1
Mechanics of Fluid
2
3
Chapter 5 Pipe Flow
§ 5–1 Introduction
§ 5–2 Reynolds Experiment
§ 5–3 Laminar Flow in Round Pipe
§ 5–4 Turbulent Flow in Round Pipe
§ 5–5 Friction Resistance in Pipeline
§ 5–6 Minor Resistance in Pipeline
§ 5–7 Pipeline Calculation
4
第五章 管中流动
§ 5–1 引言
§ 5–2 雷诺实验
§ 5–3 圆管中的层流
§ 5–4 圆管中的紊流
§ 5–5 管路中的沿程阻力
§ 5–6 管路中的局部阻力
§ 5–7 管路计算
5
Chapter 5 Pipe Flow
§ 5-1 Introduction
The law of incompressible fluid motion in pipe,some basic
notions of it is adaptable to the circumferential motion and
channel flow, The questions that flowing in pipe concerned
include flow state,velocity distribution,beginning segment,the
calculation of flux and pressure and energy loss,
6
第五章 管中流动
§ 5-1 引言
管中不可压缩流体的运动规律,其中有许多基本概念对
于绕流或明渠流动也是适用的,管中流动所涉及的问题包括
流动状态、速度分布、起始段、流量和压强的计算、能量损
失等等。
7
§ 5-2 Reynolds Experiment
Reynolds number delegates inertia force and viscosity force, Reynolds
number is different,the ratio of the two kinds of forces are different too,
Therefore,two kinds of flow states,the interior structure and motion character
of them are completely different,are produced,
The experimental apparatus are shown in Figure 5— 1 which are composed
mainly by the constant water level container A and glass pipe B,The entry part of
glass pipe is connected by slippy bell mouth and the flux in pipe is adjusted by
valve C,In the small container D there is colored liquid whose density is close to
water,The colored liquid flows into glass pipe B via the tubule E to demonstrate the
water state,
( a ) ( b ) ( c )
A
D
E B C1 2
fh
Figure 5— 1 Reynolds
experimental apparatus
8
§ 5-2 雷诺实验
雷诺数代表惯性力和粘性力。雷诺数不同,这两种力的
比值也不同,由此产生内部结构和运动性质完全不同的两种
流动状态。
雷诺实验的装置如图 5— 1所示,主要由恒水位水箱 A和玻璃
管 B等组成。玻璃管入口部分用光滑喇叭口连接,管中的流量用
阀门 C调节,小容器 D内盛有与水的密度相近的有色液体,经细
管 E流入玻璃管 B,用以演示水流状态。
( a ) ( b ) ( c )
A
D
E B C1 2
fh
图 5— 1 雷 诺 实 验 装 置
9
Phenomenon,
Indication,
a,As velocity of fluid in pipe B is less the colored water in pipe
presents a thin and welldefined straight stream tube,as shown in
Figure 5— 1( a),declares that the flow is stable,This kind of flow
state is called laminar flow,
b,As valve C enlarges gradually the velocity of flow in pipe
reaches a certain critical value,the colored water begins to swing,as
shown in Figure 5— 1( b),
c,Continue to augment the velocity of flow,the colored water
mixes with the clean water around it quickly,as shown in Figure 5— 1
( c),
The motion trace of fluid particle is extremely irregular and the
fluids mixed each other exquisitely, This kind of motion state is called
turbulent flow,
10
现象,
表明,
a.当管 B内流速较小时,管内颜色水呈一细股界限分明的直
线流束,如图 5— 1( a),表明流动稳定,这种流动状态称为层
流。
b.当阀门 C逐渐开大使管中流速达到某一临界值时,颜色水
开始出现摆动,如图 5— 1( b)。
c.继续增大流速,颜色水迅速与周围清水相搀混,如图 5— 1
( c)所示。
流体质点的运动轨迹是极不规则的,流体互相剧烈搀混,这
种运动状态称为紊流或湍流。
11
2,The distinguish criterion of Laminar Flow and Turbulent Flow
The flow state has relations with not only velocity of flow but
also pipe diameter,fluid density and motion viscosity,According to
the dimension analytic method in chapter 4 we can build up the above
4 parameters into a dimensionless number which is called Reynolds
number,
d
?
v
dd ?
?
?? ??Re
Definition,
c??
c?
vd As the pipe diameter and fluid motion viscosity are constant
the average velocity of laminar flow becoming turbulent flow is
constant too, This velocity is called supercritical velocity which is
expressed by, The average velocity of turbulent flow becoming
laminar flow if constant too and this velocity is called lower critical
velocity which is expressed by 。 c c ? ? ? ?
12
二、层流和紊流的判别标准
流动状态不仅与流速 有关,还与管径,流体密度和
运动粘度有关。根据第四章的量纲分析方法可以将上述 4 个
参数组合成一个无量纲数 —— 雷诺数。
d?
v
dd ?
?
?? ??Re
定义,
c??
c?
vd 当管径 及流体运动粘度 一定,则从层流变紊流时的平均
速度也是一定的,此速度称为上临界速度,以 表示;从紊流
变层流时的平均速度也是一定的,此速度称为下临界速度,以
表示,。 c c ? ? ? ?
13
Definition,
experiment proves,
For the flow in round pipe,the distinguish conditions of the
flow state are
c?
cRe 2 3 0 0Re ?c
Though as pipe diameter and fluid medium are different is
different,keeps in a definite range, Namely,
c? cRe
The Reynolds number corresponding to the critical velocity of
flow is called critical Renaults number, Remembered as
,
2300ReRe
2300ReRe
??
??
c
c
It belongs to laminar flow
It belongs to turbulent flow
when
when
14
定义,
实验证明,
对圆管流动,流态的判别条件是:当
2300ReRe
2300ReRe
??
??
c
c
属于层流
属于紊流
c? cRe
2 3 0 0Re ?c
虽然当管径或流体介质不同时,不同,但 基本上
保持在一个确定的范围。即 。
c? cRe
对应于临界流速 的雷诺数称为临界雷诺数,记作 。
15
3,Head loss regulation of laminar flow and turbulent flow in pipe
?
21 pph
f
??
Change velocity to measure and the corresponding value
under the circumstances of the laminar flow and turbulent flow,the
experiment result is shown in Figure 5— 2,
? fh
?
045
?lg
fhlg
1lgk
2lgk
c??lg
c?lg
C
C?
Figure5— 2 The header loss regulation of laminar flow and turbulent flow
On the experimental pipe segment,Because as the fluid in the
horizontal straight pipeline keeps stable we can write out that the
on-way head loss equals the pressure head difference between two
sections according to the energy equation,namely
16
三、管中层流、紊流的水头损失规律
?
21 pph
f
??
改变速度逐次测量层流、紊流两种情况下的 与对应的
值,实验结果如图 5— 2所示。
? fh
?
045
?lg
fhlg
1lgk
2lgk
c??lg
c?lg
C
C?
图 5— 2层流、紊流的水头损失规律
在所实验的管段上,因为水平直管路中流体作稳定流时,
根据能量方程可以写出其沿程水头损失就等于两断面间的压力
水头差,即
17
The result shows,
?lglglg mkh f ??
In the formula klg — intercept of a straight line,
m — slope of a straight line, and ( is a angle of a straight line and a horizontal line),?tgm ? ?
Many experiments prove,
The on-way head loss is in direct ratio with average velocity of
flow,
On turbulent flow, ? 0 2,45 ?
? ? ? 1 1 0 1 lg lg lg 1,45 k h k h m f f ? ? ? ? ? or namely ( 5— 1)
m or namely m
f f k h m k h ? ? 2 2 lg lg lg 2 75, 1 ? ? ? ? — ( 5— 2)
The on-way head loss is in direct ratio with the 1.75th to 2th
power of the average velocity of flow,
No matter how on laminar flow state or on turbulent flow state
the experimental points all concentrate on the straight lines with
different slope,The equation is
On laminar flow,
18
结果表明,
?lglglg mkh f ?? 式中
klg — 直线的截距;
m — 直线的斜率,且 ( 为直线与水平线
的交角)。
?tgm ? ?
大量实验证明,
??? 1101 lglglg1,45 khkhm ff ????? 或即 ( 5— 1)
沿程水头损失与平均流速成正比。
紊流时,
mff khmkhm ??? 2202 lglglg275.1,45 ????? 或即—
( 5— 2)
沿程水头损失与平均流速的 1.75— 2次方成正比。
无论是层流状态还是紊流状态,实验点都分别集中在不同
斜率的直线上,方程式为
层流时,
19
§ 5-3 Laminar Flow in Round Pipe
As Reynolds number is less,it is to say that when the velocity and
diameter are less and viscosity is bigger the laminar flow appears,On
engineering laminar flows often exist, Such as on oil transport,chemical
conduit,underground seep and even light industry,construction,physiology
etc,
v
d?
Found the steady differential equation of laminar flow based on the balance
relation of micro units,as shown in Figure 5— 3,choose a cylinder,the radius
is r and the length is,the cylinder is in a balance state in the constant flow, l
x
y
z
o
1p
R
1p 2p
2p
l
?
?
r
?
?
Figure 5— 3 the laminar flow in round pipe
1,Methods to analyze the laminar flow motion
20
§ 5-3 管流中的层流
雷诺数 较小,也就是速度,直径较小而粘度较大时
出现层流。工程上层流情况很多。如石油输运,化工管道,
地下水渗流甚至轻工、建筑、生理等许多领域都有。
v
d?
从微元体的受力平衡关系出发建立层流的常微分方程。
如图 5— 3所示,取半径为 r,长度为 的一个圆柱体,在定常
流动中这个圆柱体处于平衡状态。 l
x
y
z
o
1p
R
1p 2p
2p
l
?
?
r
?
?
图 5— 3 圆 管 层 流
一、分析层流运动的方法
21
(1) the pressure on two end faces
(2)the friction force on cylinder face
? ? 221 rpp ??
rl?? 2
So,from, obtain 0??
yF
? ? 02221 ??? rlrpp ???
Simplify it and quote Newton’s internal friction law
dr
d y??? ??
This method can choose the above balance cylinder to found the
balance equation only on the circumstance of steady,unilateral flow,
axial symmetry,equal diameter uniform flow etc,
rlprlppdrdu y ?? 22 21 ??????
( 5— 3)
force analysis,
the result is
22
一、两端面上的压力 ;
二、圆柱面上的摩擦力 。
? ? 221 rpp ??
rl?? 2
于是,由,可得 0??
yF
? ? 02221 ??? rlrpp ???
化简并引用牛顿内摩擦定律,可得
dr
d y??? ??
该方法只有在定常、单向流动、轴对称、等径均匀流等情况
下才能取出上述平衡圆柱体,建立该平衡方程。
rlprlppdrdu y ?? 22 21 ??????
( 5— 3)
受力分析,
23
Crlpy ???? 24 ?? Integral the formula( 5— 3),then
the boundary condition of round pipe, as,,so Rr ? 0?
y?
RlpC ?4?? ? ?224 rRlpy ??? ??
( 5— 4)
The above formula shows that the velocity on cross section of pipe
has 2th power spinning paraboloidal relation with the radius,as
shown in Figure 5— 4,
y?
r
d
?
0?
max?
y?
r
dr
R
Figure 5— 4 velocity and shearing force
distribution of laminar flow in round pipe
2,Velocity analysis and flux
24
Crlpy ???? 24 ??
对( 5— 3)式积分,则
圆管边界条件 时,,于是,所以 Rr ? 0?
y? RlpC ?4??
? ?224 rRlpy ??? ?? ( 5— 4)
上式说明过流断面上的速度 与半径 成二次旋转抛物
面关系,如图 5— 4所示。 y?
r
d
?
0?
max?
y?
r
dr
R
图 5— 4 圆管层流的速度分布与切应力分布
二、速度分析与流量
25
Choose a micro round area whose width is on the position where
the radius is, then the flux is
r
dr
? ? lpdlpdr d rrRlpdAQ
A
R
y ?
