,因此 y 也相当于 量级。于是
yu
?yu
为简化上面的微分方程组,对式中各项进行量级分析,忽略
其低量级量,如图 8—2所示。假设物体的特征长度为,主流流
速为,边界层厚度为,与 相当的量级定为 1,与
相当的量级定为,且,于是有
l
0U ? 0Ul,?
1????
23
?
?
?
?
???
?
?
???
?
?
1
1
1
1
x
u
u
y
u
u
y
x
x
y
?
( 8—7)
As for
1
1
11 ???
?
?
??
?
?
??
x
p
p
up x
Hence
( 8—8)
24
?
?
?
?
???
?
?
???
?
?
1
1
1
1
x
u
u
y
u
u
y
x
x
y
?
( 8—7)
因为
1
1
11 ???
?
?
??
?
?
??
x
p
p
up x
所以
( 8—8)
25
and
? ?
?
?
???
1
111
11
1
1
2
2
2
2
22
2
2
2
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
?
?
?
y
u
yy
u
x
u
xx
u
y
u
yy
u
x
u
xx
u
yy
yy
y
x
xx
?
( 8—9)
26
又
? ?
?
?
???
1
111
11
1
1
2
2
2
2
22
2
2
2
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
?
?
?
y
u
yy
u
x
u
xx
u
y
u
yy
u
x
u
xx
u
yy
yy
y
x
xx
?
( 8—9)
27
Substitute the quantity class of formula( 8-4)( 8-9) into( 8-
3a) and( 8-3b),then
?? ?
?
11
2
2
2
2
1 1121?
)(
1
y
u
u
x
u
u
y
u
x
u
x
p x
y
x
x
xxv
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
???
( 8—10)
11
2
2
2
2
1 1?
)(
1
y
u
u
x
u
u
y
u
x
u
y
p y
y
y
x
yyv
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?? ??? ??
? ???
( 8—11)
28
将式( 8—4)( 8—9)的量级代入式( 8—3a)和( 8—3b)
中,则得
?? ?
?
11
2
2
2
2
1 1121?
)(
1
y
u
u
x
u
u
y
u
x
u
x
p x
y
x
x
xxv
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
???
( 8—10)
11
2
2
2
2
1 1?
)(
1
y
u
u
x
u
u
y
u
x
u
y
p y
y
y
x
yyv
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?? ??? ??
? ???
( 8—11)
29
Eq.( 8-10) the first term which is relative with and the second term can be
neglected in the left parenthesis,Assuming that the effect of pressure term,viscosity
term and inertia term are same,their quantity classes must be same,So we obtain the
quantity class of is, If substitute the quantity class of into Eq.(8-11),then terms
are and exclude,which compare with the quantity class of pressure term,
they all can be neglected,Finally we get the motion equation of boundary layer and
boundary condition,these are
v2?v
3? ? ?1
? ? ? ? ? ? ? ? 00,,00,,,
0
0
1
22
2
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
xUxUxUxu
y
u
x
u
y
p
y
u
u
y
u
u
y
u
v
x
p
yxx
yx
x
y
x
x
x
?
?
( a)
( b)
( c)
( d) ?
( 8—12)
30
式( 8—10)左端圆括号中的第一项同第二项相比可以忽略。
假设在边界层中的压力项、粘性项和惯性项的影响相同,则它们的
量级也应该相同。于是,得 的量级为,若将 的量级代入式
( 8—11),则压力项以外各项的量级分别为 和,同压力项的
量级 相比,均可以忽略掉。最后,得边界层的运动方程式及边
界条件为
v 2? v
3? ?
?1
? ? ? ? ? ? ? ? 00,,00,,,
0
0
1
22
2
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
xUxUxUxu
y
u
x
u
y
p
y
u
u
y
u
u
y
u
v
x
p
yxx
yx
x
y
x
x
x
?
?
( a)
( b)
( c)
( d) ?
( 8—12)
31
( 1) From Eq.( 8-12b),we know,pressure P in the boundary
layer is unchangeable in the direction of y,and it can be determined
by the motion equation of x-direction which flows outside boundary
layer,When mass force is neglected,and is invariable flow,we would
have
0U
U( x) is the ideal flow or potential flow velocity in the,
simplifies U,as for boundary layer on plane board is,the
internal of the boundary layer
We would have
,0???yp
dx
dUU
dx
dp ??? ( the internal of the boundary layer ) ( 8—13)
Conclusion,
? ?
? ?
? ?
? ?
? ? CxUp
x
xU
xU
x
p
x
xU
xU
x
p
??
?
?
??
?
?
?
?
?
?
?
?
2
2
1
1
?
?
?
so
(on the boundary of boundary layer) integrate
32
( 1)由式( 8—12b)可知,在边界层内压强 P沿 y 方向不变
化,可由边界层外部流动的 x 方向的运动方程式确定。当忽略质
量力,且为恒定流时得
0U
U( x)为边界层边界上理想流动或势流的流速,以后简记
为 U,对于平板上的边界层就是,由于在边界层内部
所以有
,0???yp
dx
dUU
dx
dp ??? (在边界层内部) ( 8—13)
结论,
? ?
? ?
? ?
? ?
? ? CxUp
x
xU
xU
x
p
x
xU
xU
x
p
??
?
?
??
?
?
?
?
?
?
?
?
2
2
1
1
?
?
?
所以
(在边界层边界上) 积分得
33
( 2) Consulting motion equation of boundary layer(8-12a)
obtaining variable regulation of boundary layer,the quantity class
of two ends of (8-12)
l
l
l
v
lUlU
v
ll
UU
v
Re
1
Re
11
00
2
22
0
2
0
?
????
?
?
?
或
( 8—14)
Due to Renault number is great,we may know the
boundary layer thickness is small,lRe
?
34
( 2)由边界层运动方程式( 8—12a)求得边界层厚度变
化规律。( 8—12)两端的量级为
l
l
l
v
lUlU
v
ll
UU
v
Re
1
Re
11
00
2
22
0
2
0
?
????
?
?
?
或
( 8—14)
由于雷诺数 很大,可见边界层厚度 是很小的。
lRe ?
35
§ 8-4 Variable Thickness of Boundary Layer
Expressing boundary layer thickness with,it is the distance
from this point to solid surface when a certain point velocity on cross-
section of boundary layer is equal to the 99% of arrival flow velocity
?
0U
1,Boundary Layer Thickness
Definition,
Ideal Velocity the thickness which is equivalent to the
decreased flow rate in the boundary layer,is called pressed thickness
,also called thickness of flow rate losses,
0U 1?
2,Displacement Thickness
Definition,
Classification,
Boundary Layer Thickness
Displacement Thickness
Momentum Thickness
36
§ 8-4 边界层中的各种厚度
种类,
?
?
?
?
?
动量厚度。
排挤厚度;
边界层厚度;
边界层厚度一般用 表示,它是边界层横断面上某点的流速
等于来流流速 的 99%时,此点到固体表面的距离。
?
0U
理想流速 通过边界层中减小的流量所相当的厚度称为排挤
厚度,也称为流量损失厚度。
0U
1?
一、边界层厚度
定义,
二、排挤厚度
定义,
37
? ?
dy
U
u
u d yUdyuUU
?
??
??
?
?
??
?
?
??
????
?
??
?
??
0
0
1
0
0
0
010
1or
( 8—15a)
( 8—15b)
Shown in Fig.8-3a,decreased flow rate in the boundary;
the vertical hatch area represents the flow rate through the cross-section which
Displacement thickness is at ideal velocity,
0U1?
The first right term of Eq.( 7-15a) represents the flow rate of ideal fluid through
cross-section which thickness is,
The second term represents the flow rate through same cross-section in the boundary
layer,
The difference between two terms represents the decreased flow rate for the
existence of boundary layer,
?
38
? ?
dy
U
u
u d yUdyuUU
?
??
??
?
?
??
?
?
??
????
?
??
?
??
0
0
1
0
0
0
010
1或
( 8—15a)
( 8—15b)
如图 8—3a 所示,图中斜影线面积表示边界层中减小的流量;
图中铅直影线面积表示以理想流速 通过排挤
厚度 的流量。
0U
1?
式( 7—15a)右边第一项表示理想流体通过厚度为 断面的流量。
第二项表示边界层中同一断面通过的流量。
两者之差表示由于边界层的存在所减小的流量。
?
39
u
y
0U
u
?
( a)
0U
u
0U
?
h
1?
1???? hh
Streamline
( b)
Fig,8 - 3
Where is supposed as the flow rate of external of boundary layer,h is the
front distance between streamline and the plane board,due to the flow velocity u
inside the boundary layer is less than,in order to keep the flow rate constant,
streamline should offset a distance,Now we confirm this offset distance is
Displacement thickness,supposing the distance between streamline and plane
board is,from the continuity equation,we have
0U
0U
1?
h?
1?
In addition,press thickness determines the offset distance of
streamline,shown in Fig.8-3(b),the flow rate between plane board
and streamline keeps invariable,
40
u
y
0U
u
?
( a)
0U
u
0U
?
h
1?
1???? hh
流线
( b)
图 8 — 3
设边界层边界外的流速处处为,流线和平板间的距离在平
板前端为 h,由于边界层内的流速 u 小于,为了保持通过的流
量不变,流线应该向外偏移一个距离。现证明这个偏移距离就是
排挤厚度,设此时流线与平板间的距离为,由连续方程
0U
0U
1? h?
1?
另外,排挤厚度 决定了流线的偏移距离。如图 8—3( b)
所示,通过平板与流线间的流量应保持不变。
41
? ?
? ?
1
10
0
00
0
0
0
?
??
?
?
?
???
?????
????
?
?
hh
UdyuUhhU
UhudyhU
Demonstration is over,
The thickness which is equivalent to the decreased momentum
when ideal velocity pass through boundary layer,called momentum
thickness,also called momentum loss thickness,0
U
2?
? ?
dy
U
u
U
u
dyuUuU
??
?
?
??
?
?
??
??
?
?
0
0
0
2
0
02
2
0
1
?
?
?
??? ( 8—16a)
( 8—16b)
3,Momentum Thickness
Definition,
42
? ?
? ?
1
10
0
00
0
0
0
?
??
?
?
?
???
?????
????
?
?
hh
UdyuUhhU
UhudyhU
证毕。
理想流速 通过边界层中减小的动量所相当的厚度,称为
动量厚度,又称动量损失厚度。
0U
2?
? ?
dy
U
u
U
u
dyuUuU
??
?
?
??
?
?
??
??
?
?
0
0
0
2
0
02
2
0
1
?
?
?