?
?
??
?? 1 2 8824
44
2
0
???????? ? ? ( 5— 5)
This formula is called Hagen- Poisuille law,
shows,
When the flow is laminar flow the flux in the pipe is in direct ratio
with fourth power of the radius of pipe or diameter,
26
取半径 处宽度为 的微小环形面积,则可得流量为 r dr
? ? lpdlpdr d rrRlpdAQ
A
R
y ?
?
?
??
?? 1 2 8824
44
2
0
???????? ? ? ( 5— 5)
此式称为哈根 — 伯泊肃叶 定律。 ? ?a g e n Ρ o i s u i l l e? -
表明,
层流时管中流量与管半径或直径的四次方成比例。
27
3,Average velocity and the greatest velocity
2
2
4
88 Rl
p
Rl
pR
A
Q
???
?? ????? ( 5— 6)
The most velocity in pipe is on the axes where r = 0,Get from
the formula (5— 4)
0?r ?
?? 24
2
m a x ?
??
l
pR
On engineering applying this speciality of laminar flow to measure
the velocity of flow at axes and calculate the flux directly is very
convenient,
average velocity in pipe,
28
三、平均速度和最大速度
2
2
4
88 Rl
p
Rl
pR
A
Q
???
?? ????? ( 5— 6)
管中最大速度在轴心 处,由式( 5— 4)得 0?r
??? 24
2
m a x ?
??
l
pR
工程上应用层流这一特性直接从测定管轴心处流速而计算流
量相当方便。
管中平均速度
29
4,Distribution of shear force
ldr
d
dy
d yy
2
Pr?????? ????? ( 5— 7)
Obtain from the formula( 5— 7)
? ?r?? ? ( 5— 8)
when, the shear force on the pipe well is
l
pRrr
2 00
??? ?
According to the Newton’s internal friction law,we can get in
round pipe
explain,
On the cross section of laminar flow the shear force is in direct
ratio with the radius,The distribution rule is shown in Figure 5— 6,
which is called k font distribution,
l
pR
20
??? ( 5— 9)
then
R
r?
0?
?
30
四、切应力分布
ldr
d
dy
d yy
2
Pr?????? ????? ( 5— 7)
由式( 5— 7)可得
? ?r?? ? ( 5— 8)
当 时,可得管壁处的切应力为
l
pRrr
2 00
??? ?
根据牛顿内摩擦定律,在圆管中可得
说明,
在层流的过流断面上,切应力与半径成正比。分布规律如图
5— 6所示,称为切应力的 k 字形分布。
l
pR
20
??? ( 5— 9)
则
R
r?
0?
?
31
5,Linear loss
namely 44 1288 gd v lQgRv lQgph f ??? ???? ( 5— 10)
or
22
328
gd
vl
gR
vlh
f
?? ?? ( 5— 11)
The formula( 5— 11) shows that the energy loss of laminar flow is
in proportion to the first power of, ?
According to the darcy formula the friction head losses in round pipe
are all expressed by for laminar flow or turbulent flow,
Compare with the formula (5— 11),the friction resistance coefficient
of laminar flow is
gd
lh
f 2
2???
Re
6464 ??
d
v
??
( 5— 12)
So
gd
l
gd
lh
f 2Re
64
2
22 ??
? ??
( 5— 13)
The friction head loss expressed by this formula is the most
common and basic form,
According to the Bernoullis equation we know that the head loss of
costant diameter pipeline is the difference of pressure head on the two
ends of pipeline,
32
五、沿程损失
即
44
1288
gd
v lQ
gR
v lQ
g
ph
f ??? ??
?? ( 5— 10)
或
22
328
gd
vl
gR
vlh
f
?? ?? ( 5— 11)
式( 5— 11)说明层流的能量损失与 的一次方成比例。 ?
根据达西公式,不论层流、紊流,圆管中的沿程水头损失一
概用 表示。与式( 5— 11)相比,可得层流的沿程阻
力系数 gd
lh
f 2
2???
Re
6464 ??
d
v
??
( 5— 12)
于是有
gd
l
gd
lh
f 2Re
64
2
22 ??
? ??
( 5— 13)
此式所表示的沿程水头损失是最常用最基本的一种形式。
根据伯努利方程式可知等径管路的水头损失就是管路的两
端压强水头之差。
33
§ 5-4 Turbulent Flow in Round Pipe
When Reynolds number exceeds critical value the flow of fluid in pipe turns
into turbulent flow,
( a )
??b
a
( b ) ( c)
Figure 5— 5 The gently disturbance occurs turbulent flow
As shown in Figure 5— 5( a),two layers of linear flow which velocity is different,
If the interface is disturbed gently,as shown in Figure 5— 5( b),then the velocity
on point a decreases but pressure increases,at the same time the pressure on point b
decrease,The fluid particles on the interface under the pressure difference flows from
a to b,Intensify the disturbance on the interface,it expands to turbulent flow, As
shown in Figure 5— 5( c),
The velocity difference between two flow layers is the basic reason of
causing the instability, The instable laminar flow which is disturbed gently can
turn into the turbulent flow,
1,The occur of turbulent flow
34
§ 5-4 圆管中的紊流
当雷诺数超过临界值时,管内流体流动变成紊流。
( a )
??b
a
( b ) ( c)
图 5— 5 轻微扰动产生紊流
如图 5— 5( a)所示两层速度不同的直线流动。如分界面受轻
微扰动,见图 5— 5( b),则 a 点处于速度降低而压强增大,同时
b 点处压强则下降,界面处的流体质点由于压差将由 a 向 b 流动,
加剧界面的扰动,而向紊流发展。见图 5— 5( c)。
两层流体间有速度差别,是造成不稳定的根本原因,不稳
定的层流受到轻微扰动即可转化为紊流。
一、紊流的产生
35
2,Fluctuation of turbulent flow
tu
u
0 1 2 3
st
Figure 5— 6 the velocity fluctuation at a point in turbulent flow
Definition,
b,At the different moment the difference between the factual velocity of flow
and average value of time is expressed by the and is called fluctuating
velocity.Then u?u
)()( tuutu ???
(5— 15)
note,can be positive or negative, but its average
value of time
)(tu?
。0)( ?? tu
Other velocity components and pressure all can
be expressed by the average value of time in
turbulent flow, 。
After laminar flow is destroied many vortices different on magnitude and
direction are formed in turbulent flow, These vortices are the reason to result in
the velocity fluctuation,As shown in Figure 5— 6,
dtuTu T t?? 01? ( 5— 14)
is called average velocity of time,
a,According to the changing curve of velocity at a point in Figure 5— 60,
substitute the instantaneous value with the average value of time in segment T,
then
36
二、紊流的脉动
tu
u
0 1 2 3
st
图 5— 6 紊流中一点上的速度脉动
定义,
b,不同时刻实际流速 与时均值的差值用 表示,称为脉动流速。则
有 u?
u
)()( tuutu ???
(5— 15)
注, 值可正可负,但其时均值 )(tu? 。0)( ?? tu
紊流中的其他流速分量和压强也都可类
似地以时均值表示。
层流破坏以后,在紊流中形成许多大大小小方向不同的旋涡,这些涡旋
是造成速度脉动的原因。
脉动在足够长的时间内,人们发现它总是围绕着某一平均值而变化。如
图 5— 6所示。
dtuTu T t?? 01? ( 5— 14) 称为一点上的时均速度。
a,根据图 5— 6所示的一点上的速度变化曲线,用 T时间段内的时间平均值
代替瞬时值,则
37
3,Mixing length theory
?
?
x
y
R
l
y
a
b xu?
yu?
?d u dyudlu ?
dy
udl
dy
ud
Figure 5— 7 mixing length
)( yuu ?
In order to give attention to two conditions of round pipe and
planar flow,choose a coordinate system as shown in Figure 5— 7,
For the round pipe direction of y is the reverse direction of
coordinate r, the most biggest value y is possible the radius R of
round pipe, The average values of velocity on plane or in round pipe
are all can be expressed by,
Prandtl found the mixing length theory to explain the influence
of fluctuation on the temporal mean flow,
38
三、混合长度理论
?
?
x
y
R
l
y
a
b xu?
yu?
?d u dyudlu ?
dy
udl
dy
ud
图 5— 7 混 合 长 度
)( yuu ?
为了兼顾圆管与平面流动这两种情况,取平面坐标系如图
5— 7所示。对于圆管来说 y 轴方向就是 r 坐标的反方向,y 可能
取的最大值就是圆管半径 R。平面或圆管断面上的时均速度分布
都可以用 表示。
? ?ra n d tl? 普朗特 创立了混合长度理论,合理地解释了脉动对时均流动的影响。
39
Assume that at certain instant there is a fluid micro unit on layer a
where the average value of velocity is,For some occasional factors it
jumps up along y as fluctuating velocity through area of micro unit,
The mass flux is, Prandtl considered that before the fluid micro
unit reaching the new position the it had before is constant, When it
goes through the distance and gets to the layer b where the average
velocity of time is it mixes with fluid of layer b immediately,And
then it has the average velocity of time in layer b,
u
dAyu?
dAu y??
u
l
dy
udlu?
dy
udlu?
Because the momentum on x direction the fluid micro
unit had before is smaller than the momentum after
reaches the layer b, So when it mixes with fluid in layer b the
momentum on x direction of whole fluid in layer b is necessary
decreases, That is to say the average velocity of time on x direction
decreases, Thus appear a instantaneous fluctuation on layer b
(minus expresses that the direction of it is reverse with the x axis),
udAu y??
???????? ??? dyudludu y?
xu??
udyudlu ?
Assume in the temporal mean flow there are two layers of flows a
and b,The average value of velocity on layer a and that is
on layer b,
40
设想在某一瞬时,在时均速度为 的 a 层上有一个流体微团,
由于某种偶然因素,经过微元面积 以 的脉动速度沿 y 轴正向
跳动,其质量流量为 。普朗特认为在流体微团到达新的位
置之前,它原来具有的 一直不变,当它经过 距离到达时均速度
为 的 b 层以后,立即与 b 层流体混合在一起,从而具有 b 层
的时均流速 。
u
dA yu?
dAu y??
u l
dy
udlu?
dy
udlu?
但是这个流体微团原来所具有的 x 方向的动量
小于它到 b 层后所具有的 x 方向的动量 。因而
它与 b 层流体混合后,必然使整个 b 层流体在 x 方向上的动量
有所降低,也就是使其 x 方向上的时均速度有所降低,这样在
b层上就出现了一个瞬时的速度脉动 。(,-”号表示它的
方向与 x 轴相反)。
udAu y??
???????? ??? dyudludu y?
xu??
u
dy
udlu ?
设在时均流动中有 a, b 两层流体,a 层的时均速度为, b
层的时均速度为 。
41
xu??
Because of the new fluctuating velocity fluid micelle mixing in
layer b occurs a new fluctuating momentum change on
direction x,According to the momentum theorem the momentum change
causes the shear force between layer a and layer b, So
? ?0????? xy udu?
xy uduF ????? ? the tangential force between layer a and layer b is
yx uu ???? ??
( 5— 16)
This is the Reynolds shear force caused by fluctuation,
In the curse of averaging time Reynolds shear force doesn’t
disappear and its average value of time is
yx
T
yx
T uudtuu
TdtT ????????? ?? ???? 00
11 ( 5— 17)
when, micelle fluctuates from layer a to layer b, On layer
b ;
when, micelle fluctuates from layer a to layer a, On layer
a ;
0??yu
0??xu
0??yu
0??xu
0????? yx uu??
so are reverse always and,Minus of xu? yu? 0
xyuu???
42
xu??
由于新产生的脉动速度,使混合到 b 层的这个流体微团
在 x方向上产生了一个新的脉动性的动量变化 。按照
动量定理,这个动量变化必然引起 a, b 两层之间的切向作用力 F,
所以
? ?0????? xy udu?
xy uduF ????? ? a, b两层之间的切应力为
yx uu ???? ??