??? ( 8—16a)
( 8—16b)
三、动量厚度
定义,
43
[Example8-1]Assuming the flow velocity in the boundary distributes
according the following exponential regulation,
ny
U
u 1
0
??????? ?
Find,displacement thickness and momentum thickness of boundary
layer when n=7,
[Solution] displacement thickness
??
?
?
??
8
1
1
111
0
1
0
0
1 ?????
?
?
?
?
?
?
?
?
??
?
???
???
?
???
? ?? ??
n
dyydy
U
u n
momentum thickness
? ?? ?
??
??
?
??
72
7
21
11
11
0
0
0
0
2
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
???
?
?
?
?
?
?
?? ??
nn
n
dy
yy
dy
U
u
U
u nn
44
[例题 8—1]假设边界层中的流速按下面指数规律分布
ny
U
u 1
0
??????? ?
试求,n=7时边界层的排挤厚度和动量厚度。
[解 ] 排挤厚度
??
?
?
??
8
1
1
111
0
1
0
0
1 ?????
?
?
?
?
?
?
?
?
??
?
???
???
?
???
? ?? ??
n
dyydy
U
u n
动量厚度
? ?? ?
??
??
?
??
72
7
21
11
11
0
0
0
0
2
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
???
?
?
?
?
?
?
?? ??
nn
n
dy
yy
dy
U
u
U
u nn
45
§ 8-5 The Momentum Equation of Boundary Layer and Friction shear Stress
When fluid flows on the solid wall,like what said before,in the direction of
vertical wall,velocity is changed from 0 on the wall to the main velocity,the
reason which formed this distribute is the result that resistance force on the wall
take effect on the flow motion direction conversely,This section introduces how to
find the shear stress of friction on the wall in terms of momentum laws,
0U
0?
Shown in Fig.8-4,dashed line OAD is the separation line of boundary layer
and main flow,the boundary region between dashed line and solid wall has obvious
function,viscid function outside the dashed region can be neglected,it can be
looked as flow region of ideal flow,As for the velocity in the boundary layer of
plane board is constant,and for curve wall,it is an variable number,
0U ? ?Ux
0U
x
o
y
dx
dx0??
A
BP
? u 0U
?
D
C
?d
dxxPP ???
dxxPP ??? 21
dl
Fig,8- 4
46
§ 8-5 边界层的动量方程式和摩擦切应力
当流体沿固体壁面流动时,如前所述在垂直壁面方向,速度
由壁面上的零变为主流流速,形成这种速度分布的原因是由于
壁面上的阻力逆流体流动方向作用的结果。本节我们应用动量定
律来求壁面的摩擦切应力 。
0U
0?
如图 8—4所示,虚线 OAD为边界层与主流的分界线、虚线与
固体壁面间为边界层区域,粘性作用显著,虚线外区域忽略流体
中的粘性作用,视为理想流体流动区域,对于平板边界层上的流
速为常数,对于曲线壁面,边界层边界上的流速为变数
0U ? ??xU
0U
x
o
y
dx
dx0??
A
BP
? u 0U
?
D
C
?d
dxxPP ???
dxxPP ??? 21
dl
图 8 — 4
47
dx If we take the control body ABCD with length,we
express the boundary thickness of section AB with,action
pressure with p,shown in Fig,?
? ?
??
?????
?
pddldx
x
p
p
dx
x
p
pdpddx
x
p
p
p
ds
???
?
?
?
?
?
?
?
?
?
?
?????
?
?
?
?
?
?
?
?
??? ?? s in
2
1
Plane AB
Plane CD
Plane AD
Action force in the x -direction are as following,
xu
a,two dimension steady flow;
b,mass force only has gravity,can be neglected;
c,curvature of section is small,can be looked as straight
line,
Assume,
48
如图所示,取长为 的控制体 ABCD,AB断面处边界层
厚度为,作用压强为 p 。
dx
?
在 x 方向的作用力如下,
? ?
??
?????
?
pddldx
x
p
p
dx
x
p
pdpddx
x
p
p
p
ds
???
?
?
?
?
?
?
?
?
?
?
?????
?
?
?
?
?
?
?
?
??? ?? s in
2
1
AB面
CD面
AD面
xu
a,二元恒定流动;
b,质量力只有重力,且忽略不计;
c,段壁面曲率小,可视为直线。
假设,
49
dxdx
x
p
dxpd
x
p
pdppFx
dx
0
0
0
??
??????
?
?
?
?
??
???
?
?
?
?
?
?
?
????
?
Plane BC
Resultant force
( 1)
Momentum change in x –direction is displayed as following,
Momentum flow-in on
plane AB
dxdyu
dx
d
dyu
dyu
?
?
??
?
?? ??
?
??
?
??
?
0
2
0
2
0
2
Momentum flow-out on
plane AB
50
dxdx
x
p
dxpd
x
p
pdppFx
dx
0
0
0
??
??????
?
?
?
?
??
???
?
?
?
?
?
?
?
????
?
BC面
合力
( 1)
x 方向的动量变化如下,
AB面流入的动量
dxdyu
dx
d
dyu
dyu
?
?
??
?
?? ??
?
??
?
??
?
0
2
0
2
0
2
CD面流出的动量
51
Momentum calculation on plane AD
Total momentum change is:,
ADABCD KKKK ????
dxu d y
dx
d
Udxdyu
dx
d
dxu d y
dx
d
Udyudxdyu
dx
d
dyuK
?
?
??
?
???
?
??
?
??
?
?
??
?
???
??
?
??
?
?
?
??
?
????
??
? ???
??
? ???
??
????
00
2
0 0
2
0
2
0
2
( 2)
dxu d y
dx
d
UQU
dxu d y
dx
d
QQQ
dxu d y
dx
d
u d yQ
u d yQ
AD
CDD
CD
?
?
?
?
?
?
??
?
?
?
?
?
?
???
?
?
?
?
?
?
??
?
?
?
??
?
???
??
?
?
??
?
?
?
??
?
0
0
00
0
mass flow-in rate on plane AB
mass flow-out rate on plane CD
mass flow-in rate on plane AD
momentum flow-in on plane AD
52
AD面流入的动量计算
?
?
?
?
?
?
?
面流入的动量
面流入的质量流量
面流出的质量流量
面流入的质量流量
AD
AD
CD
AB
dxu d y
dx
d
UQU
dxu d y
dx
d
QQQ
dxu d y
dx
d
u d yQ
u d yQ
AD
CDD
CD
?
?
?
?
?
?
??
?
?
?
?
?
?
???
?
?
?
?
?
?
??
?
?
?
??
?
???
??
?
?
??
?
?
?
??
?
0
0
00
0
总动量变化为,即,
ADABCD KKKK ????
dxu d y
dx
d
Udxdyu
dx
d
dxu d y
dx
d
Udyudxdyu
dx
d
dyuK
?
?
??
?
???
?
??
?
??
?
?
??
?
???
??
?
??
?
?
?
??
?
????
??
? ???
??
? ???
??
????
00
2
0 0
2
0
2
0
2
( 2)
53
dx
dp
dyu
dx
d
u d y
dx
d
U
u d y
dx
d
Udyu
dx
d
dx
dp
????
????
??
??
??
?
??
?
???
?
??
?
??
?
?
??
?
???
?
??
?
????
??
??
0
2
0
0
00
2
0
or ( 3)
Pressure change in the boundary in flow direction is given by Eq,(8-
13)
dx
dUU
dx
dp ??? ( 4)
The first term on the right of Eq.( 3) can be rearranged according to
step differential,
???
???
??
?
??
?
??
?
?
??
?
????
?
??
?
???
??
?
??
? ?
?
??
?
?
???
???
???
???
000
000
udy
dx
dU
udyU
dx
d
udy
dx
d
U
udy
dx
d
Uudy
dx
dU
udyU
dx
dBecause
Hence ( 5)
KFx ?? Substitute Eq,(1) and Eq.(2) into momentum equation,
notice in the boundary layer p=p( x),hence,yields
dx
dp
x
p ?
?
?
54
dx
dp
dyu
dx
d
u d y
dx
d
U
u d y
dx
d
Udyu
dx
d
dx
dp
????
????
??
??
??
?
??
?
???
?
??
?
??
?
?
??
?
???
?
??
?
????
??
??
0
2
0
0
00
2
0
或者 ( 3)
边界层内的压强在流动方向上的变化由式( 8—13)为
dx
dUU
dx
dp ??? ( 4)
式( 3)右端的第一项根据分步积分变形如下,
???
???
??
?
??
?
??
?
?
??
?
????
?
??
?
???
??
?
??
? ?
?
??
?
?
???
???
???
???
000
000
udy
dx
dU
udyU
dx
d
udy
dx
d
U
udy
dx
d
Uudy
dx
dU
udyU
dx
d因为
所以 ( 5)
将式( 1)和( 2)代入动量方程,并注意到在边
界层内 p=p( x),所以,于是得
KFx ??
dx
dp
x
p ?
?
?
55
Substitute Eq.( 4) and Eq.( 5) into
Eq.( 3),that
? ? ? ? ? ?
dx
dU
U
dx
dU
U
dx
d
U
dx
dU
UU
dx
d
dyuU
dx
dU
dyuUu
dx
d
dx
dU
Udyu
dx
d
udy
dx
dU
U u d y
dx
d
UU
U d y
dx
dU
12
22
12
2
00
0
2
00
0
2
12
2
0
????
?
?
??????
??????
??
?
??
?
?
???
?
???
??????
?
?????
??
???
?? ??? ???? ??? ??
? ?? ??
Divide both sides by,the result is 2U?
? ?12220 21 ????? ??? dxdUUdxdU ( 8—17)
Eq.(8-17) is called Karlmn Momentum Equation,
56
将式( 4)和式( 5)代入式( 3)得
? ? ? ? ? ?
dx
dU
U
dx
dU
U
dx
d
U
dx
dU
UU
dx
d
dyuU
dx
dU
dyuUu
dx
d
dx
dU
Udyu
dx
d
udy
dx
dU
U u d y
dx
d
UU
U d y
dx
dU
12
22
12
2
00
0
2
00
0
2
12
2
0
????
?
?
??????
??????
??
?
??
?
?
???
?
???
??????
?
?????
??
???
?? ??? ???? ??? ??
? ?? ??
两端除以,得 2U?