( 5— 16)
这就是由于脉动引起的雷诺切应力。
当,微团由 a 层向 b 层脉动,b 层的 ;
当,微团由 b 层向 a 层脉动,a 层的 。
0??yu 0??xu
0??yu 0??xu
所以永远反号,因而与,0????? yxyx uuuu
0????? yx uu??
在时均化的过程中,雷诺切应力并不消失,它的时均值为
yx
T
yx
T uudtuu
TdtT ????????? ?? ???? 00
11 ( 5— 17)
43
This shows that though Reynolds chear force caused by the fluctuation is a
fluctuating variable but it has average value of time and it has the influence on
flow,
Obtain from formula (5— 19) and( 5— 20)
dy
udlkku
y 21???
( 5— 21)
Substitute formula( 5— 21) into formula
( 5— 17),result is 22221 ????????? dyudlkk??
let, then average value of fluctuating chear force is 22
21 kkk ?
( 5— 22) ? ? 2
2
2
2 ??
?
?
???
??
???
?
???
??
dy
udL
dy
udkl ???
In this formula is called mixing length,klL ?
dy
u d l and the difference between layer a and layer b are in proportion
( 5— 20)
Prandtl consider,
are in proportion to each other and ( 5— 19)
xu? yu? 1yxu k u????
xu?
2x
duu k l
dy? ?
44
这说明,由于脉动原因所产生的雷诺切应力虽然是个脉
动量,但它存在时均值,对流动施加确定的影响。
普朗特认为,
dy
udlku
dy
udlbau
ukuuu
xx
xyyx
2
1
???
??????
也成比例。即两层的时均速度之差、与
互相成比例。即与
( 5— 19)
( 5— 20)
由式( 5— 19)、( 5— 20)可得
dy
udlkku
y 21???
( 5— 21)
将式( 5— 21)代入式( 5— 17)中,得
2
22
21 ???
?
???
??
dy
udlkk??
令,则脉动切应力的时均值。 22
21 kkk ?
( 5— 22) ? ? 2
2
2
2 ??
?
?
???
??
???
?
???
??
dy
udL
dy
udkl ???
式中 称为混合长度。 klL ?
45
4,the shearing stress distribution and velocity distribution of
turbulent flow in pipe
?
Center of
turbulent flow
Transition layer
Viscous sub-layer
Figure 5— 8 Turbulent flow structure
Definition,
When flow is turbulent completely there are two states on the near wall, if
Reynolds number is smaller turbulent flow sub-layer near wall covers the coarse
protuberance on pipe wall,The roughness does nothing to the turbulent flow, as
shown in Figure 5— 9( a),is called hydraulic smooth-pipe,As Reynolds increases
turbulent flow sub-layer turns thin,When the coarse protuberance is higher than the
turbulent flow sub-layer the coarse protuberance causes quick turbulent flow, The
coarse protuberance is more high the resistance is more big, as shown in Figure5— 9
( b),is called hydraulic rough pipes,
The turbulent flow structure in viscous sub-layer,waterpower
lubricity and waterpower coarseness round pipe,as shown in Figure
5— 8,near the pipe wall viscous force
predominates, On this place the mix is
confined to form laminar layer which is
called laminar sub-layer, Out of laminar
sub-layer is transition layer and out of it
is the core area of turbulent flow,
46
三、管中紊流的切应力分布和速度分布
?
紊流中心
过渡层
粘性底层
图 5— 8 紊流结构
定义,
完全紊流时,近壁处存在两种状态:雷诺数较小时,近壁处层
流底层完全掩盖住管壁粗糙突起,其时粗糙度对紊流不起作用,如
图 5— 9中( a)所示,称为水力光滑;随雷诺数增大,层流底层变
薄,当粗糙突起高出层流底层之外时,粗糙突起造成加剧紊动,粗
糙突起突出越高,阻力越大,如图 5— 9中( b)所示,称为水力粗
糙。
粘性底层、水力光滑与水力粗糙圆管中的紊流结构。如图
5— 8所示。
在靠近管壁处,粘性力占优势,
其处混合受限制,形成层流层,称为
层流底层。在层流底层,外面紧接的
是过渡层;过渡层外面紧接的是紊流
核心区。
47
the depth of laminar sub-layer hydraulic roughness is
determined approximately by the below formula
?
?? Re30
d? (5— 23)
In the formula
Hydraulic friction coefficient (different with
laminar flow )
—
Reynolds number —
Inner diameter of pipe —
Depth of laminar sub-layer —
?
?
Re
d
( a)
? l?
??l?
?
l?
( b) ??
l?
Figure 5 - 9 hydraulic smooth and waterpower coarseness
48
( a)
? l?
??l?
?
l?
( b) ??
l?
图 5 9 水力光滑和水力粗糙
层流底层厚度 近似地可用下式确定 ?
?? Re30
d? (5— 23)
式中
时不同)。水力摩擦系数(与层流—
雷诺数;—
管子内径;—
层流底层厚度;—
?
?
Re
d
49
(2),Shear stress distribution
? ?
22
21
0
R
l
p
l
Rpp ????? ( 5— 24)
In the formula R is diameter of pipe,is the pressure
difference of two sections which axial distance is, If take out
flow pipe which radius is between the two sections,then in
a same way we can obtain the shear stress on the surface of flow
pipe,it is
p?
l
? ?Rrr ?
2
r
l
p??? ( 5— 25)
Obtain form formula (5— 24) and( 5— 25)
R
r
0?? ?
( 5— 26)
This is the distribution regulation of shear stress on cross section
of pipe,
xu
To the average time turbulent flow,each point in fluid only has
a axial velocity in average time in pipe,Shear stress on wall of
pipe is
50
2,切应力分布
? ?
22
21
0
R
l
p
l
Rpp ????? ( 5— 24)
式中 R为管半径,为轴向距离 的两断面上的压强差,
如果在此二断面之间取出半径为 的流管,则同样可得
流管表面上的切应力为
p? l
? ?Rrr ?
2
r
l
p??? ( 5— 25)
由式( 5— 24)及式( 5— 25)两式可得
R
r
0?? ?
( 5— 26)
这就是过流断面上切应力的分布规律。
xu
对时均化的紊流来说,流体每一点在管中只有一个轴向时
均速度,管壁上的切应力为
51
(3),Velocity distribution
Because laminar sub-layer is very thin, can be expressed by
shear stress approximately,so after integral
?
0?
yu x ?? 0? ( 5— 27)
as shown in Figure 5— 10,the velocity distribution in laminar
sub-layer is linear regulation, This is the approximate result of
laminar velocity parabola regulation in laminar sub-layer,
R
x
y
?u
xu
y
? 0?
r
Figure5— 10 velocity distribution of turbulent
flow
yo
L
kyL ?
R
ykyL ?? 1
Figure 5— 11 mixing length
distribution
In the viscous sub-layer dy du dy du x x ? ? ? ? ? ? Namely
52
3,速度分布
dydudydu xx ???? ?? 即
因为层流底层很薄,可近似用壁面上的切应力 表示。于
是积分可得
? 0?
yu x ?? 0? ( 5— 27)
如图 5— 10所示,在层流底层中速度分布是直线规律,这是
层流速度抛物线规律在层流底层中的近似结果。
R
x
y
?u
xu
y
? 0?
r
图 5— 10紊流的速度分布
yo
L
kyL ?
R
ykyL ?? 1
图 5— 11混合长度分布
在粘性底层中
53
in the core of turbulent flow,,obtain from formula( 5— 26) 2
2 ??
?
?
???
??
dy
duL x??
?????? ??? RyRr 100 ???
( 5— 28)
According to the Karman experiment, The distribution of mixing length is
shown in Figure 5— 11,the function formula of L and y can be expressed
approximately
R
ykyL ?? 1 ( 5— 29)
As, That is near the wall Ry ??
kyL ?
( 5— 30)
In it k =0.4 is experience constant,
Substitute formula( 5— 28) and( 5— 29) into fluctuating shear stress
expression
2
2 ??
?
?
???
??
dy
duL x??
Simplify it and do integral
Cyku x ?? ln10??
( 5— 31)
Shows that velocity in the core of turbulent flow and y are
in logarithm relation,xu
54
在紊流核心中,, 由式( 5— 26)得 2
2 ??
?
?
???
??
dy
duL x??
?????? ??? RyRr 100 ???
( 5— 28)
根据卡门 实验,混合长度的分布规律如图 5— 11所示,L 与 y
的函数关系可近似表示为 ? ?K a rm a n
R
ykyL ?? 1 ( 5— 29)
当,即在壁面附近时 Ry ??
kyL ?
( 5— 30)
其中 k =0.4为经验常数。
将式( 5— 28)、( 5— 29)代入脉动切应力的表达式
2
2 ??
?
?
???
??
dy
duL x??
则化简、积分得
Cyku x ?? ln10??
( 5— 31)
说明紊流核心中速度 和 y 成对数关系。 xu
55
§ 5-5 Friction Resistance in Pipeline
Friction resistance is the reason that causes the on-way head loss
,The formula calculating the friction loss is darcy formula but the
regulation of the coefficient of friction resistance in it is
wait to discussed deeply, ?????? ?? df R e,?
Nikuradse daubed the sands which had been sifted to have the
same diameters on the inner wall of pipeline with different diameters
to make a manual rough pipeline to do experiment,Reynolds number
of experiment range, relative roughness
,the experimental curve is shown in Figure 5— 12,
610500Re —?
3011 0 1 41 —?? d
1,Nikuradse experiment
56
§ 5-5 管路中的沿程阻力
沿程阻力是造成沿程水头(或压强、能量)损失的原因。
计算沿程损失的公式是达西公式,但式中的沿程阻力系数
的规律有待深入探讨。 ?
?
??
?
? ??
df R e,?
尼古拉兹将不同管径的管道内壁均匀地粘涂上经过筛分
具有同粒径的砂粒,以制成人工粗糙管道进行实验研究,实验
范围雷诺数,相对粗糙度,实验曲
线如图 5— 12所示。
610500Re —? 3011 0 1 41 —?? d
一、尼古拉兹实验
57
0.1
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.1
6.2 8.2 2.3 4.3 6.3 8.3 0.40.3 2.4 4.4 6.4 8.4 0.5 2.5 4.5 6.5 8.5 0.6
a
b
c
e
d f 1014
1??
d
5041??d
252
1??
d
120
1??
d
60
1??
d
30
1??
d
1 2
3
5
4
)100lg( ?
Relg
Figure 5— 12 Nikuradse experimental curve
58
0.1
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.1
6.2 8.2 2.3 4.3 6.3 8.3 0.40.3 2.4 4.4 6.4 8.4 0.5 2.5 4.5 6.5 8.5 0.6
a
b
c
e
d f 1014
1??
d
5041??d
252
1??
d
120
1??
d
60
1??
d
30
1??
d
1 2
3
5
4
)100lg( ?
Relg
图 5— 12 尼古拉兹实验曲线
59
See from Figure 5— 12,the relation of,and can be
divided five different zone, the changing rules of it is,
? Re d?
1,laminar flow zone
as, all experimental points concentrates on a straight
line ab,which shows that it has nothing with relative roughness
,but the relation between and fits equation which is
consistent completely with the laminar theory formula of round pipe,
2300Re ?
d?
? Re Re64??
2,transition zone
This area is the transition area of laminar flow turning into
turbulent flow, At this time has nothing with, as shown in
zone 2 of the Figure,
? d?
3,turbulent smooth pipe zone
as, though flow keeps turbulent,but experimental
points with different roughness all concentrates on line cd, which
shows that roughness has nothing to do with but only has relation
with Reynolds number, the depth of laminar sub-layer is bigger
than roughness of pipe,
2300Re ?
?
Re
。???
60
由图 5— 12看出,和 及 的关系可分为五个不同的区,
其变化规律为,
? Re d?
1、层流区
当,所有的实验点聚集在一条直线 ab上,说明
与相对粗糙度 无关,而 与 的关系符合 方程,这
与圆管层流理论公式完全一致。
2300Re ?
d? ? Re Re64??
2、过渡区
该区是层流转变为紊流的过渡区,此时 与 无关,如图
中的区域 2 所示。
? d?
3、紊流光滑管区
当,流动虽已处于紊流状态,但不同粗糙度的实验
点都聚集在 cd 线上,说明粗糙度对 仍没有影响,只与雷诺数
有关。层流底层厚度大于管子粗糙度,
2300Re ?
? Re
。???
61
4,transition zone of turbulent flow
with the increase of Reynolds number experimental points
leaves from line cd according the roughness of different points
separately and goes into the transition zone of turbulent flow, As
shown in area 4 of Figure,
The limit range of five resistance zone and their calculating
formulas are listed in the below table,?
5,Rough pipes zone or complete turbulence zone
In the zone of Figure where the experimental curve parallels
with x axis,friction resistance is in direct ratio with the
square of velocity,is called complete rough pipe zone or the
resistance square zone,See from the Figure that in this zone has
noting with but only has relation with roughness, Re
?
d?
???
62
4、紊流过渡区
随着雷诺数的加大,实验点根据不同点的粗糙度分别从
cd线上离开,进入紊流过渡区。如图中 4 区所示。
五个阻力区的界限范围及其 计算公式汇总列于下表中。 ?
5、粗糙管区域或阻力平方区
图中实验曲线与横轴平行的区域,,沿程阻力与速度
平方成正比,称为粗糙管区或阻力平方区,从图中可以看出
在此区域 与 无关,而仅与粗糙度 有关。 Re?
d?
???
63
complete
rough pipe
zone the
resistance
square area
transition
zone of
turbulent
flow
turbulent
smooth pipe
zone
transition zone
laminar flow zone
experience
formula of
The theory of or
experience formula
of radius
range Resistance
zone
?
?
2300Re ? Re64?? Re75??
3 0 0 0Re2 3 0 0 ?? 31Re0 0 2 5.0??
782.22Re3 0 0 0 ?
?
??
?
?
???
d ? ? 8.0Relg21 ?? ??
237.0
65
25.0
5
Re
221.0
0 0 3 2.0
103Re10
Re
3 1 6 4.0
10Re
??
???
?
?
?
?
8
9
7
8
5 9 7Re2.22 ?????? ????????? ? dd
)
Re
51.2
7.3
l g (2
1
?
?
?
?
??
d
25.0
Re
6811.0 ?
?
??
?
? ???
d?
8
9
597Re ?????? ?? d 27.3lg2
1
??
?
??
? ?
?
??
?
?
?
?
d
? 25.0
11.0 ?????? ?? d?
64
粗糙管区
阻力平方区
紊 流
过渡区
紊 流
光滑管区
过渡区
层流区
的经验公式 的理论或
半径经验公式
范 围 阻力区 ? ?
2300Re ? Re64?? Re75??
3 0 0 0Re2 3 0 0 ?? 31Re0 0 2 5.0??
782.22Re3 0 0 0 ?
?
??
?
?
???
d ? ? 8.0Relg21 ?? ??
237.0
65
25.0
5
Re
221.0
0 0 3 2.0
103Re10
Re
3 1 6 4.0
10Re
??
???
?
?
?
?
8
9
7
8
5 9 7Re2.22 ?????? ????????? ? dd
)
Re
51.2
7.3
l g (2
1
?
?
?
?
??
d
25.0
Re
6811.0 ?
?
??
?
? ???
d?
8
9
597Re ?????? ?? d 27.3lg2
1
??
?
??
? ?
?
??
?
?
?
?
d
? 25.0
11.0 ?????? ?? d?
65
The half experience formula in the table is obtained by
coordinating experimental data on the basis of the mixing length
theory and velocity distribution,They have more accuracy but
structures are complicated, The accuracy of experience formula in
last column is little worse but it is easy to calculate,Sometimes
using experience formula to calculate the first approximation and
then substitute it into the right hand of half experience formula of
smooth pipe or transition zone of turbulent flow,and then
calculate the second approximation, If substitute it into right hand
again we can calculate the third approximation from left hand,
Iterate two or three times we can obtain the accurate value which
left hand is equal to right hand,
66
表中半经验公式是建立在混合长度理论及速度分布的基
础上并配合实验数据而得到的,它们的准确性较高,但是结
构较复杂,最末一栏的经验公式准确性稍差,但公式简单便
于计算,有时也可以先用经验公式求第一次近似值,然后将
其代入光滑管或紊流过渡区的半经验公式右端,从其左端求
出第二次近似值,如果将它再代入右端则从左端又可求出第
三次近似值,迭代两三次即可得左、右基本相等的准确值。
67
Moody makes the Diagram in the figure 5— 13 about friction loss coefficient
and Reynolds number,relative roughness for industry pipeline by means of
before formulas depending on much experimental data,According to this Figure we can
expediently calculate the value of loss coefficient and judge the resistance zone it is,
?
Re d?
?
310 410 510 610 710 810
008.0
01.0
015.0
02.0
025.0
03.0
04.0
06.0
05.0
07.0
08.0
09.0
Re
d?
05.0
04.0
03.0
015.0
02.0
01.0
008.0006.0
004.0002.0
001.0 0008.0
0006.0
0004.0 0002.0
0001.0 00005.0
00001.0
Figure 5— 13 Moody Figure
2,Moody Diagram
68
莫迪 依据大量实验资料,并借助于前述各公式对工业
用管道制作了关于损失系数 与雷诺数 和相对粗糙度 的图 5—
13。根据此图表可很方便地求得损失系数 的值,并可以判断所在
的阻力区。
? ?oody?
? Re d?
?
310 410 510 610 710 810
008.0
01.0
015.0
02.0
025.0
03.0
04.0
06.0
05.0
07.0
08.0
09.0
Re
d?
05.0
04.0
03.0
015.0
02.0
01.0
008.0006.0
004.0002.0
001.0 0008.0
0006.0
0004.0 0002.0
0001.0 00005.0
00001.0
图 5— 13 莫 迪 图
二、莫迪图
69
[example 5—1] Water flows in the welded steel pipe which
diameter is 50cm,If the energy loss for unit length of pipe is 0.006
,try to calculate the discharge and depth of viscous sub-layer in
pipe,
? ?0 0 0 0 9.05 0 00 4 6.0 ??? ??
[solution] From formula (5— 13),obtain that
ggdl
h f
25.0
1
2
1006.0 22 ???? ?????
Obtain from above formula
?? /243.0?
Assume,0 3 0.0?? then
smvsm 2610007.1,4.1 ?????
5
6 10710007.1
4.15.0Re ??
?
???
?v
d ?
C 0 20
70
C020 [例题 5—1] 的水在管径为 50cm的焊接钢管内流动,若
单位管长的能量损失为 0.006,试计算管中流量、粘性底层厚度
。 ? ?0 0 0 0 9.0
5 0 00 4 6.0 ??? ??
[解 ] 由式( 5— 13)得
ggdl
h f
25.0
1
2
1006.0 22 ???? ?????
由上式得到
?? /243.0?
设,0 3 0.0?? 则
smvsm 2610007.1,4.1 ?????
5
6 10710007.1
4.15.0Re ??
?
???
?v
d ?
71
Check from Moody Diagram
,then ? ? 0 1 3 6.0,0 0 0 0 9.0,107Re 5 ????? ?d
sm08.20 1 3 6.02 4 3.0 ???
6
6 1010007.1
08.25.0Re ?
?
??
?
Check it again 0 1 3 1.0??
610Re,12.2243.0 ??? sm
??
so is the velocity to be ask for,Then
sm12.2??
? ?
smQ
32 416.012.2
4
5.0 ????? ??
Again from formula( 5— 23)
? ? mmmv 136.010136
0131.012.2
10007.13030 66 ???
?
???? ??
???
72
由莫迪图查得,则 ? ?
0 1 3 6.0,0 0 0 0 9.0,107Re 5 ????? ?d
sm08.20 1 3 6.02 4 3.0 ???
6
6 1010007.1
08.25.0Re ?
?
??
?
再查莫迪图 0 1 3 1.0??
610Re,12.2243.0 ??? sm
??
可见 为所求的速度,则
sm12.2??
? ?
smQ
32 416.012.2
4
5.0 ????? ??
再由式( 5— 23)
? ? mmmv 136.010136
0131.012.2
10007.13030 66 ???
?
???? ??
???
73
§ 5-6 Minor Resistance in Pipeline
Minor resistance will occur and then cause local head loss on
where the flow sections changing quickly and fluid changing
direction, Though manifold pipe fitting on pipeline,the reason
to occur head loss includes,
( 1) Redistribution of velocity of flow in fluid ;
( 2) viscous force does work in swirling,
( 3) momentum change caused by the mix of liquid particles,
because the quick change on border enforces the turbulent degree of
fluid flow, so minor loss is normal in direct ratio with the square of
average velocity of flow, It can be expressed by
gh j 2
2?
??
( 5— 32)
In formula
Coefficient minor loss,—
Minor loss —
?
j h
74
§ 5-6 管路中的局部阻力
在液流断面急剧变化以及液流方向转变的地方,发生局
部阻力,引起局部水头损失,管路上安装的各种管件虽然多
种多样,但产生局部水头损失的原因不外是由于,
( 1) 液流中流速的重新分布;
( 2)在旋涡中粘性力作功;
( 3)液体质点的混掺引起的动量变化。
由于边界的急剧变化,加强了流体流动的紊动程度,故局部
损失一般和平均流速的平方成正比。可表达为
gh j 2
2?
??
( 5— 32)
式中
局部损失系数。—
局部损失;—
?
jh
75 0 0
l
2z1z
1
1
2
2
G
1?
2?
1?
2??
?
?
Figure 5— 14 section of pipeline sudden expansions
by means of theory analysis to confirm the minor head loss,
the most representative instance is that the pipeline sudden
expansions,
??
?
?
??
?
?
????
?
?
??
?
? ?
????
?
?
??
?
? ?
??
??
?
?
??
?
?
?
?
????
?
?
??
?
?
?
?
??
ggg
z
g
z
gg
z
gg
zh j
22
22
2
22
2
112
2
1
1
2
222
2
2
111
1
????
??
??
?
??
?
—— ( 5— 33)
as shown in Figure 5— 14,because fluid occurs swirling via
the place where enlarging suddenly,after length l main fluid
enlarges to all section,Section 1— 1and section 2— 2 can be
considered gradual changing flow section, Because the distance
between section 1— 1and 2— 2 is more shorter,its friction loss can
be ignored, Then apply bernoullis equation
76
0 0
l
2z1z
1
1
2
2
G
1?
2?
1?
2??
?
?
图 5— 14管道截面突然扩大
借助于理论分析来确定局部水头损失时,最有代表性的
是管路突然扩大的情况。
??
?
?
??
?
?
????
?
?
??
?
? ?
????
?
?
??
?
? ?
??
??
?
?
??
?
?
?
?
????
?
?
??
?
?
?
?
??
ggg
z
g
z
gg
z
gg
zh j
22
22
2
22
2
112
2
1
1
2
222
2
2
111
1
????
??
??
?
??
?
—— ( 5— 33)
如图 5— 14所示,由于流体经突然扩大处发生旋涡,经过 l
长度后主流扩大到整个断面,断面 1— 1及断面 2— 2可认为是渐
变流断面,又因 1— 1与 2— 2断面间的距离较短,其沿程损失可
忽略不计,则应用伯努利方程得
77
again apply momentum equation to fluid in the control surface
AB22,First analyze component of outer forces along flow direction of
fluid in the control surface AB22
( 5) The friction resistance of fluid between section AB and can be
ignored by comparing with the above forces,
? ? ? ?212212 /co s zzgAlzzlgAG ???? ???
( 4) Component of fluid gravity in control surface via flow direction is
( 1) whole pressure acting on section 1— 1 is, is pressure on
axes, 11
Ap
? ?12 AA ?