? ?12220 21 ????? ??? dxdUUdxdU ( 8—17)
式( 8—17)称为 卡门动量方程式 。
57
As for the boundary layer of plane board,we consider its
existence can not take effect on external flow for thin plane board,So
we have,Eq,(8-17) is rearranged as
00 ?? dxdUdxdU
dx
dU 22
00
??? ? ( 8—18)
l Assuming width of plane board is b,length is,then total friction force which action force acts on single side of plane board is
l
ll
f bUdbUb d xD 2
2
00 2
2
00 0 ????? ??? ??
( 8—19)
Application
Extent,
Laminar Boundary Layer
Turbulent Boundary Layer
Plane Board or Curve Wall
58
?
?
?
?
?
平板或曲线壁面。
紊流边界层;
层流边界层;
适用范围,
对于平板上的边界层,一般由于平板很薄,可以认为由于它
的存在而不影响外部流动。因此,这样式( 8—17)
就变为 00 ?? dxdUdxdU
dx
dU 22
00
??? ? ( 8—18)
假设平板的宽度为 b,长度为,则作用力在单侧平板上的
总摩擦阻力为 l
l
ll
f bUdbUb d xD 2
2
00 2
2
00 0 ????? ??? ??
( 8—19)
59
§ 8-6 Laminar Boundary Layer of smooth Board
Definition,
Assuming flow velocity of invariable uniform flow is,we put
a plane board in the side of parallel flow which length is,width is
,then its resistance force is l
0U
fD
blUCD ff 202?? ( 8—20)
When viscid fluid flows on the plane board,resistance force acts
the plane board,it is called friction resistance force,
where
—fC resistance force coefficient of friction
60
§ 8-6 光滑平板上的层流边界层
定义,
假设恒定均匀流的流速为,平行流动方向放置一长为,
宽为 b 的平板,则平板一侧所受的阻力
l0U
fD
blUCD ff 202?? ( 8—20)
式中
摩擦阻力系数。—fC
当粘性流体在平板上流动时,平板将受到阻力作用,此阻
力称为摩擦阻力。
61
1,Distribute Equation of Flow Velocity of Laminar Boundary
Layer
Assuming
?
?
?
?
?
?
?
?
?
?
??
?
???
?
??
?
???
?
??
?
?? 32
0 ???
yCyByAUu ( 8—21)
As for invariable flow,motion equation of boundary layer
? ?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
xpis p
y
p
y
u
u
x
u
u
y
u
v
x
p x
y
x
x
0
1
2
2
?
( 8—22)
On the wall of plane board( y =0),,then when y =0,0?? yx uu
dx
dp
y
uv
?
1
2
2
???
( 8—23)
62
一、层流边界层的流速分布公式
设
?
?
?
?
?
?
?
?
?
?
??
?
???
?
??
?
???
?
??
?
?? 32
0 ???
yCyByAUu ( 8—21)
对于恒定流,边界层的运动方程式为
? ?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
xpp
y
p
y
u
u
x
u
u
y
u
v
x
p x
y
x
x
即0
1
2
2
?
( 8—22)
因为在平板的壁面上( y =0),,所以 y =0时,0?? yx uu
dx
dp
y
uv
?
1
2
2
???
( 8—23)
63
From(8-1),the pressure change inside the boundary is
dx
dpU
dx
dp ??? ( 8—24)
As for the boundary layer of plane board,,
then, substitute into Eq.(8-23),we would have the result
when y =0,
dx
dU
dx
dUUU 0
0,??
0?dxdp
02
2
??? yu x
( 8—25)
Continuous partial differential with Eq.(8-21) twice,let it
equal to zero,we have
062
0
3202
2
??
?
?
??
? ???
?
?
?y
x yCBU
y
u
??We also have B=0,and at ??y
0,0 ???? yuUu xx
( 8—26)
64
由式( 8—13),边界层内部的压强变化为
dx
dpU
dx
dp ??? ( 8—24)
对于平板上的边界层,,于是上式中
,代入式( 8—23),得 y =0时,
dx
dU
dx
dUUU 0
0,??
0?dxdp
02
2
??? yu x
( 8—25)
对式( 8—21)连续偏导两次,并令其等于零,得
062
0
3202
2
??
?
?
??
? ???
?
?
?y
x yCBU
y
u
??
由此得 B=0。又在 处有 ??y
0,0 ???? yuUu xx
( 8—26)
65
We still use Eq.( 8-21),we have
?
?
?
??
??
03
1
CA
CA
We would find
2
1,
2
3 ??? CA
Substitute A,B,C above into Eq.(8-2),we would obtain flow
velocity distribute of boundary layer of laminar flow,that is
?
?
?
?
?
?
?
?
?
?
??
?
???
?
??
?
?? 3
0 2
1
2
3
??
yyUu ( 8—27)
66
仍应用式( 8—21)得
?
?
?
??
??
03
1
CA
CA
解得
2
1,
2
3 ??? CA
将上面的 A,B,C各值代入式( 8—21),得层流边界层内
的流速分布为
?
?
?
?
?
?
?
?
?
?
??
?
???
?
??
?
?? 3
0 2
1
2
3
??
yyUu ( 8—27)
67
2,Thickness Equation of Boundary Layer of Laminar Flow
????
1
2
3
0
0
0 Udy
du
y
x ??
?
( 8—28)
On the other hand,from Eq.(8-18) and Eq.(8-16),we
have
dy
yyyy
dx
d
U
dy
U
u
U
u
dx
d
U
dx
d
U
??
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
3
0
3
2
0
0
0
0
2
0
22
00
2
1
2
3
1
2
1
2
3
1
????
?
?
?
??
?
?
From Newton’s internal friction law
68
二、层流边界层厚度公式
????
1
2
3
0
0
0 Udy
du
y
x ??
?
( 8—28)
另一方面,由式( 8—18)和式( 8—16),有
dy
yyyy
dx
d
U
dy
U
u
U
u
dx
d
U
dx
d
U
??
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
3
0
3
2
0
0
0
0
2
0
22
00
2
1
2
3
1
2
1
2
3
1
????
?
?
?
??
?
?
由牛顿内摩擦定律
69
so
dx
dU ??? 2
00 2 8 0
39? ( 8—29)
We can find which find from Eq.(8-28) or Eq.(8-29) would be
equal,hence 0?
dx
U
d
013
140
?
??? ?
Differentiate equation above,and notice,in front end of plane
board,that is at the location of x=0,,we would have 0??
0
64.4 Uvx??
( 8—30)
70
所以
dx
dU ??? 2
00 2 8 0
39? ( 8—29)
因为由式( 8—28)或式( 8—29)求得的 应该相等,所以
得
0?
dx
U
d
013
140
?
??? ?
将上式积分,并且注意:在平板前端,即 x=0 处,,于是
得
0??
0
64.4 Uvx??
( 8—30)
71
3,Friction Resistance Equation of Laminar Boundary Layer
xU
vU
0
2
0
0 2647.0
?? ? ( 8—31)
bl
U
bl
U
lU
v
x
dx
b
U
vU
bdxD
l
ll
f
2Re
29.1
2
29.1
2
647.0
2
0
2
0
0
0
0
2
0
0
0
??
?
?
??
?? ??
( 8—32)
Friction resistance force which acts on the single side of plane board
which width is b length is,from Eq.(8-19),we have l
Combining Eq.(8-32) and Eq.(8-20),yielding friction resistance
coefficient
l
fC Re
29.1? ( 8—33)
Renault number is
v
lU
l
0Re ?
Substitute Eq.(8-30) into Eq.(8-28),then
72
三、层流边界层的摩擦阻力公式
xU
vU
0
2
0
0 2647.0
?? ? ( 8—31)
bl
U
bl
U
lU
v
x
dx
b
U
vU
bdxD
l
ll
f
2Re
29.1
2
29.1
2
647.0
2
0
2
0
0
0
0
2
0
0
0
??
?
?
??
?? ??
( 8—32)
作用在宽为 b,长为 单侧平板上的摩擦阻力,由式( 8—19)
为 l
联立式( 8—32)和式( 8—20),得摩擦阻力系数
l
fC Re
29.1? ( 8—33)
式中雷诺数 。
v
lU
l
0Re ?
将式( 8—30)代入式( 8—28)得
73
This is only a approximate solution,precise solution is got
from Blasius Equation according to boundary layer equation (8-
12),limited by mathematical reason,we give the result,
l
f
x
C
U
xU
vU
U
vx
Re
33.1
2Re
6 6 4.0
2
6 6 4.0
0.5
2
0
0
2
0
0
0
?
??
?
??
?
?
?
( 8—34)
Notice,
This result only applies to laminar boundary layer,not turbulent
boundary layer,
74
这只是一种近似解,严密解是由勃拉休斯根据边界层基
本公式( 8—12)求得的,但是限于数学原因,这里只给出其
结果,
l
f
x
C
U
xU
vU
U
vx
Re
33.1
2Re
6 6 4.0
2
6 6 4.0
0.5
2
0
0
2
0
0
0
?
??
?
??
?
?
?
( 8—34)
注意,
此结果只适用于层流边界层,对于紊流边界层不适用。
75
[Example8-2] In the water which motion viscosity coefficient is
,the plane board which length is 2m and width is 2m moves at the velocity of
0.2m/s,find precise solution according to Blasius equation
( 1) friction stress with 0.5m to the front end of plane board ;
( 2) force which can tow the plane board,
smv 26101 ???
[Solution] ( 1) Calculation of friction stress
55
6
0 105104
101
22.0Re ????
?
???
?v
lU
l
Because,then laminar boundary layer generates on
plane board,it is right to use Blasius equation,cl ReRe ?
when x =0.5 m
2
62
0
2
0
5.0
0 4 2.0
5.02.0
101
2
2.01 0 0 0
6 6 4.0
2
6 6 4.0
m
N
xU
vU
?
?
??
?
?
?
?
?
76
[例题 8—2]在运动粘滞系数 的水中,长 2m,
宽 2m的平板以 0.2m/s的速度运动,试用勃拉休斯严密解求,
( 1)距平板前端 0.5m处的摩擦应力;
( 2)拖动此平板所需的力。
smv 26101 ???
[解 ] ( 1)摩擦应力计算
55
6
0 105104
101
22.0Re ????
?
???
?v
lU
l
因为,所以整个平板上产生层流边界层,故采用勃
拉休斯公式是正确的。
cl ReRe ?
当 x =0.5 m 时
2
62
0
2
0
5.0
0 4 2.0
5.02.0
101
2
2.01 0 0 0
6 6 4.0
2
6 6 4.0
m
N
xU
vU
?
?
??
?
?
?
?
?
77
( 2) Drag force calculation
3
5
101.2
104
33.1
Re
33.1 ???
?
??
l
fC
Friction resistance on sides of plane board
????????
??