? ?121 AApF ??
( 3) Acting force of ringy area pipe wall of AB,that is reverse
force of the swirling acts on the ringy area, Experiment shows that
pressure on ringy area distributes according to the static pressure rules,
22Ap ( 2) whole pressure acting on section 1— 1 is, is pressure on
axes,
1p
2p
78
再对控制面 AB22内流体运用动量方程。首先分析控制面
AB22内流体所受外力沿流动方向的分力有,
( 1)作用在断面 1— 1上的总压力,其中 为轴线上的压强;
11Ap 1p
( 5)断面 AB至 2— 2间流体所受管壁的摩擦阻力,因与上述诸力
相比可忽略不计。
? ? ? ?212212 /co s zzgAlzzlgAG ???? ???
( 4)控制面内流体重力沿流动方向的分力为
? ?12 AA ?
? ?121 AApF ??
( 3) AB环形面积 管壁对流体的作用力,即旋涡作用于环
形面积上的反力,实验表明,环形面积上压强的分布按静压强规律分
布,即总压力 ;
22Ap 2 p
( 2)作用在断面 2— 2上的总压力,其中 为轴线上的压强;
79
Momentum equation in control surface AB22 is
? ? ? ? ? ?212121221112 zzgAAApApApQ ??????? ????
Substitute into it and is divided by,the end is
22?AQ ? 2gA?
? ? ??
?
?
???
? ??
???
?
???
? ???
g
pz
g
pz
g ??
??? 2211122
( 5— 34)
Substitute formula (5— 34) into formula 5— 33),the result is
? ?
gh j 2
2
21 ?? ??
This formula is minor loss formula ( Borda formula) that round
pipe enlarging expansion,according to continuity equation
The above formula can be write like
2211 VAVA ?? ?
80
控制面 AB22动量方程有
? ? ? ? ? ?212121221112 zzgAAApApApQ ??????? ????
以 代入,并除以 得 22?AQ ? 2gA?
? ? ??
?
?
???
? ??
???
?
???
? ???
g
pz
g
pz
g ??
??? 2211122
( 5— 34)
将式( 5— 34)代入式( 5— 33)得
? ?
gh j 2
2
21 ?? ??
此式即为圆管突然扩大的局部损失公式(包达公式)。根据
连续性方程 上式又可写成
2211 VAVA ?? ?
81
gg
h j
22
1
2
2
2
2
2
2
1
2 ??? ?
???
?
???
? ?
?
??
gg
h j
22
1
2
1
1
2
1
2
1
2 ??? ?
???
?
???
?
?
???
or
?
( 5— 35)
Know from the formula
2
1
2
2
2
2
1
1 1,1 ??
?
?
???
?
?
???
???
?
???
?
?
??? ??
shows,most of the minor resistance loss coefficient can
be confirmed by experiment,
82
gg
h j
22
1
2
2
2
2
2
2
1
2 ??? ?
???
?
???
? ?
?
??
gg
h j
22
1
2
1
1
2
1
2
1
2 ??? ?
???
?
???
?
?
???
或
?
( 5— 35)
从上式可知
2
1
2
2
2
2
1
1 1,1 ??
?
?
???
?
?
???
???
?
???
?
?
??? ??
说明:绝大多数局部阻力损失系数由实验确定。
83
§ 5-7 Pipeline Calculation
pipeline calculation is a important aspect of fluid mechanics
engineering application,
Divided by structure
characters of pipe
Costamtr diameter pipes
series Pipelines
parallel Pipelines
Branched pipes ?
Divided by calculation
characters of pipe ?
Long pipes
Short pipes
long pipe and short pipe are not completely geometry concepts of
long and short, but a concept on resistance calculation, In pipe
calculation many physical variables are concerned and many
problems need to be solved, The basic kind of problem are
known to seek for or known to seek for or
known to seek for,
Qdl,、
fh fhdl,,Q Qhl f、、
d
84
§ 5-7 管路计算
管路计算是流体力学工程应用的一个重要方面。
管路按结构特点分
等径管路
串联管路
并联管路
分支管路 ?
按计算特点分
?
长 管
短 管
长管和短管并不完全是个几何长短概念,而是一个阻力计算
上的概念。管路计算中所涉及的物理量很多,需要解决的问题也
很多,不过问题的基本类型或是已知 求,或是已知
,求,或是已知,求 。
Qdl,,fh
fhdl,,Q Qhl f、、
d
85
1,Combining principle of head loss
Though sometimes it is some bigger than factual value or sometimes
it is some smaller than factual value, but in normal instance this
combining principle can be trusted to use,If amount minor resistance loss to a friction resistance loss on
properly length, then let
( 5— 36)
g
u
d
lh
f 2)(
2
?? ???
( 5— 37)
?
??? ??
e
e l
d
l 或
In formula is called whole resistance length of pipeline,
ellL ???
In formula is called equivalent pipe length of minor resistance,
so whole head loss on a pipeline can be simplified e
l
( 5— 38)
g
u
d
L
g
u
d
llh e
f 22
22
?? ???
Whole head loss of all pipe should be summation of all friction
head loss and all local head loss, namely
86
1,水头损失的叠加原则
虽然它有时比实际值略大,也有时比实际值略小,但一般情
况下这种叠加原则还是可信可行的。
如果将局部阻力损失折合成一个适当长度上的沿程阻力损失,
则令
( 5— 36)
g
u
d
lh
f 2)(
2
?? ???
( 5— 37)
?
??? ??
e
e l
d
l 或
式中 称为管路的总阻力长度。
ellL ???
式中 称为局部阻力的当量管长,于是一条管路上的总水头
损失可以简化为
el
( 5— 38)
g
u
d
L
g
u
d
llh e
f 22
22
?? ???
全管段的总水头损失应为所有沿程水头损失和所有局部
水头损失的总和,即
87
On the contrary,if amount friction loss to a properly minor loss
,then let
in a general way, if friction loss is main on pipeline we should use
formula( 5— 38),else if minor loss is main we should use formula
( 5— 40)
( 5— 39)
ed
l ?? ?
is called equivalent minor resistance coefficient of friction
resistance, so e?
( 5— 40)
g
u
g
uh
ef 22)(
22
??? ????
In the formula is called whole resistance coefficient of
pipeline, ??? ??? e
88
反之,如果将沿程损失折合成一个适当的局部损失,则令
一般来说,管路上如果主要是沿程损失,则用( 5— 38)式;
如果主要是局部损失,则用( 5— 40)式。
( 5— 39)
ed
l ?? ?
称为沿程阻力的当量局部阻力系数,于是
e?
( 5— 40)
g
u
g
uh
ef 22)(
22
??? ????
式中 称为管路的总阻力系数。 ??? ???
e
89
(1),Short pipe calculation
definition,
[example 5—2] pipeline of water pump is shown in Figure 5— 15,
diameter of cast iron pipe d=150mm,length, A filtrating
water net, a open stop valve, three elbow which ratio of pipe
radius to curvature radius is, altitude h =100 m discharge
, temperature of water,try to calculate the
output power of water pump,
mml 180?
? ?6??
5.0?Rr
hmQ 32 2 5? C020
In head loss friction loss and minor loss each occupies a certain
proportion, This sort of pipeline is called short pipe,
short pipe is a sort of most familiar pipeline on engineering
especially oil pipes on mechanical equipment and water pipes in
workshop etc,Their minor resistance can’t be ignored usually so we
should consider the friction resistance loss and minor resistance loss at
one time in calculation,
90
一、短管计算
定义,
[例题 5—2]水泵管路如图 5— 15所示,铸铁管直径 d=150mm,
长度,管路上装有滤水网 一个,全开截止阀一个,
管半径与曲率半径之比为 的弯头三个,高程 h =100 m,
流量,水温 。
试求水泵输出功率
mml 180? ? ?6??
5.0?Rr
hmQ 32 2 5? C020
水头损失中沿程损失、局部损失各占一定比例,这种管路称
为短管 。
短管是机械工程中最常见的一种管路,尤其是机械设备上的
油管、车间中的水管等等,它们的局部阻力往往不能忽略,因此
在计算中需要同时考虑沿程阻力损失和局部阻力损失。
91
[solution ] First judge flow state to confirm the friction resistance
coefficient, As temperature is the kinematic viscosity is
, so
? C020
smv 26100 0 7.1 ???
5
6
1027.5007.115.03600 1022544Re ???? ????? ??? dvQvd
Cast iron pipe
Re3 3 2 0 06 0 02.222.22
6 0 0
,0 0 1 6 6.0,25.0
7
8
?????
?
?
?
?
?
?
?
?
?
?
??
d
d
d
mm
Turbulent flow of non smooth pipe
Re1097.7597 58
9
????
?
??
?
?
??
d
Knowing that flow state is transition zone of turbulent flow,
d
h
Figure 5— 15 pipeline of water
pump
92
[解 ] 首先需要判断流动状态以便确定沿程阻力系数
时,水的运动粘度,于是
?
C020 smv 26100 0 7.1 ???
5
6
1027.5007.115.03600 1022544Re ???? ????? ??? dvQvd
铸铁管
Re3 3 2 0 06 0 02.222.22
6 0 0
,0 0 1 6 6.0,25.0
7
8
?????
?
?
?
?
?
?
?
?
?
?
??
d
d
d
mm
非光滑管紊流
Re1097.7597 58
9
????
?
??
?
?
??
d
可知流动状态为紊流过渡区。
d
h
图 5— 15水泵管路
93
First use experience formula to calculate the approximation of ?
0 2 2 7.0
Re
6811.0 25.0 ??
?
??
?
? ???
d
?
212.6Re 51.27.3lg21 ??
?
??
?
? ????
?? d
solve out, it is near to first approximation,so use this
value as standard,
0 2 5 5 9.0??
Substitute this value into right hand of half experience formula and
then calculate the second approximation of from its left hand, So ?
From minor resistance coefficient table and given data in problem we
know that entrance, elbow,stop valve
,filtrating water net, exit, so we can obtain the
equivalent pipe length of minor resistance
5.0?? 29443.0?? 9.3??
6?? 1??
mdl e 98.7115.00 2 5 5 9.0 28.12 ?????? ? ?
94
先用经验公式求 的近似值 ?
0 2 2 7.0
Re
6811.0 25.0 ??
?
??
?
? ???
d
?
212.6Re 51.27.3lg21 ??
?
??
?
? ????
?? d
解出,与第一次近似值相差不多,即以此值为准。 0 2 5 5 9.0??
将此值代入半经验公式的右端,从其左端求 的第二次近似
值,于是
?
从局部阻力系数表及题给出数据可知:入口,弯头
截止阀,滤水网,出口,于是
得局部阻力的当量管长
5.0??
29443.0?? 9.3?? 6?? 1??
mdl e 98.7115.00 2 5 5 9.0 28.12 ?????? ? ?
95
whole resistance length of pipeline
Water pump lift
At last output power of water pump is
mllL e 25298.71180 ??????
Substitute into formula,we can obtain
2
4
d
Q
?? ? gdLh f 2
2?
??
mQdg Lh f 4.273 6 0 015.081.9 2 2 52 5 20 2 5 5 9.088 252
2
2
52 ????
?????
??
?
mhhH f 4.1 2 74.271 0 0 ?????
kWWg Q HP 787 8 0 0 04.1 2 73 6 0 02 2 59 8 1 0 ?????? ?
96
管路总阻力长度
水泵扬程
最后得水泵输出功率
mllL e 25298.71180 ??????
将 代入 公式中可得
2
4
d
Q
?? ? gd
Lh
f 2
2?
??
mQdg Lh f 4.273 6 0 015.081.9 2 2 52 5 20 2 5 5 9.088 252
2
2
52 ????
?????
??
?
mhhH f 4.1 2 74.271 0 0 ?????
kWWg Q HP 787 8 0 0 04.1 2 73 6 0 02 2 59 8 1 0 ?????? ?
97
(2),Pipeline speciality
This pipeline speciality curve has especially function on using water
power machinery,Each long pipe and short pipe has its own speciality
curve, as shown in Figure 5— 16,list bernoullis equation on begin
section 1 and end section 2 of pipeline,
The function relation between a head H and discharge Q on a
pipeline is called pipeline speciality, The curve showing that is called
pipeline speciality curve,
definition,
Figure 5— 16 pipeline speciality curve
CH
CH
H
Q
98
二、管路特性
这种管路特性曲线在水力机械的使用中有着特别重要的作用,
任何长管和短管都有各自的特性曲线。
如图 5— 16所示,在管路的始点 1 和终点 2之间列伯努利方
程式可得
一条管路上水头 H与流量 Q之间的函数关系称为管路特性;
用曲线表示则称为管路特性曲线。
定义,
图 5— 16 管路特性曲线
CH
CH
H
Q
99
In formula
is called resistance synthetical parameter of pipeline or synthetical parameter of pipeline, The resistance synthetical parameter K contains
many factors such as length,diameter,friction resistance and minor
resistance etc,
gd
LhH
f 2
2?
???
(5— 41)
substitute into it, then
A
Q??
)(88 5252 ellgdgd LK ???? ? ?? ?
? ? 252
2
2
2 8
)
4
(2
Qll
gddg
Q
d
LH
e???? ?
?
?
?
(5— 41)
water head in current H corresponds to the potential difference V in
electric current,Flux Q in current corresponds to current intension I in
electric current, so resistance R in circuit just likes resistance
synthetical parameter K in current,Lines showing relation V = RI is
called speciality curve of circuit ( Figure 5— 17),Curve showing
relation is called speciality curve of pipeline ( Figure 5— 16) 2kQH ?
Physical meaning,
100
式中
称为管路的阻力综合参数,或称管路的综合参数,阻力综合参
数 K 中包含着管路的长度、直径、沿程阻力和局部阻力等多种因素
在内。
gd
LhH
f 2
2?
???
(5— 41)
如果用 代入,则
A
Q??
)(88 5252 ellgdgd LK ???? ? ?? ?
? ? 252
2
2
2 8
)
4
(2
Qll
gddg
Q
d
LH
e???? ?
?
?
?
(5— 41)
水流中的水位差 H相当于电流中的电位差 V,水流中的流量 Q相
当于电流中的电流强度 I,因而电路中的电阻 R 就类似于水流中的
阻力综合参数 K。反映 V = RI关系的直线称为电路特性曲线(图 5—
17),反映 关系的曲线称为管路特性曲线(图 5— 16)。 2kQH ?
物理意义,
101
Figure 5— 17 speciality curve of circuit
Function of speciality curve of pipeline,
seeing from formula ( 5— 43),pipeline with different structure
was installed between point 1 an 2 and its value of K is different
naturally, so the speciality curve of different pipeline is different too
naturally,
Even if pipeline structure is certain if changing the valve opening of
pipeline ( just like changing resistance in circuit) the speciality
curve of pipeline is also variable,
From given water head H flux Q of pipeline can be obtained, On
the contrary from given flux Q the head loss which was produced
through pipeline can be obtained again,
102
图 5— 17 电 路 特 性 曲 线
管路特性曲线的作用,
由式( 5— 43)可以看到,1,2两点之间安装不同结构的管
路,其 K值自然不同,于是不同管路特性曲线自然是不一样的。
即使管路结构一定,如改变管路中的阀门开度(类似与电路
中改变电阻),管路的特性曲线也是变化的。
由已知的水位差 H可以得出管路的流量 Q,反过来由已知的
流量 Q 又可以得出通过管路所产生的水头损失 。
103
The resistance synthetical parameter concludes friction resistance
coefficient, so k is a variable when Reynolds is different,But in the
square zone of turbulent flow resistance, has nothing with Reynolds
number,At this time k is a constant so using formula ( 5— 42) to
calculate the turbulent flow of rough pipe is very convenient,
?
?
(1),series pipelines
as shown in Figure 5— 18( the left figure is a pipeline figure and the
right one is simplified figure),use synthetical parameter of pipeline
resistance to write out its basic rules,
Figure 5— 18 series pipes and parallel pipes
104
阻力综合参数中包含着沿程阻力系数,因而不同雷诺数时 k
是变量,但在紊流阻力平方区中,与雷诺数无关,此时 k 是常
量,因此利用式( 5— 42)计算粗糙管紊流问题非常方便。
?
?
1、串联管路
如图 5— 18所示(左边是管路图,右边是简化图),用管路阻
力综合参数写出它的基本规律。
图 5— 18 串 联 与 并 联 管 路
105
in the series pipeline, the discharge is equal everywhere,
Whole head loss equals to summation of head loss on each
sections,so
namely,sythetical parameter K of whole resistance in series circuit
equals to summation of sythetical parameter of resistance on each
section,
(2),parallel pipelines
( 5— 44)
321 QQQQ ???
( 5— 45)
321 HHHH ???
( 5— 46)
22321 )( KQQKKKH ????
Substitute into formula( 5— 45),
we can obtain
233222211,,QKHQKHQKH ???
( 5— 47)
321 KKKK ???
( 5— 48)
321 HHHH ???
( 5— 49) 321 QQQQ ???
as shown in Figure 5— 18,in the parallel pipelines,the head loss
of each pipeline H are all equal,but whole discharge is the summation
of each section discharge,namely
106
串联管路中,流量处处相等,总水头损失等于各段水头损
失之和,于是
即串联电路的总阻力综合参数 K 等于各段阻力综合参数之和
2,并联管路
将
( 5— 44)
321 QQQQ ???
( 5— 45)
321 HHHH ???
( 5— 46)
22321 )( KQQKKKH ????
将 代入式 ( 5— 45)中,可得 2
33222211,,QKHQKHQKH ???
( 5— 47)
321 KKKK ???
( 5— 48)
321 HHHH ???
( 5— 49) 321 QQQQ ???
如图 5— 18所示,并联管路中,每段管路的水头损失 H都相等,
而总流量为各段流量之和,即
107
Substitute above two formulas into( 5— 49),result is
namely that the reciprocal of the square root of sythetical
parameter K of whole resistance in parallel pipeline equals summation
of reciprocal of square root of sythetical parameter on each section,
attention,
( 5— 50)
3
3
2
2
1
1,,K
HQ
K
HQ
K
HQ ???
( 5— 51)
HKHKKKQ 1)111(
321
????
( 5— 52)
321
1111
KKKK ???
igQ?
Head loss of each section on parallel pipeline equal don’t mean that
their energy loss is equal too, Because the resistance and discharge on
each section is different,to multiply different gravity flux (namely
)by same head loss,the power loss of each section is different,
108
代入( 5— 49)式中得
即并联管路的总阻力综合参数 K平方根的倒数等于各段阻力
综合参数平方根倒数之和。
注意,
( 5— 50)
3
3
2
2
1
1,,K
HQ
K
HQ
K
HQ ???
( 5— 51)
HKHKKKQ 1)111(
321
????
( 5— 52)
321
1111
KKKK ???
igQ?
并联管路各段上的水头损失相等并不意味着它们的能量损失也
相等,因为各段阻力不同,流量也就不同,以同样的水头损失乘以
不同的重力流量(即 )所得到的各段功率损失是不同的。
109
(3),Long pipe calculation
in the calculation of long pipe,applying synthetical parameter of
resistance can simplify the calculation process,In the long pipe
, l is factual length of pipe,
52
8
gd
lK
?
??
The pipeline whose most head loss is friction loss but loss can be
ignored is called long pipe,
definition,
[example 5—3] use a water pump which lift is 100m to supply water
to two equipments G and H in the workshop where
through the pipeline in Figure 5— 19, Given that friction resistance
coefficient on all sections are, the diameter and length are
listed in table 5— 3,the relation of the resistance synthetical parameter
of control valve FG and valve opening S( %) is
,ignore other minor resistance, Require that adjust the opening of
control valve FG to assure the equal supply water quantity, At this time
try to calculate
mhmh HG 60,40 ??
024.0??
FGK
2 ) 4000 (
S K FG ?
110
三,长管计算
要求调整 FG阀的开度以保证两台设备的供水量完全相等,试
求此时
在长管计算中,运用阻力综合参数可以使计算过程更加简化
在长管中, l 为实际管长。
52
8
gd
lK
?
??
[例题 5—3]用扬程为 100m的水泵,通过图 5— 19所示的管路,
向车间中位于 处的 G,H两台设备供水。已知
所有管段上的沿程阻力系数均为,各管段的长度和直径
列于表 5— 3中,调节阀 FG的阻力综合参数 与阀的开度 S( %)
的关系是,忽略其它一切局部阻力。
mhmh HG 60,40 ??
024.0??
FGK
2)4 0 0 0(
SK FG ?
水头损失中绝大部分为沿程损失,其局部损失相对可以忽略
的管路称为长管。
定义,
111
( 1) pressure on point E
( 2) discharge Q of water pump and supply of each equipment
( 3) opening S( %) of each control valve
Ep
q
0.1 30
0.1 15
EH
0.15 60
EF
0.125 30
DE
0.1 30
ACD
diameter length
ABD
Given data table
section ml md
112
( 1) E点处的压强 ;
( 2)水泵的流量 Q与每台设备的供水量 ;
( 3)调节阀的开度 S( %)。
Ep
q
0.1 30
0.1 15
EH
0.15 60
EF
0.125 30
DE
0.1 30
ACD
直径 长度
ABD
已知数据表
管段 ml md
113
[solution] draw out the simplified figure of pipeline to supply water
.as shown in Figure 5— 20,this is a question about series and parallel of
long pipe,
Figure 5 — 19 pipeline to supply water
A
D E
F
G
H
B
C
G Hh
Gh
Figure 5— 20 simplified pipeline figure
A
B
C
D E
F G
H
114
[解 ]绘出供水管路的简化图如图 5— 20所示,这是长管的串并联
问题
图 5 — 19 供 水 管 路
A
D E
F
G
H
B
C
G Hh
Gh
图 5— 20 简 化 管 路 图
A
B
C
D E
F G
H
115
According to problem requirement,From formula ( 5— 43),we
obtain
Substitute data into it and get the synthetical parameter of
resistance on each section
At first we consider the parallel question of ABD and ACD,Using
formula ( 5— 52),we get
Solve it
Then we consider series question of AD and DE,using formula
( 5— 47),we get
552 0 8 2 6.0
8
d
l
gd
lK ?
?
? ??
5 9 4 7,)4 0 0 0(,2 9 7 4
1 5 6 6,1 9 4 9,5 9 4 7
2 ???
???
EHFGEF
DECB
K
S
KK
KKK
CBAD KKK
111 ??
788)19495947( 19495947)( 22 ??????
CB
CB
AD KK
KKK
2 3 5 41 5 6 6788 ????? DEADAE KKK
116
根据题意,由式( 5— 43)得
将数据代入,得出各管段的阻力综合参数为
首先考虑 ABD与 ACD的并联问题,用公式( 5— 52)得
解得
其次考虑 AD与 DE的串联问题,用公式( 5— 47)得
552 0 8 2 6.0
8
d
l
gd
lK ?
?
? ??
5 9 4 7,)4 0 0 0(,2 9 7 4
1 5 6 6,1 9 4 9,5 9 4 7
2 ???
???
EHFGEF
DECB
K
S
KK
KKK
CBAD KKK
111 ??
788)19495947( 19495947)( 22 ??????
CB
CB
AD KK
KKK
2 3 5 41 5 6 6788 ????? DEADAE KKK
117
Substitute data into,then
Connect two formula,we get
pressure on point E
Quantity of water supply of each equipment is
22a n d ( )
2A E A E E H E H
Qh h K Q h h K? ? ? ?
2
21 0 0 2 3 5 4 a n d 6 0 5 9 4 7
4EE
Qh Q h? ? ? ? ?
smQmh E 31 0 2.0,49.75 ??