? 3 3 6.0222.01 0 0 0101.2
2
2
23
2
0
2
0 blUCblUCD
fff ?
?
Hence Drag force which can drag the plane board is36N,
Friction resistance coefficient
78
( 2)拖力计算
3
5
101.2
104
33.1
Re
33.1 ???
?
??
l
fC
平板两侧的摩擦阻力为
????????
??
? 3 3 6.0222.01 0 0 0101.2
2
2
23
2
0
2
0 blUCblUCD
fff ?
?
故拖动平板所需的力为 0.336N。
摩擦阻力系数
79
4,Calculation Equation of Turbulent Boundary Layer( confirmation is
neglected.)
x
xU
v
C
L
f
??
?
5
1
0
2.0
)(371.0
Re
074.0
?
5,Calculation Equation of mixed Boundary Layer of plane board (
Confirmation is neglected.)
58.2
7
58.2
76
2.0
65
)Re( l n
455.0
10Re 3
1700 b o a r d p l a n e
Re)Re( l n
455.0
10Re10 W h e n 2
1700 b o a r d p l a n es m o o t h
ReRe
074.0
10Re103 W h e n 1
L
ffmL
LL
fm
L
LL
fm
L
CC
As m o o t h
A
C
A
A
C
???
?
??
??
?
??
???
)(
)(
)(
80
四、紊流边界层的计算公式 (推导略)
x
xU
v
C
L
f
??
?
5
1
0
2.0
)(371.0
Re
074.0
?
五、平板混合边界层计算公式 (推导略)
58.2
7
58.2
76
2.0
65
)Re( l n
455.0
10Re 3
1 7 0 0
Re)Re( l n
455.0
10Re10 2
1 7 0 0
ReRe
074.0
10Re103 1
L
ffmL
LL
fm
L
LL
fm
L
CC
A
A
C
A
A
C
???
?
??
??
?
??
???
)(
光滑平板
范围)(
对光滑平板取
范围)(
81
(4)Calculation Equation of Transition Point
additional layer of laminar flow would be changed into
additional layer of turbulent flow at a certain point,this point is
called transition point,the Reynolds number which take of
this point as characteristic length is called transition (critical)
Reynolds number,using to express,and
kx
kxeR
0
5
Re
105Re
U
x
k
k
xk
x
?
?
?
??
Then transition location
82
0
5
Re
105Re
:Re
4
U
x
x
k
k
k
xk
x
x
k
?
?
?
??
则转捩点位置
表示,计算中常取雷诺数,用
(临界)转捩为特征长度的雷诺数称转捩点,以该点位置的
该点称为部转变为紊流附面层,层流附面层在某一点全
点计算公式转捩)(
83
Chapter 8 Exercises
8-1 There is a rectangular thin board which is 1.5 m× 4.5 m,dray at
the velocity of 3 m/s in the direction of board surface,we know
viscosity coefficient of air motion is v = 1.5× 10- 5 m2/s,density is ?
? 1.2 kg/m3 。 Find resistance force along short edge and long edge
respectively,Solution:( 1) find motion resistance force in short edge direction,
N 1 7 6.03
2
2.1
5.15.40 0 2 4 2.02
2
2
0 0 2 4 2.0
105.1
5.13
33.1
Re
33.1
l a y e rb o u n d a r y l a m i n a r is b o a r d f u l l so,m 2, 5 m 5.1 e c a u s e
m 5.2
3
105.1
105Re p o i n t T r a n s i t i o n
22
0
5
5.0
1
5
5
0
11
1
1
???????
?
?
?
??
??
?
????
?
?
UbLCD
C
LB
U
v
x
ff
L
f
xk
k
?
=:
84
第八章 习题
8—1 有一块 1.5 m× 4.5 m 的矩形薄板在空气中以 3 m/s速度沿板
面方向拖动,已知空气运动粘性系数为 v = 1.5× 10- 5 m2/s,密度
为 ? ? 1.2 kg/m3 。试求薄板沿短边方向和长边方向运动时,各自
的摩擦阻力。
解:( 1)求沿短边方向运动的阻力。
N 1 7 6.03
2
2.1
5.15.40 0 2 4 2.02
2
2
0 0 2 4 2.0
105.1
5.13
33.1
Re
33.1
,m 2, 5 m 5.1
m 5.2
3
105.1
105Re
22
0
5
5.0
1
5
5
0
11
1
1
???????
?
?
?
??
??
?
????
?
?
UbLCD
C
L
U
v
x
ff
L
f
xk
k
?
,所以全板为层流边界层因为
=转捩点:
85
s.b o u n d a r y 'l a m i n a r a n t h eg r e a t e r t h isl a y e r b o u n d a r y m i x e d
f r o m c o m i n g f o r c e r e s i s t a n c e,21of r e s u l t s t h eC o m p a r e
N 21.03
2
2.1
5.45.10 0 2 8 8.02
2
2
0 2 8 8.0
109
1 7 0 0
)109(
0 7 4.0
ReRe
0 7 4.0
10109
105.1
5.43
Re
l a y e r a d d i t i o n a l m i x e d is,
s i d e l o n g a l o n g f o r c e r e s i s t a n c e F i n d 2
22
0222
52.05
2.0
2
65
5
20
2
)()(
=
)(
-
-
a n d
UbLCD
A
C
v
LU
xL
ff
LL
f
L
k
??????
?
?
?
?
??
???
?
?
??
?
?
86
。大于层流边界层的阻力
边界层产生的阻力)结果,一块平板混合),(比较(
=
为混合附面层
求沿长边运动时的阻力)(
-
-
21
N 21.03
2
2.1
5.45.100288.02
2
2
0288.0
109
1700
)109(
074.0
ReRe
074.0
10109
105.1
5.43
Re
,
2
22
0222
52.05
2.02
65
5
20
2
??????
?
?
?
?
??
???
?
?
??
?
UbLCD
A
C
v
LU
xL
ff
LL
f
L
k
?
87
88
Mechanics of Fluid
2
3
Chapter 8 Boundary Layer Theory
§ 8–1 Introduction
§ 8–6 Laminar Boundary Layer of smooth Board
Chapter 8 Exercises
§ 8–5 The Momentum Equation of Boundary
Layer and Friction shear Stress
§ 8–4 Variable Thickness of Boundary Layer
§ 8–3 The Motion Differential Equation of
Boundary Layer
§ 8–2 Basic Concept of Boundary Layer
4
第八章 边界层理论
§ 8–1 引言
§ 8–6 光滑平板上的层流边界层
第八章 习题
§ 8–5 边界层的动量方程式和摩擦切应力
§ 8–4 边界层中的各种厚度
§ 8–3 边界层的运动微分方程式
§ 8–2 边界层的基本概念
5
Chapter 8 Boundary Layer Theory
§ 8-1 Introduction
The last chapter introduces Navier-Stokes equation and Reynolds
equation,the differential continuity and these two equations form basic
differential equation which find the solution of viscosity fluid dynamics,
As for they are nonlinear second-order partial differential equations,
Reynolds equation is not still be closed,usually we can not obtain the
accuracy solution,people turn to seek approximate solution,
6
第八章 边界层理论
§ 8-1 引言
上章介绍了纳维 —斯托克斯方程与雷诺方程,它们与连续性微
分方程一起构成求解粘性流体动力学的基本微分方程。由于它们是
非线性的二阶偏微分方程,雷诺方程还无法封闭,所以在一般情况
下不易得到它们的精确解,所以人们转向寻求近似的解答。
7
This chapter introduces boundary layer of plane board for the
approximate of linear surrounding flow and plane board surrounding
flow,
We can obtain the analytic approximate solution when viscosity
fluid moves by two methods as following,one is called,creeping flow
theory” which we neglect inertia force and make basic concept linearity
when, The other is to find boundary layer theory of
resistance force of surrounding flow when,it only considers
flow viscosity inside the boundary layer,and the outside can be
considered the potential flow of the ideal fluid,
1Re ??
1Re ??
8
本章主要研究平板上的边界层,因为流线体绕流与平板绕流
相接近。
粘性流体运动时的解析近似解至今在两种情况下才能获得,
一种是 时,可忽略惯性力,使基本方程线性化,这就是所
谓蠕流理论;另一种是 时,求解物体绕流阻力的边界层理
论,它对流体的粘性仅局限于边界内考虑,而边界层之外的广大
主流区,可当作理想流体的势流。
1Re ??
1Re ??
9
§ 8-2 The Basic Concept of Boundary Layer
The Basic Difference Between Viscid Fluid and Ideal Fluid,viscid fluid has
viscosity,
When viscid fluid flows on stationary fixed boundary,its velocity is 0,with the
increasing of the distance to the fixed boundary,the effect of fixed boundary or
viscosity on flow will be decreased,flow velocity increases,finally approaches the
arrival flow velocity,
0U
The flow thickness which the velocity increase from 0 to 0.99
is called the thickness of boundary layer, 0U?
When Reynolds number of arrival flow is greater,the extent which
has variable velocity is limited to the thinnest layer near the
fixed boundary,which is called boundary layer,dydu
Definition,
10
§ 8-2 边界层的基本概念
粘性流体与理想流体的根本区别, 粘性流体具有粘滞性。
当粘性流体在静止固定边界上流动时,流体在固定边界上的
速度为零,随与固体边界距离的增大,固体边界或粘性对流动的
影响逐渐减小,流速逐渐增大,最后接近来流流速 。
0U
当来流的雷诺数较高时,具有速度变化 的范围只
限于靠近固体边界的极薄的一层内,此薄层称为边界层。
dydu
流速由 0 增加到 0.99 处流体的厚度称为边界层的厚度 。
0U ?
定义,
11
Define friction resistance force of aircraft and naval vessel;
Define coefficient value of theoretical flow velocity on overflow dam;
Define the incorporation point of high velocity flow in steep groove;
Define the flow resistance force and water head loss,
Because with the length increase of plane board,friction loss is also
increased,fluid internal energy is decreased,so flow velocity is,in
order to meet the continuity requirement,the thickness of boundary
layer is increased,
Engineering Application of Boundary Layer Theory,
1,The thickness of boundary layer is smaller than
characteristic length of object,,that is extreme
thickness of boundary layer,
?
l 0,??? ll ??
Characteristics of Boundary Layer,
2,The thickness of boundary layer is increased in
the flow direction on plane board,
12
飞机和舰船的摩擦阻力确定;
溢流坝面理论流速系数值的确定;
陡槽中高速水流掺气点的确定;
水流阻力与水头损失的确定。
1,边界层的厚度 与物体的特征长度 相比是非常小的,
,即边界层极薄。
? l
0,??? ll ??
因为随着平板长度的增加,摩擦损失亦增加,流体内部的能
量减少,流速亦减少,为了满足连续条件,边界层的厚度增大。
边界层理论在实际工程中的应用,
边界层的特点,
2,边界层的厚度 在平板上沿流动方向增加。
13
3,laminar flow section,transition section and turbulent flow
section also exists in the boundary layer,under the transition
section and turbulent flow section,there also exists a bottom layer
of laminar flow,As shown in Fig.8-1,0
?
0U
0U
0U
x
y
x
crx
0?
Laminar Flow
Boundary Layer
Transition
Section
Turbulent Flow
Boundary Layer
Bottom Layer of
Laminar Flow
Fig.8-1 Boundary Layer Structure
14
3,边界层中也存在着层流区、过渡区和紊流区,过渡区
和紊流区下面也存在一个层流底层 。如图 8—1所示。
0?
0U
0U
0U
x
y
x
crx
0?
层流边界层 过渡区 紊流边界层
层流底层
图 8—1 边 界 层 结 构
15
With the thickness increase of boundary layer,restriction effect of
viscosity on flow in the boundary layer is decreased,and inertia
function is increased,Laminar flow will turn into turbulent flow
when viscosity can not control water particle motion,just like the
flow in the cylindrical pipe,this phenomenon is called transition of
boundary layer,and there exists a bottom layer of flow under the
transition section and turbulent flow section,
0?
Assuming flow velocity in main flow is,the distance to the
front of plane is x,the Renault number is 0U
v
xU
x
0Re ?
( 8—1)
Usually we take Reynolds number at transition point is
5105Re ??c
( 8—2)
16
随着边界层厚度的增加,粘性对边界层内流体的约束作
用减小,而惯性作用增大。当粘性作用控制不住水质点的运
动时,就和流体在圆管中流动一样,由层流转变成紊流,此
现象称为边界层转捩,并且在过渡区和紊流区下面存在一层
流底层 。
0?
假设主流中流速为,到平板前端的距离为 x,这时
的雷诺数为 0U
v
xU
x
0Re ?
( 8—1)
一般取转捩点的雷诺数为
5105Re ??c
( 8—2)
17
4,The flow extent of viscid flow is classified into tow
sections with different properties by boundary layer,
The section which is out of boundary layer is looked as ideal flow
section,otherwise is viscid flow section,
18
4,边界层将粘性流体的流动范围分成性质完全不同的两
个区。
边界层以外的区可视为理想流动区,边界层内视为粘性流
动区。
19
§ 8-3 The Motion Differential Equation of Boundary Layer
Assume,
0
1
1
2
2
2
2
2
2
2
2
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
y
u
x
u
y
u
u
x
u
u
y
u
x
u
v
y
p
y
u
u
x
u
u
y
u
x
u
v
x
p
yx
y
y
y
x
yy
y
y
x
x
xx
?
?
( a)
( b)
( c) ?
( 8—3)
Hence,N—S motion equation and continuity equation are
changed into
① Flow is steady; ② Plane flow; ③ Gravity function exists which
can be neglected; ④ Incompressible flow,
20
§ 8-3 边界层的运动微分方程式
假设,
0
1
1
2
2
2
2
2
2
2
2
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
y
u
x
u
y
u
u
x
u
u
y
u
x
u
v
y
p
y
u
u
x
u
u
y
u
x
u
v
x
p
yx
y
y
y
x
yy
y
y
x
x
xx
?
?
( a)
( b)
( c) ?
( 8—3)
于是,N—S运动方程式和连续方程式变为
① 流动是恒定的; ②平面流动; ③质量力只有重力作用,
且可以忽略;④不可压缩流体。
21
111~,1~,1~ ?????? xuuxuu ( 8—4)
According to formula( 8—3c),then
1~yu y??
( 8—5)
According to formula( 8—3c)
?? ~0 dyxuu y ? ????
( 8—6)
?
According to formula( 8-6) we know,is equivalent to the
quantity class of,according to formula( 8-5) we know,
is equivalent to the quantity class of y,so y is equivalent to the
quantity class of 。 then
yu
?
yu
In order to simplify the differential group above,analyze the quantity class of
equation terms,neglect the low quantity class terms,shown as Fig.8-2,Assuming
the characteristic length of object is,the main flow velocity is,the thickness
of boundary layer is define the equivalent quantity class with as 1,define
the equivalent quantity class with as,and,then we have
l 0U
? 0Ul、
? 1????
22
111~,1~,1~ ?????? xuuxuu ( 8—4)
由式( 8—3c),得
1~yu y??
( 8—5)
又由式( 8—3c)
?? ~0 dyxuu y ? ????
( 8—6)
? 由式( 8—6)可知,相当于 的量级,由式( 8—5)可知,
相当于 y 的量级,因此 y 也相当于 量级。于是
yu
?yu
为简化上面的微分方程组,对式中各项进行量级分析,忽略
其低量级量,如图 8—2所示。假设物体的特征长度为,主流流
速为,边界层厚度为,与 相当的量级定为 1,与
相当的量级定为,且,于是有
l
0U ? 0Ul,?
1????
23
?
?
?
?
???
?
?
???
?
?
1
1
1
1
x
u
u
y
u
u
y
x
x
y
?
( 8—7)
As for
1
1
11 ???
?
?
??
?
?
??
x
p
p
up x
Hence
( 8—8)
24
?
?
?
?
???
?
?
???
?
?
1
1
1
1
x
u
u
y
u
u
y
x
x
y
?
( 8—7)
因为
1
1
11 ???
?
?
??
?
?
??
x
p
p
up x
所以
( 8—8)
25
and
? ?
?
?
???
1
111
11
1
1
2
2
2
2
22
2
2
2
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
?
?
?
y
u
yy
u
x
u
xx
u
y
u
yy
u
x
u
xx
u
yy
yy
y
x
xx
?
( 8—9)
26
又
? ?
?
?
???
1
111
11
1
1
2
2
2
2
22
2
2
2
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
?
?
?
y
u
yy
u
x
u
xx
u
y
u
yy
u
x
u
xx
u
yy
yy
y
x
xx
?
( 8—9)
27
Substitute the quantity class of formula( 8-4)( 8-9) into( 8-
3a) and( 8-3b),then
?? ?
?
11
2
2
2
2
1 1121?
)(
1
y
u
u
x
u
u
y
u
x
u
x
p x
y
x
x
xxv
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
???
( 8—10)
11
2
2
2
2
1 1?
)(
1
y
u
u
x
u
u
y
u
x
u
y
p y
y
y
x
yyv
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?? ??? ??
? ???
( 8—11)
28
将式( 8—4)( 8—9)的量级代入式( 8—3a)和( 8—3b)
中,则得
?? ?
?
11
2
2
2
2
1 1121?
)(
1
y
u
u
x
u
u
y
u
x
u
x
p x
y
x
x
xxv
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
???
( 8—10)
11
2
2
2
2
1 1?
)(
1
y
u
u
x
u
u
y
u
x
u
y
p y
y
y
x
yyv
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?? ??? ??
? ???
( 8—11)
29
Eq.( 8-10) the first term which is relative with and the second term can be
neglected in the left parenthesis,Assuming that the effect of pressure term,viscosity
term and inertia term are same,their quantity classes must be same,So we obtain the
quantity class of is, If substitute the quantity class of into Eq.(8-11),then terms
are and exclude,which compare with the quantity class of pressure term,
they all can be neglected,Finally we get the motion equation of boundary layer and
boundary condition,these are
v2?v
3? ? ?1
? ? ? ? ? ? ? ? 00,,00,,,
0
0
1
22
2
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
xUxUxUxu
y
u
x
u
y
p
y
u
u
y
u
u
y
u
v
x
p
yxx
yx
x
y
x
x
x
?
?
( a)
( b)
( c)
( d) ?
( 8—12)
30
式( 8—10)左端圆括号中的第一项同第二项相比可以忽略。
假设在边界层中的压力项、粘性项和惯性项的影响相同,则它们的
量级也应该相同。于是,得 的量级为,若将 的量级代入式
( 8—11),则压力项以外各项的量级分别为 和,同压力项的
量级 相比,均可以忽略掉。最后,得边界层的运动方程式及边
界条件为
v 2? v
3? ?
?1
? ? ? ? ? ? ? ? 00,,00,,,
0
0
1
22
2
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
xUxUxUxu
y
u
x
u
y
p
y
u
u
y
u
u
y
u
v
x
p
yxx
yx
x
y
x
x
x
?
?
( a)
( b)
( c)
( d) ?
( 8—12)
31
( 1) From Eq.( 8-12b),we know,pressure P in the boundary
layer is unchangeable in the direction of y,and it can be determined
by the motion equation of x-direction which flows outside boundary
layer,When mass force is neglected,and is invariable flow,we would
have
0U
U( x) is the ideal flow or potential flow velocity in the,
simplifies U,as for boundary layer on plane board is,the
internal of the boundary layer
We would have
,0???yp
dx
dUU
dx
dp ??? ( the internal of the boundary layer ) ( 8—13)
Conclusion,
? ?
? ?
? ?
? ?
? ? CxUp
x
xU
xU
x
p
x
xU
xU
x
p
??
?
?
??
?
?
?
?
?
?
?
?
2
2
1
1
?
?
?
so
(on the boundary of boundary layer) integrate
32
( 1)由式( 8—12b)可知,在边界层内压强 P沿 y 方向不变
化,可由边界层外部流动的 x 方向的运动方程式确定。当忽略质
量力,且为恒定流时得
0U
U( x)为边界层边界上理想流动或势流的流速,以后简记
为 U,对于平板上的边界层就是,由于在边界层内部
所以有
,0???yp
dx
dUU
dx
dp ??? (在边界层内部) ( 8—13)
结论,
? ?
? ?
? ?
? ?
? ? CxUp
x
xU
xU
x
p
x
xU
xU
x
p
??
?
?
??
?
?
?
?
?
?
?
?
2
2
1
1
?
?
?
所以
(在边界层边界上) 积分得
33
( 2) Consulting motion equation of boundary layer(8-12a)
obtaining variable regulation of boundary layer,the quantity class
of two ends of (8-12)
l
l
l
v
lUlU
v
ll
UU
v
Re
1
Re
11
00
2
22
0
2
0
?
????
?
?
?
或
( 8—14)
Due to Renault number is great,we may know the
boundary layer thickness is small,lRe
?
34
( 2)由边界层运动方程式( 8—12a)求得边界层厚度变
化规律。( 8—12)两端的量级为
l
l
l
v
lUlU
v
ll
UU
v
Re
1
Re
11
00
2
22
0
2
0
?