PaPaghp EE 5104.77 4 0 0 049.759 8 1 0 ?????? ?
ssmQq 151051.02 3 ???
At last solve the parallel problem of EF and valve FG, according
to the formula ( 5— 40)
2)
2)((
QKKhh
FGEFGE ???
assume water head on point A,E and H are respectively
HEA hhh,,
Given, but is our require (because
),so according to formula ( 5— 42),,we can list the
pipeline speciality of section AE and EH are
mhmh HA 60,1 0 0 ?? EE ghp ??
2KQH ?
Eh
118
将数据代入,有
联立解出
E 点压强
每台设备的供水量为
最后再解决 EF与阀 FG的串联问题,根据式( 5— 40)
设 A,E,H各点的水头为 。
HEA hhh,,
22 )
2(
QKhhQKhh
EHHEAEEA ???? 和
45947602354100
2
2 QhQh
EE ????? 和
smQmh E 31 0 2.0,49.75 ??
PaPaghp EE 5104.77 4 0 0 049.759 8 1 0 ?????? ?
ssmQq 151051.02 3 ???
2)
2)((
QKKhh
FGEFGE ???
已知,而 正是我们要求(因
)。于是根据公式( 5— 42),,可以分别列出 AE段与 EH
段的管路特性为
mhmh HA 60,1 0 0 ?? EE ghp ??
2KQH ?
Eh
119
Substitute given data into it
Fherefore Solve out
22 )
2
102.0]()4 0 0 0(2 9 7 4[4049.75
s???
%7.383 8 7.0 ??S
namely,adjusting control valve to this opening can assure
equal to quantity of water supply, They are all, sq 151?
120
将已知数据代入
由此解出
22 )
2
102.0]()4 0 0 0(2 9 7 4[4049.75
s???
%7.383 8 7.0 ??S
即将调节阀开到这样的开度,可以保证两台设备的供水
量相等,都是 。 sq 151?
121
122
Mechanics of Fluid
2
3
Chapter 5 Pipe Flow
§ 5–1 Introduction
§ 5–2 Reynolds Experiment
§ 5–3 Laminar Flow in Round Pipe
§ 5–4 Turbulent Flow in Round Pipe
§ 5–5 Friction Resistance in Pipeline
§ 5–6 Minor Resistance in Pipeline
§ 5–7 Pipeline Calculation
4
第五章 管中流动
§ 5–1 引言
§ 5–2 雷诺实验
§ 5–3 圆管中的层流
§ 5–4 圆管中的紊流
§ 5–5 管路中的沿程阻力
§ 5–6 管路中的局部阻力
§ 5–7 管路计算
5
Chapter 5 Pipe Flow
§ 5-1 Introduction
The law of incompressible fluid motion in pipe,some basic
notions of it is adaptable to the circumferential motion and
channel flow, The questions that flowing in pipe concerned
include flow state,velocity distribution,beginning segment,the
calculation of flux and pressure and energy loss,
6
第五章 管中流动
§ 5-1 引言
管中不可压缩流体的运动规律,其中有许多基本概念对
于绕流或明渠流动也是适用的,管中流动所涉及的问题包括
流动状态、速度分布、起始段、流量和压强的计算、能量损
失等等。
7
§ 5-2 Reynolds Experiment
Reynolds number delegates inertia force and viscosity force, Reynolds
number is different,the ratio of the two kinds of forces are different too,
Therefore,two kinds of flow states,the interior structure and motion character
of them are completely different,are produced,
The experimental apparatus are shown in Figure 5— 1 which are composed
mainly by the constant water level container A and glass pipe B,The entry part of
glass pipe is connected by slippy bell mouth and the flux in pipe is adjusted by
valve C,In the small container D there is colored liquid whose density is close to
water,The colored liquid flows into glass pipe B via the tubule E to demonstrate the
water state,
( a ) ( b ) ( c )
A
D
E B C1 2
fh
Figure 5— 1 Reynolds
experimental apparatus
8
§ 5-2 雷诺实验
雷诺数代表惯性力和粘性力。雷诺数不同,这两种力的
比值也不同,由此产生内部结构和运动性质完全不同的两种
流动状态。
雷诺实验的装置如图 5— 1所示,主要由恒水位水箱 A和玻璃
管 B等组成。玻璃管入口部分用光滑喇叭口连接,管中的流量用
阀门 C调节,小容器 D内盛有与水的密度相近的有色液体,经细
管 E流入玻璃管 B,用以演示水流状态。
( a ) ( b ) ( c )
A
D
E B C1 2
fh
图 5— 1 雷 诺 实 验 装 置
9
Phenomenon,
Indication,
a,As velocity of fluid in pipe B is less the colored water in pipe
presents a thin and welldefined straight stream tube,as shown in
Figure 5— 1( a),declares that the flow is stable,This kind of flow
state is called laminar flow,
b,As valve C enlarges gradually the velocity of flow in pipe
reaches a certain critical value,the colored water begins to swing,as
shown in Figure 5— 1( b),
c,Continue to augment the velocity of flow,the colored water
mixes with the clean water around it quickly,as shown in Figure 5— 1
( c),
The motion trace of fluid particle is extremely irregular and the
fluids mixed each other exquisitely, This kind of motion state is called
turbulent flow,
10
现象,
表明,
a.当管 B内流速较小时,管内颜色水呈一细股界限分明的直
线流束,如图 5— 1( a),表明流动稳定,这种流动状态称为层
流。
b.当阀门 C逐渐开大使管中流速达到某一临界值时,颜色水
开始出现摆动,如图 5— 1( b)。
c.继续增大流速,颜色水迅速与周围清水相搀混,如图 5— 1
( c)所示。
流体质点的运动轨迹是极不规则的,流体互相剧烈搀混,这
种运动状态称为紊流或湍流。
11
2,The distinguish criterion of Laminar Flow and Turbulent Flow
The flow state has relations with not only velocity of flow but
also pipe diameter,fluid density and motion viscosity,According to
the dimension analytic method in chapter 4 we can build up the above
4 parameters into a dimensionless number which is called Reynolds
number,
d
?
v
dd ?
?
?? ??Re
Definition,
c??
c?
vd As the pipe diameter and fluid motion viscosity are constant
the average velocity of laminar flow becoming turbulent flow is
constant too, This velocity is called supercritical velocity which is
expressed by, The average velocity of turbulent flow becoming
laminar flow if constant too and this velocity is called lower critical
velocity which is expressed by 。 c c ? ? ? ?
12
二、层流和紊流的判别标准
流动状态不仅与流速 有关,还与管径,流体密度和
运动粘度有关。根据第四章的量纲分析方法可以将上述 4 个
参数组合成一个无量纲数 —— 雷诺数。
d?
v
dd ?
?
?? ??Re
定义,
c??
c?
vd 当管径 及流体运动粘度 一定,则从层流变紊流时的平均
速度也是一定的,此速度称为上临界速度,以 表示;从紊流
变层流时的平均速度也是一定的,此速度称为下临界速度,以
表示,。 c c ? ? ? ?
13
Definition,
experiment proves,
For the flow in round pipe,the distinguish conditions of the
flow state are
c?
cRe 2 3 0 0Re ?c
Though as pipe diameter and fluid medium are different is
different,keeps in a definite range, Namely,
c? cRe
The Reynolds number corresponding to the critical velocity of
flow is called critical Renaults number, Remembered as
,
2300ReRe
2300ReRe
??
??
c
c
It belongs to laminar flow
It belongs to turbulent flow
when
when
14
定义,
实验证明,
对圆管流动,流态的判别条件是:当
2300ReRe
2300ReRe
??
??
c
c
属于层流
属于紊流
c? cRe
2 3 0 0Re ?c
虽然当管径或流体介质不同时,不同,但 基本上
保持在一个确定的范围。即 。
c? cRe
对应于临界流速 的雷诺数称为临界雷诺数,记作 。
15
3,Head loss regulation of laminar flow and turbulent flow in pipe
?
21 pph
f
??
Change velocity to measure and the corresponding value
under the circumstances of the laminar flow and turbulent flow,the
experiment result is shown in Figure 5— 2,
? fh
?
045
?lg
fhlg
1lgk
2lgk
c??lg
c?lg
C
C?
Figure5— 2 The header loss regulation of laminar flow and turbulent flow
On the experimental pipe segment,Because as the fluid in the
horizontal straight pipeline keeps stable we can write out that the
on-way head loss equals the pressure head difference between two
sections according to the energy equation,namely
16
三、管中层流、紊流的水头损失规律
?
21 pph
f
??
改变速度逐次测量层流、紊流两种情况下的 与对应的
值,实验结果如图 5— 2所示。
? fh
?
045
?lg
fhlg
1lgk
2lgk
c??lg
c?lg
C
C?
图 5— 2层流、紊流的水头损失规律
在所实验的管段上,因为水平直管路中流体作稳定流时,
根据能量方程可以写出其沿程水头损失就等于两断面间的压力
水头差,即
17
The result shows,
?lglglg mkh f ??
In the formula klg — intercept of a straight line,
m — slope of a straight line, and ( is a angle of a straight line and a horizontal line),?tgm ? ?
Many experiments prove,
The on-way head loss is in direct ratio with average velocity of
flow,
On turbulent flow, ? 0 2,45 ?
? ? ? 1 1 0 1 lg lg lg 1,45 k h k h m f f ? ? ? ? ? or namely ( 5— 1)
m or namely m
f f k h m k h ? ? 2 2 lg lg lg 2 75, 1 ? ? ? ? — ( 5— 2)
The on-way head loss is in direct ratio with the 1.75th to 2th
power of the average velocity of flow,
No matter how on laminar flow state or on turbulent flow state
the experimental points all concentrate on the straight lines with
different slope,The equation is
On laminar flow,
18
结果表明,
?lglglg mkh f ?? 式中
klg — 直线的截距;
m — 直线的斜率,且 ( 为直线与水平线
的交角)。
?tgm ? ?
大量实验证明,
??? 1101 lglglg1,45 khkhm ff ????? 或即 ( 5— 1)
沿程水头损失与平均流速成正比。
紊流时,
mff khmkhm ??? 2202 lglglg275.1,45 ????? 或即—
( 5— 2)
沿程水头损失与平均流速的 1.75— 2次方成正比。
无论是层流状态还是紊流状态,实验点都分别集中在不同
斜率的直线上,方程式为
层流时,
19
§ 5-3 Laminar Flow in Round Pipe
As Reynolds number is less,it is to say that when the velocity and
diameter are less and viscosity is bigger the laminar flow appears,On
engineering laminar flows often exist, Such as on oil transport,chemical
conduit,underground seep and even light industry,construction,physiology
etc,
v
d?
Found the steady differential equation of laminar flow based on the balance
relation of micro units,as shown in Figure 5— 3,choose a cylinder,the radius
is r and the length is,the cylinder is in a balance state in the constant flow, l
x
y
z
o
1p
R
1p 2p
2p
l
?
?
r
?
?
Figure 5— 3 the laminar flow in round pipe
1,Methods to analyze the laminar flow motion
20
§ 5-3 管流中的层流
雷诺数 较小,也就是速度,直径较小而粘度较大时
出现层流。工程上层流情况很多。如石油输运,化工管道,
地下水渗流甚至轻工、建筑、生理等许多领域都有。
v
d?
从微元体的受力平衡关系出发建立层流的常微分方程。
如图 5— 3所示,取半径为 r,长度为 的一个圆柱体,在定常
流动中这个圆柱体处于平衡状态。 l
x
y
z
o
1p
R
1p 2p
2p
l
?
?
r
?
?
图 5— 3 圆 管 层 流
一、分析层流运动的方法
21
(1) the pressure on two end faces
(2)the friction force on cylinder face
? ? 221 rpp ??
rl?? 2
So,from, obtain 0??
yF
? ? 02221 ??? rlrpp ???
Simplify it and quote Newton’s internal friction law
dr
d y??? ??