????
?
?
?
或
( 8—14)
由于雷诺数 很大,可见边界层厚度 是很小的。
lRe ?
35
§ 8-4 Variable Thickness of Boundary Layer
Expressing boundary layer thickness with,it is the distance
from this point to solid surface when a certain point velocity on cross-
section of boundary layer is equal to the 99% of arrival flow velocity
?
0U
1,Boundary Layer Thickness
Definition,
Ideal Velocity the thickness which is equivalent to the
decreased flow rate in the boundary layer,is called pressed thickness
,also called thickness of flow rate losses,
0U 1?
2,Displacement Thickness
Definition,
Classification,
Boundary Layer Thickness
Displacement Thickness
Momentum Thickness
36
§ 8-4 边界层中的各种厚度
种类,
?
?
?
?
?
动量厚度。
排挤厚度;
边界层厚度;
边界层厚度一般用 表示,它是边界层横断面上某点的流速
等于来流流速 的 99%时,此点到固体表面的距离。
?
0U
理想流速 通过边界层中减小的流量所相当的厚度称为排挤
厚度,也称为流量损失厚度。
0U
1?
一、边界层厚度
定义,
二、排挤厚度
定义,
37
? ?
dy
U
u
u d yUdyuUU
?
??
??
?
?
??
?
?
??
????
?
??
?
??
0
0
1
0
0
0
010
1or
( 8—15a)
( 8—15b)
Shown in Fig.8-3a,decreased flow rate in the boundary;
the vertical hatch area represents the flow rate through the cross-section which
Displacement thickness is at ideal velocity,
0U1?
The first right term of Eq.( 7-15a) represents the flow rate of ideal fluid through
cross-section which thickness is,
The second term represents the flow rate through same cross-section in the boundary
layer,
The difference between two terms represents the decreased flow rate for the
existence of boundary layer,
?
38
? ?
dy
U
u
u d yUdyuUU
?
??
??
?
?
??
?
?
??
????
?
??
?
??
0
0
1
0
0
0
010
1或
( 8—15a)
( 8—15b)
如图 8—3a 所示,图中斜影线面积表示边界层中减小的流量;
图中铅直影线面积表示以理想流速 通过排挤
厚度 的流量。
0U
1?
式( 7—15a)右边第一项表示理想流体通过厚度为 断面的流量。
第二项表示边界层中同一断面通过的流量。
两者之差表示由于边界层的存在所减小的流量。
?
39
u
y
0U
u
?
( a)
0U
u
0U
?
h
1?
1???? hh
Streamline
( b)
Fig,8 - 3
Where is supposed as the flow rate of external of boundary layer,h is the
front distance between streamline and the plane board,due to the flow velocity u
inside the boundary layer is less than,in order to keep the flow rate constant,
streamline should offset a distance,Now we confirm this offset distance is
Displacement thickness,supposing the distance between streamline and plane
board is,from the continuity equation,we have
0U
0U
1?
h?
1?
In addition,press thickness determines the offset distance of
streamline,shown in Fig.8-3(b),the flow rate between plane board
and streamline keeps invariable,
40
u
y
0U
u
?
( a)
0U
u
0U
?
h
1?
1???? hh
流线
( b)
图 8 — 3
设边界层边界外的流速处处为,流线和平板间的距离在平
板前端为 h,由于边界层内的流速 u 小于,为了保持通过的流
量不变,流线应该向外偏移一个距离。现证明这个偏移距离就是
排挤厚度,设此时流线与平板间的距离为,由连续方程
0U
0U
1? h?
1?
另外,排挤厚度 决定了流线的偏移距离。如图 8—3( b)
所示,通过平板与流线间的流量应保持不变。
41
? ?
? ?
1
10
0
00
0
0
0
?
??
?
?
?
???
?????
????
?
?
hh
UdyuUhhU
UhudyhU
Demonstration is over,
The thickness which is equivalent to the decreased momentum
when ideal velocity pass through boundary layer,called momentum
thickness,also called momentum loss thickness,0
U
2?
? ?
dy
U
u
U
u
dyuUuU
??
?
?
??
?
?
??
??
?
?
0
0
0
2
0
02
2
0
1
?
?
?
??? ( 8—16a)
( 8—16b)
3,Momentum Thickness
Definition,
42
? ?
? ?
1
10
0
00
0
0
0
?
??
?
?
?
???
?????
????
?
?
hh
UdyuUhhU
UhudyhU
证毕。
理想流速 通过边界层中减小的动量所相当的厚度,称为
动量厚度,又称动量损失厚度。
0U
2?
? ?
dy
U
u
U
u
dyuUuU
??
?
?
??
?
?
??
??
?
?
0
0
0
2
0
02
2
0
1
?
?
?
??? ( 8—16a)
( 8—16b)
三、动量厚度
定义,
43
[Example8-1]Assuming the flow velocity in the boundary distributes
according the following exponential regulation,
ny
U
u 1
0
??????? ?
Find,displacement thickness and momentum thickness of boundary
layer when n=7,
[Solution] displacement thickness
??
?
?
??
8
1
1
111
0
1
0
0
1 ?????
?
?
?
?
?
?
?
?
??
?
???
???
?
???
? ?? ??
n
dyydy
U
u n
momentum thickness
? ?? ?
??
??
?
??
72
7
21
11
11
0
0
0
0
2
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
???
?
?
?
?
?
?
?? ??
nn
n
dy
yy
dy
U
u
U
u nn
44
[例题 8—1]假设边界层中的流速按下面指数规律分布
ny
U
u 1
0
??????? ?
试求,n=7时边界层的排挤厚度和动量厚度。
[解 ] 排挤厚度
??
?
?
??
8
1
1
111
0
1
0
0
1 ?????
?
?
?
?
?
?
?
?
??
?
???
???
?
???
? ?? ??
n
dyydy
U
u n
动量厚度
? ?? ?
??
??
?
??
72
7
21
11
11
0
0
0
0
2
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
???
?
?
?
?
?
?
?? ??
nn
n
dy
yy
dy
U
u
U
u nn
45
§ 8-5 The Momentum Equation of Boundary Layer and Friction shear Stress
When fluid flows on the solid wall,like what said before,in the direction of
vertical wall,velocity is changed from 0 on the wall to the main velocity,the
reason which formed this distribute is the result that resistance force on the wall
take effect on the flow motion direction conversely,This section introduces how to
find the shear stress of friction on the wall in terms of momentum laws,
0U
0?
Shown in Fig.8-4,dashed line OAD is the separation line of boundary layer
and main flow,the boundary region between dashed line and solid wall has obvious
function,viscid function outside the dashed region can be neglected,it can be
looked as flow region of ideal flow,As for the velocity in the boundary layer of
plane board is constant,and for curve wall,it is an variable number,
0U ? ?Ux
0U
x
o
y
dx
dx0??
A
BP
? u 0U
?
D
C
?d
dxxPP ???
dxxPP ??? 21
dl
Fig,8- 4
46
§ 8-5 边界层的动量方程式和摩擦切应力
当流体沿固体壁面流动时,如前所述在垂直壁面方向,速度
由壁面上的零变为主流流速,形成这种速度分布的原因是由于
壁面上的阻力逆流体流动方向作用的结果。本节我们应用动量定
律来求壁面的摩擦切应力 。
0U
0?
如图 8—4所示,虚线 OAD为边界层与主流的分界线、虚线与
固体壁面间为边界层区域,粘性作用显著,虚线外区域忽略流体
中的粘性作用,视为理想流体流动区域,对于平板边界层上的流
速为常数,对于曲线壁面,边界层边界上的流速为变数
0U ? ??xU
0U
x
o
y
dx
dx0??
A
BP
? u 0U
?
D
C
?d
dxxPP ???
dxxPP ??? 21
dl
图 8 — 4
47
dx If we take the control body ABCD with length,we
express the boundary thickness of section AB with,action
pressure with p,shown in Fig,?
? ?
??
?????
?
pddldx
x
p
p
dx
x
p
pdpddx
x
p
p
p
ds
???
?
?
?
?
?
?
?
?
?
?
?????
?
?
?
?
?
?
?
?
??? ?? s in
2
1
Plane AB
Plane CD
Plane AD
Action force in the x -direction are as following,
xu
a,two dimension steady flow;
b,mass force only has gravity,can be neglected;
c,curvature of section is small,can be looked as straight
line,
Assume,
48
如图所示,取长为 的控制体 ABCD,AB断面处边界层
厚度为,作用压强为 p 。
dx
?
在 x 方向的作用力如下,
? ?
??
?????
?
pddldx
x
p
p
dx
x
p
pdpddx
x
p
p
p
ds
???
?
?
?
?
?
?
?
?
?
?
?????
?
?
?
?
?
?
?
?
??? ?? s in
2
1
AB面
CD面
AD面
xu
a,二元恒定流动;
b,质量力只有重力,且忽略不计;
c,段壁面曲率小,可视为直线。
假设,
49
dxdx
x
p
dxpd
x
p
pdppFx
dx
0
0
0
??
??????
?
?
?
?
??
???
?
?
?
?
?
?
?
????
?
Plane BC
Resultant force
( 1)
Momentum change in x –direction is displayed as following,
Momentum flow-in on
plane AB
dxdyu
dx
d
dyu
dyu
?
?
??
?
?? ??
?
??
?
??
?
0
2
0
2
0
2
Momentum flow-out on
plane AB
50
dxdx
x
p
dxpd
x
p
pdppFx
dx
0
0
0
??
??????
?
?
?
?
??
???
?
?
?
?
?
?
?
????
?
BC面
合力
( 1)
x 方向的动量变化如下,
AB面流入的动量
dxdyu
dx
d
dyu
dyu
?
?
??
?
?? ??
?
??
?
??
?
0
2
0
2
0
2
CD面流出的动量
51
Momentum calculation on plane AD
Total momentum change is:,
ADABCD KKKK ????
dxu d y
dx
d
Udxdyu
dx
d
dxu d y
dx
d
Udyudxdyu
dx
d
dyuK
?
?
??
?
???
?
??
?
??
?
?
??
?
???
??
?
??
?
?
?
??
?
????
??
? ???
??
? ???
??
????
00
2
0 0
2
0
2
0
2
( 2)
dxu d y
dx
d
UQU
dxu d y
dx
d
QQQ
dxu d y
dx
d
u d yQ
u d yQ
AD
CDD
CD
?
?
?
?
?
?
??
?
?
?
?
?
?
???
?
?
?
?
?
?
??
?
?
?
??
?
???
??
?
?
??
?
?
?
??
?
0
0
00
0
mass flow-in rate on plane AB
mass flow-out rate on plane CD
mass flow-in rate on plane AD
momentum flow-in on plane AD
52
AD面流入的动量计算
?
?
?
?
?
?
?
面流入的动量
面流入的质量流量
面流出的质量流量
面流入的质量流量
AD
AD
CD
AB
dxu d y
dx
d
UQU
dxu d y
dx
d
QQQ
dxu d y
dx
d
u d yQ
u d yQ
AD
CDD
CD
?
?
?
?
?
?
??
?
?
?
?
?
?
???
?
?
?
?
?
?
??
?
?
?
??
?
???
??
?
?
??
?
?
?
??
?
0
0
00
0
总动量变化为,即,
ADABCD KKKK ????
dxu d y
dx
d
Udxdyu
dx
d
dxu d y
dx
d
Udyudxdyu
dx
d
dyuK
?
?
??
?
???
?
??
?
??
?
?
??
?
???
??
?
??
?
?
?
??
?
????
??
? ???
??
? ???
??
????
00
2
0 0
2
0
2
0
2
( 2)
53
dx
dp
dyu
dx
d
u d y
dx
d
U
u d y
dx
d
Udyu
dx
d
dx
dp
????
????
??
??
??
?
??
?
???
?
??
?
??
?
?
??
?
???
?
??
?
????
??
??
0
2
0
0
00
2
0
or ( 3)
Pressure change in the boundary in flow direction is given by Eq,(8-
13)
dx
dUU
dx
dp ??? ( 4)
The first term on the right of Eq.( 3) can be rearranged according to
step differential,
???
???
??
?
??
?
??
?
?
??
?
????
?
??
?
???
??
?
??
? ?
?
??
?
?
???
???
???
???
000
000
udy
dx
dU
udyU
dx
d
udy
dx
d
U
udy
dx
d
Uudy
dx
dU
udyU
dx
dBecause
Hence ( 5)
KFx ?? Substitute Eq,(1) and Eq.(2) into momentum equation,
notice in the boundary layer p=p( x),hence,yields
dx
dp
x
p ?
?
?
54
dx
dp
dyu
dx
d
u d y
dx
d
U
u d y
dx
d
Udyu
dx
d
dx
dp
????
????
??
??
??
?
??
?
???
?
??
?
??
?
?
??
?
???
?
??
?
????
??
??
0
2
0
0
00
2
0
或者 ( 3)
边界层内的压强在流动方向上的变化由式( 8—13)为
dx
dUU
dx
dp ??? ( 4)
式( 3)右端的第一项根据分步积分变形如下,
???
???
??
?
??
?
??
?
?
??
?
????
?
??
?
???
??
?
??
? ?
?
??
?
?
???
???
???
???
000
000
udy
dx
dU
udyU
dx
d
udy
dx
d
U
udy
dx
d
Uudy
dx
dU
udyU
dx
d因为
所以 ( 5)
将式( 1)和( 2)代入动量方程,并注意到在边
界层内 p=p( x),所以,于是得
KFx ??
dx
dp
x
p ?
?
?
55
Substitute Eq.( 4) and Eq.( 5) into
Eq.( 3),that
? ? ? ? ? ?
dx
dU
U
dx
dU
U
dx
d
U
dx
dU
UU
dx
d
dyuU
dx
dU
dyuUu
dx
d
dx
dU
Udyu
dx
d
udy
dx
dU
U u d y
dx
d
UU
U d y
dx
dU
12
22
12
2
00
0
2
00
0
2
12
2
0
????
?
?
??????
??????
??
?
??
?
?
???
?
???
??????
?
?????
??
???
?? ??? ???? ??? ??
? ?? ??
Divide both sides by,the result is 2U?
? ?12220 21 ????? ??? dxdUUdxdU ( 8—17)
Eq.(8-17) is called Karlmn Momentum Equation,
56
将式( 4)和式( 5)代入式( 3)得
? ? ? ? ? ?
dx
dU
U
dx
dU
U
dx
d
U
dx
dU
UU
dx
d
dyuU
dx
dU
dyuUu
dx
d
dx
dU
Udyu
dx
d
udy
dx
dU
U u d y
dx
d
UU
U d y
dx
dU
12
22
12
2
00
0
2
00
0
2
12
2
0
????
?
?
??????
??????
??
?
??
?
?
???
?
???
??????
?
?????
??
???
?? ??? ???? ??? ??
? ?? ??
两端除以,得 2U?
? ?12220 21 ????? ??? dxdUUdxdU ( 8—17)
式( 8—17)称为 卡门动量方程式 。
57
As for the boundary layer of plane board,we consider its
existence can not take effect on external flow for thin plane board,So
we have,Eq,(8-17) is rearranged as
00 ?? dxdUdxdU
dx
dU 22
00
??? ? ( 8—18)
l Assuming width of plane board is b,length is,then total friction force which action force acts on single side of plane board is
l
ll
f bUdbUb d xD 2
2
00 2
2
00 0 ????? ??? ??
( 8—19)
Application
Extent,
Laminar Boundary Layer
Turbulent Boundary Layer
Plane Board or Curve Wall
58
?
?
?
?
?
平板或曲线壁面。
紊流边界层;
层流边界层;
适用范围,
对于平板上的边界层,一般由于平板很薄,可以认为由于它
的存在而不影响外部流动。因此,这样式( 8—17)
就变为 00 ?? dxdUdxdU
dx
dU 22
00
??? ? ( 8—18)
假设平板的宽度为 b,长度为,则作用力在单侧平板上的
总摩擦阻力为 l
l
ll
f bUdbUb d xD 2
2
00 2
2
00 0 ????? ??? ??
( 8—19)
59
§ 8-6 Laminar Boundary Layer of smooth Board
Definition,
Assuming flow velocity of invariable uniform flow is,we put
a plane board in the side of parallel flow which length is,width is
,then its resistance force is l
0U
fD
blUCD ff 202?? ( 8—20)
When viscid fluid flows on the plane board,resistance force acts
the plane board,it is called friction resistance force,
where
—fC resistance force coefficient of friction
60
§ 8-6 光滑平板上的层流边界层
定义,
假设恒定均匀流的流速为,平行流动方向放置一长为,
宽为 b 的平板,则平板一侧所受的阻力
l0U
fD
blUCD ff 202?? ( 8—20)
式中
摩擦阻力系数。—fC
当粘性流体在平板上流动时,平板将受到阻力作用,此阻
力称为摩擦阻力。
61
1,Distribute Equation of Flow Velocity of Laminar Boundary
Layer
Assuming
?
?
?
?
?
?
?
?
?
?
??
?
???
?
??
?
???
?
??
?
?? 32
0 ???
yCyByAUu ( 8—21)
As for invariable flow,motion equation of boundary layer
? ?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
xpis p
y
p
y
u
u
x
u
u
y
u
v
x
p x
y
x
x
0
1
2
2
?
( 8—22)
On the wall of plane board( y =0),,then when y =0,0?? yx uu
dx
dp
y
uv
?
1
2
2
???
( 8—23)
62
一、层流边界层的流速分布公式
设
?
?
?
?
?
?
?
?
?
?
??
?
???
?
??
?
???
?
??
?
?? 32
0 ???
yCyByAUu ( 8—21)
对于恒定流,边界层的运动方程式为
? ?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
xpp
y
p
y
u
u
x
u
u
y
u
v
x
p x
y
x
x
即0
1
2
2
?
( 8—22)
因为在平板的壁面上( y =0),,所以 y =0时,0?? yx uu
dx
dp
y
uv
?
1
2
2
???
( 8—23)
63
From(8-1),the pressure change inside the boundary is
dx
dpU
dx
dp ??? ( 8—24)
As for the boundary layer of plane board,,
then, substitute into Eq.(8-23),we would have the result
when y =0,
dx
dU
dx
dUUU 0
0,??
0?dxdp
02
2
??? yu x
( 8—25)
Continuous partial differential with Eq.(8-21) twice,let it
equal to zero,we have
062
0
3202
2
??
?
?
??
? ???
?
?
?y
x yCBU
y
u
??We also have B=0,and at ??y
0,0 ???? yuUu xx
( 8—26)
64
由式( 8—13),边界层内部的压强变化为
dx
dpU
dx
dp ??? ( 8—24)
对于平板上的边界层,,于是上式中
,代入式( 8—23),得 y =0时,
dx
dU
dx
dUUU 0
0,??
0?dxdp
02
2
??? yu x
( 8—25)
对式( 8—21)连续偏导两次,并令其等于零,得
062
0
3202
2
??
?
?
??
? ???
?
?
?y
x yCBU
y
u
??
由此得 B=0。又在 处有 ??y
0,0 ???? yuUu xx
( 8—26)
65
We still use Eq.( 8-21),we have
?
?
?
??
??
03
1
CA
CA
We would find
2
1,
2
3 ??? CA
Substitute A,B,C above into Eq.(8-2),we would obtain flow
velocity distribute of boundary layer of laminar flow,that is
?
?
?
?
?
?
?
?
?
?
??
?
???
?
??
?
?? 3
0 2
1
2
3
??
yyUu ( 8—27)
66
仍应用式( 8—21)得
?
?
?
??
??
03
1
CA
CA
解得
2
1,
2
3 ??? CA
将上面的 A,B,C各值代入式( 8—21),得层流边界层内
的流速分布为
?
?
?
?
?
?
?
?
?
?
??
?
???
?
??
?
?? 3
0 2
1
2
3
??
yyUu ( 8—27)
67
2,Thickness Equation of Boundary Layer of Laminar Flow
????
1
2
3
0
0
0 Udy
du
y
x ??
?
( 8—28)
On the other hand,from Eq.(8-18) and Eq.(8-16),we
have
dy
yyyy
dx
d
U
dy
U
u
U
u
dx
d
U
dx
d
U
??
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
3
0
3
2
0
0
0
0
2
0
22
00
2
1
2
3
1
2
1
2
3
1
????
?
?
?
??
?
?
From Newton’s internal friction law
68
二、层流边界层厚度公式
????
1
2
3
0
0
0 Udy
du
y
x ??
?
( 8—28)
另一方面,由式( 8—18)和式( 8—16),有
dy
yyyy
dx
d
U
dy
U
u
U
u
dx
d
U
dx
d
U
??
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
3
0
3
2
0
0
0
0
2
0
22
00
2
1
2
3
1
2
1
2
3
1
????
?
?
?
??
?
?
由牛顿内摩擦定律
69
so
dx
dU ??? 2
00 2 8 0
39? ( 8—29)
We can find which find from Eq.(8-28) or Eq.(8-29) would be
equal,hence 0?
dx
U
d
013
140
?
??? ?
Differentiate equation above,and notice,in front end of plane
board,that is at the location of x=0,,we would have 0??
0
64.4 Uvx??
( 8—30)
70
所以
dx
dU ??? 2
00 2 8 0
39? ( 8—29)
因为由式( 8—28)或式( 8—29)求得的 应该相等,所以
得
0?
dx
U
d
013
140
?
??? ?
将上式积分,并且注意:在平板前端,即 x=0 处,,于是
得
0??
0
64.4 Uvx??
( 8—30)
71
3,Friction Resistance Equation of Laminar Boundary Layer
xU
vU
0
2
0
0 2647.0
?? ? ( 8—31)
bl
U
bl
U
lU
v
x
dx
b
U
vU
bdxD
l
ll
f
2Re
29.1
2
29.1
2
647.0
2
0
2
0
0
0
0
2
0
0
0
??
?
?
??
?? ??
( 8—32)
Friction resistance force which acts on the single side of plane board
which width is b length is,from Eq.(8-19),we have l
Combining Eq.(8-32) and Eq.(8-20),yielding friction resistance
coefficient
l
fC Re
29.1? ( 8—33)
Renault number is
v
lU
l
0Re ?
Substitute Eq.(8-30) into Eq.(8-28),then
72
三、层流边界层的摩擦阻力公式
xU
vU
0
2
0
0 2647.0
?? ? ( 8—31)
bl
U
bl
U
lU
v
x
dx
b
U
vU
bdxD
l
ll
f
2Re
29.1
2
29.1
2
647.0
2
0
2
0
0
0
0
2
0
0
0
??
?
?
??
?? ??
( 8—32)
作用在宽为 b,长为 单侧平板上的摩擦阻力,由式( 8—19)
为 l
联立式( 8—32)和式( 8—20),得摩擦阻力系数
l
fC Re
29.1? ( 8—33)
式中雷诺数 。
v
lU
l
0Re ?
将式( 8—30)代入式( 8—28)得
73
This is only a approximate solution,precise solution is got
from Blasius Equation according to boundary layer equation (8-
12),limited by mathematical reason,we give the result,
l
f
x
C
U
xU
vU
U
vx
Re
33.1
2Re
6 6 4.0
2
6 6 4.0
0.5
2
0
0
2
0
0
0
?
??
?
??
?
?
?
( 8—34)
Notice,
This result only applies to laminar boundary layer,not turbulent
boundary layer,
74
这只是一种近似解,严密解是由勃拉休斯根据边界层基
本公式( 8—12)求得的,但是限于数学原因,这里只给出其
结果,
l
f
x
C
U
xU
vU
U
vx
Re
33.1
2Re
6 6 4.0
2
6 6 4.0
0.5
2
0
0
2
0
0
0
?
??
?
??
?
?
?
( 8—34)
注意,
此结果只适用于层流边界层,对于紊流边界层不适用。
75
[Example8-2] In the water which motion viscosity coefficient is
,the plane board which length is 2m and width is 2m moves at the velocity of
0.2m/s,find precise solution according to Blasius equation
( 1) friction stress with 0.5m to the front end of plane board ;
( 2) force which can tow the plane board,
smv 26101 ???
[Solution] ( 1) Calculation of friction stress
55
6
0 105104
101
22.0Re ????
?
???
?v
lU
l
Because,then laminar boundary layer generates on
plane board,it is right to use Blasius equation,cl ReRe ?
when x =0.5 m
2
62
0
2
0
5.0
0 4 2.0
5.02.0
101
2
2.01 0 0 0
6 6 4.0
2
6 6 4.0
m
N
xU
vU
?
?
??
?
?
?
?
?
76
[例题 8—2]在运动粘滞系数 的水中,长 2m,
宽 2m的平板以 0.2m/s的速度运动,试用勃拉休斯严密解求,
( 1)距平板前端 0.5m处的摩擦应力;
( 2)拖动此平板所需的力。
smv 26101 ???
[解 ] ( 1)摩擦应力计算
55
6
0 105104
101
22.0Re ????
?
???
?v
lU
l
因为,所以整个平板上产生层流边界层,故采用勃
拉休斯公式是正确的。
cl ReRe ?
当 x =0.5 m 时
2
62
0
2
0
5.0
0 4 2.0
5.02.0
101
2
2.01 0 0 0
6 6 4.0
2
6 6 4.0
m
N
xU
vU
?
?
??
?
?
?
?
?
77
( 2) Drag force calculation
3
5
101.2
104
33.1
Re
33.1 ???
?
??
l
fC
Friction resistance on sides of plane board
????????
??
? 3 3 6.0222.01 0 0 0101.2
2
2
23
2
0
2
0 blUCblUCD
fff ?
?
Hence Drag force which can drag the plane board is36N,
Friction resistance coefficient
78
( 2)拖力计算
3
5
101.2
104
33.1
Re
33.1 ???
?
??
l
fC
平板两侧的摩擦阻力为
????????
??
? 3 3 6.0222.01 0 0 0101.2
2
2
23
2
0
2
0 blUCblUCD
fff ?
?
故拖动平板所需的力为 0.336N。
摩擦阻力系数
79
4,Calculation Equation of Turbulent Boundary Layer( confirmation is
neglected.)
x
xU
v
C
L
f
??
?
5
1
0
2.0
)(371.0
Re
074.0
?
5,Calculation Equation of mixed Boundary Layer of plane board (
Confirmation is neglected.)
58.2
7
58.2
76
2.0
65
)Re( l n
455.0
10Re 3
1700 b o a r d p l a n e
Re)Re( l n
455.0
10Re10 W h e n 2
1700 b o a r d p l a n es m o o t h
ReRe
074.0
10Re103 W h e n 1
L
ffmL
LL
fm
L
LL
fm
L
CC
As m o o t h
A
C
A
A
C
???
?
??
??
?
??
???
)(
)(
)(
80
四、紊流边界层的计算公式 (推导略)
x
xU
v
C
L
f
??
?
5
1
0
2.0
)(371.0
Re
074.0
?
五、平板混合边界层计算公式 (推导略)
58.2
7
58.2
76
2.0
65
)Re( l n
455.0
10Re 3
1 7 0 0
Re)Re( l n
455.0
10Re10 2
1 7 0 0
ReRe
074.0
10Re103 1
L
ffmL
LL
fm
L
LL
fm
L
CC
A
A
C
A
A
C
???
?
??
??
?
??
???
)(
光滑平板
范围)(
对光滑平板取
范围)(
81
(4)Calculation Equation of Transition Point
additional layer of laminar flow would be changed into
additional layer of turbulent flow at a certain point,this point is
called transition point,the Reynolds number which take of
this point as characteristic length is called transition (critical)
Reynolds number,using to express,and
kx
kxeR
0
5
Re
105Re
U
x
k
k
xk
x
?
?
?
??
Then transition location
82
0
5
Re
105Re
:Re
4
U
x
x
k
k
k
xk
x
x
k
?
?
?
??
则转捩点位置
表示,计算中常取雷诺数,用
(临界)转捩为特征长度的雷诺数称转捩点,以该点位置的
该点称为部转变为紊流附面层,层流附面层在某一点全
点计算公式转捩)(
83
Chapter 8 Exercises
8-1 There is a rectangular thin board which is 1.5 m× 4.5 m,dray at
the velocity of 3 m/s in the direction of board surface,we know
viscosity coefficient of air motion is v = 1.5× 10- 5 m2/s,density is ?
? 1.2 kg/m3 。 Find resistance force along short edge and long edge
respectively,Solution:( 1) find motion resistance force in short edge direction,
N 1 7 6.03
2
2.1
5.15.40 0 2 4 2.02
2
2
0 0 2 4 2.0
105.1
5.13
33.1
Re
33.1
l a y e rb o u n d a r y l a m i n a r is b o a r d f u l l so,m 2, 5 m 5.1 e c a u s e
m 5.2
3
105.1
105Re p o i n t T r a n s i t i o n
22
0
5
5.0
1
5
5
0
11
1
1
???????
?
?
?
??
??
?
????
?
?
UbLCD
C
LB
U
v
x
ff
L
f
xk
k
?
=:
84
第八章 习题
8—1 有一块 1.5 m× 4.5 m 的矩形薄板在空气中以 3 m/s速度沿板
面方向拖动,已知空气运动粘性系数为 v = 1.5× 10- 5 m2/s,密度
为 ? ? 1.2 kg/m3 。试求薄板沿短边方向和长边方向运动时,各自
的摩擦阻力。
解:( 1)求沿短边方向运动的阻力。
N 1 7 6.03
2
2.1
5.15.40 0 2 4 2.02
2
2
0 0 2 4 2.0
105.1
5.13
33.1
Re
33.1
,m 2, 5 m 5.1
m 5.2
3
105.1
105Re
22
0
5
5.0
1
5
5
0
11
1
1
???????
?
?
?
??
??
?
????
?
?
UbLCD
C
L
U
v
x
ff
L
f
xk
k
?
,所以全板为层流边界层因为
=转捩点:
85
s.b o u n d a r y 'l a m i n a r a n t h eg r e a t e r t h isl a y e r b o u n d a r y m i x e d
f r o m c o m i n g f o r c e r e s i s t a n c e,21of r e s u l t s t h eC o m p a r e
N 21.03
2
2.1
5.45.10 0 2 8 8.02
2
2
0 2 8 8.0
109
1 7 0 0
)109(
0 7 4.0
ReRe
0 7 4.0
10109
105.1
5.43
Re
l a y e r a d d i t i o n a l m i x e d is,
s i d e l o n g a l o n g f o r c e r e s i s t a n c e F i n d 2
22
0222
52.05
2.0
2
65
5
20
2
)()(
=
)(
-
-
a n d
UbLCD
A
C
v
LU
xL
ff
LL
f
L
k
??????
?
?
?
?
??
???
?
?
??
?
?
86
。大于层流边界层的阻力
边界层产生的阻力)结果,一块平板混合),(比较(
=
为混合附面层
求沿长边运动时的阻力)(
-
-
21
N 21.03
2
2.1
5.45.100288.02
2
2
0288.0
109
1700
)109(
074.0
ReRe
074.0
10109
105.1
5.43
Re
,
2
22
0222
52.05
2.02
65
5
20
2
??????
?
?
?
?
??
???
?
?
??
?
UbLCD
A
C
v
LU
xL
ff
LL
f
L
k
?
87
88