This method can choose the above balance cylinder to found the
balance equation only on the circumstance of steady,unilateral flow,
axial symmetry,equal diameter uniform flow etc,
rlprlppdrdu y ?? 22 21 ??????
( 5— 3)
force analysis,
the result is
22
一、两端面上的压力 ;
二、圆柱面上的摩擦力 。
? ? 221 rpp ??
rl?? 2
于是,由,可得 0??
yF
? ? 02221 ??? rlrpp ???
化简并引用牛顿内摩擦定律,可得
dr
d y??? ??
该方法只有在定常、单向流动、轴对称、等径均匀流等情况
下才能取出上述平衡圆柱体,建立该平衡方程。
rlprlppdrdu y ?? 22 21 ??????
( 5— 3)
受力分析,
23
Crlpy ???? 24 ?? Integral the formula( 5— 3),then
the boundary condition of round pipe, as,,so Rr ? 0?
y?
RlpC ?4?? ? ?224 rRlpy ??? ??
( 5— 4)
The above formula shows that the velocity on cross section of pipe
has 2th power spinning paraboloidal relation with the radius,as
shown in Figure 5— 4,
y?
r
d
?
0?
max?
y?
r
dr
R
Figure 5— 4 velocity and shearing force
distribution of laminar flow in round pipe
2,Velocity analysis and flux
24
Crlpy ???? 24 ??
对( 5— 3)式积分,则
圆管边界条件 时,,于是,所以 Rr ? 0?
y? RlpC ?4??
? ?224 rRlpy ??? ?? ( 5— 4)
上式说明过流断面上的速度 与半径 成二次旋转抛物
面关系,如图 5— 4所示。 y?
r
d
?
0?
max?
y?
r
dr
R
图 5— 4 圆管层流的速度分布与切应力分布
二、速度分析与流量
25
Choose a micro round area whose width is on the position where
the radius is, then the flux is
r
dr
? ? lpdlpdr d rrRlpdAQ
A
R
y ?
?
?
??
?? 1 2 8824
44
2
0
???????? ? ? ( 5— 5)
This formula is called Hagen- Poisuille law,
shows,
When the flow is laminar flow the flux in the pipe is in direct ratio
with fourth power of the radius of pipe or diameter,
26
取半径 处宽度为 的微小环形面积,则可得流量为 r dr
? ? lpdlpdr d rrRlpdAQ
A
R
y ?
?
?
??
?? 1 2 8824
44
2
0
???????? ? ? ( 5— 5)
此式称为哈根 — 伯泊肃叶 定律。 ? ?a g e n Ρ o i s u i l l e? -
表明,
层流时管中流量与管半径或直径的四次方成比例。
27
3,Average velocity and the greatest velocity
2
2
4
88 Rl
p
Rl
pR
A
Q
???
?? ????? ( 5— 6)
The most velocity in pipe is on the axes where r = 0,Get from
the formula (5— 4)
0?r ?
?? 24
2
m a x ?
??
l
pR
On engineering applying this speciality of laminar flow to measure
the velocity of flow at axes and calculate the flux directly is very
convenient,
average velocity in pipe,
28
三、平均速度和最大速度
2
2
4
88 Rl
p
Rl
pR
A
Q
???
?? ????? ( 5— 6)
管中最大速度在轴心 处,由式( 5— 4)得 0?r
??? 24
2
m a x ?
??
l
pR
工程上应用层流这一特性直接从测定管轴心处流速而计算流
量相当方便。
管中平均速度
29
4,Distribution of shear force
ldr
d
dy
d yy
2
Pr?????? ????? ( 5— 7)
Obtain from the formula( 5— 7)
? ?r?? ? ( 5— 8)
when, the shear force on the pipe well is
l
pRrr
2 00
??? ?
According to the Newton’s internal friction law,we can get in
round pipe
explain,
On the cross section of laminar flow the shear force is in direct
ratio with the radius,The distribution rule is shown in Figure 5— 6,
which is called k font distribution,
l
pR
20
??? ( 5— 9)
then
R
r?
0?
?
30
四、切应力分布
ldr
d
dy
d yy
2
Pr?????? ????? ( 5— 7)
由式( 5— 7)可得
? ?r?? ? ( 5— 8)
当 时,可得管壁处的切应力为
l
pRrr
2 00
??? ?
根据牛顿内摩擦定律,在圆管中可得
说明,
在层流的过流断面上,切应力与半径成正比。分布规律如图
5— 6所示,称为切应力的 k 字形分布。
l
pR
20
??? ( 5— 9)
则
R
r?
0?
?
31
5,Linear loss
namely 44 1288 gd v lQgRv lQgph f ??? ???? ( 5— 10)
or
22
328
gd
vl
gR
vlh
f
?? ?? ( 5— 11)
The formula( 5— 11) shows that the energy loss of laminar flow is
in proportion to the first power of, ?
According to the darcy formula the friction head losses in round pipe
are all expressed by for laminar flow or turbulent flow,
Compare with the formula (5— 11),the friction resistance coefficient
of laminar flow is
gd
lh
f 2
2???
Re
6464 ??
d
v
??
( 5— 12)
So
gd
l
gd
lh
f 2Re
64
2
22 ??
? ??
( 5— 13)
The friction head loss expressed by this formula is the most
common and basic form,
According to the Bernoullis equation we know that the head loss of
costant diameter pipeline is the difference of pressure head on the two
ends of pipeline,
32
五、沿程损失
即
44
1288
gd
v lQ
gR
v lQ
g
ph
f ??? ??
?? ( 5— 10)
或
22
328
gd
vl
gR
vlh
f
?? ?? ( 5— 11)
式( 5— 11)说明层流的能量损失与 的一次方成比例。 ?
根据达西公式,不论层流、紊流,圆管中的沿程水头损失一
概用 表示。与式( 5— 11)相比,可得层流的沿程阻
力系数 gd
lh
f 2
2???
Re
6464 ??
d
v
??
( 5— 12)
于是有
gd
l
gd
lh
f 2Re
64
2
22 ??
? ??
( 5— 13)
此式所表示的沿程水头损失是最常用最基本的一种形式。
根据伯努利方程式可知等径管路的水头损失就是管路的两
端压强水头之差。
33
§ 5-4 Turbulent Flow in Round Pipe
When Reynolds number exceeds critical value the flow of fluid in pipe turns
into turbulent flow,
( a )
??b
a
( b ) ( c)
Figure 5— 5 The gently disturbance occurs turbulent flow
As shown in Figure 5— 5( a),two layers of linear flow which velocity is different,
If the interface is disturbed gently,as shown in Figure 5— 5( b),then the velocity
on point a decreases but pressure increases,at the same time the pressure on point b
decrease,The fluid particles on the interface under the pressure difference flows from
a to b,Intensify the disturbance on the interface,it expands to turbulent flow, As
shown in Figure 5— 5( c),
The velocity difference between two flow layers is the basic reason of
causing the instability, The instable laminar flow which is disturbed gently can
turn into the turbulent flow,
1,The occur of turbulent flow
34
§ 5-4 圆管中的紊流
当雷诺数超过临界值时,管内流体流动变成紊流。
( a )
??b
a
( b ) ( c)
图 5— 5 轻微扰动产生紊流
如图 5— 5( a)所示两层速度不同的直线流动。如分界面受轻
微扰动,见图 5— 5( b),则 a 点处于速度降低而压强增大,同时
b 点处压强则下降,界面处的流体质点由于压差将由 a 向 b 流动,
加剧界面的扰动,而向紊流发展。见图 5— 5( c)。
两层流体间有速度差别,是造成不稳定的根本原因,不稳
定的层流受到轻微扰动即可转化为紊流。
一、紊流的产生
35
2,Fluctuation of turbulent flow
tu
u
0 1 2 3
st
Figure 5— 6 the velocity fluctuation at a point in turbulent flow
Definition,
b,At the different moment the difference between the factual velocity of flow
and average value of time is expressed by the and is called fluctuating
velocity.Then u?u
)()( tuutu ???
(5— 15)
note,can be positive or negative, but its average
value of time
)(tu?
。0)( ?? tu
Other velocity components and pressure all can
be expressed by the average value of time in
turbulent flow, 。
After laminar flow is destroied many vortices different on magnitude and
direction are formed in turbulent flow, These vortices are the reason to result in
the velocity fluctuation,As shown in Figure 5— 6,
dtuTu T t?? 01? ( 5— 14)
is called average velocity of time,
a,According to the changing curve of velocity at a point in Figure 5— 60,
substitute the instantaneous value with the average value of time in segment T,
then
36
二、紊流的脉动
tu
u
0 1 2 3
st
图 5— 6 紊流中一点上的速度脉动
定义,
b,不同时刻实际流速 与时均值的差值用 表示,称为脉动流速。则
有 u?
u
)()( tuutu ???
(5— 15)
注, 值可正可负,但其时均值 )(tu? 。0)( ?? tu
紊流中的其他流速分量和压强也都可类
似地以时均值表示。
层流破坏以后,在紊流中形成许多大大小小方向不同的旋涡,这些涡旋
是造成速度脉动的原因。
脉动在足够长的时间内,人们发现它总是围绕着某一平均值而变化。如
图 5— 6所示。
dtuTu T t?? 01? ( 5— 14) 称为一点上的时均速度。
a,根据图 5— 6所示的一点上的速度变化曲线,用 T时间段内的时间平均值
代替瞬时值,则
37
3,Mixing length theory
?
?
x
y
R
l
y
a
b xu?
yu?
?d u dyudlu ?
dy
udl
dy
ud
Figure 5— 7 mixing length
)( yuu ?
In order to give attention to two conditions of round pipe and
planar flow,choose a coordinate system as shown in Figure 5— 7,
For the round pipe direction of y is the reverse direction of
coordinate r, the most biggest value y is possible the radius R of
round pipe, The average values of velocity on plane or in round pipe
are all can be expressed by,
Prandtl found the mixing length theory to explain the influence
of fluctuation on the temporal mean flow,
38
三、混合长度理论
?
?
x
y
R
l
y
a
b xu?
yu?
?d u dyudlu ?
dy
udl
dy
ud
图 5— 7 混 合 长 度
)( yuu ?
为了兼顾圆管与平面流动这两种情况,取平面坐标系如图
5— 7所示。对于圆管来说 y 轴方向就是 r 坐标的反方向,y 可能
取的最大值就是圆管半径 R。平面或圆管断面上的时均速度分布
都可以用 表示。
? ?ra n d tl? 普朗特 创立了混合长度理论,合理地解释了脉动对时均流动的影响。
39
Assume that at certain instant there is a fluid micro unit on layer a
where the average value of velocity is,For some occasional factors it
jumps up along y as fluctuating velocity through area of micro unit,
The mass flux is, Prandtl considered that before the fluid micro
unit reaching the new position the it had before is constant, When it
goes through the distance and gets to the layer b where the average
velocity of time is it mixes with fluid of layer b immediately,And
then it has the average velocity of time in layer b,
u
dAyu?
dAu y??
u
l
dy
udlu?
dy
udlu?
Because the momentum on x direction the fluid micro
unit had before is smaller than the momentum after
reaches the layer b, So when it mixes with fluid in layer b the
momentum on x direction of whole fluid in layer b is necessary
decreases, That is to say the average velocity of time on x direction
decreases, Thus appear a instantaneous fluctuation on layer b
(minus expresses that the direction of it is reverse with the x axis),
udAu y??
???????? ??? dyudludu y?
xu??
udyudlu ?
Assume in the temporal mean flow there are two layers of flows a
and b,The average value of velocity on layer a and that is
on layer b,
40
设想在某一瞬时,在时均速度为 的 a 层上有一个流体微团,
由于某种偶然因素,经过微元面积 以 的脉动速度沿 y 轴正向
跳动,其质量流量为 。普朗特认为在流体微团到达新的位
置之前,它原来具有的 一直不变,当它经过 距离到达时均速度
为 的 b 层以后,立即与 b 层流体混合在一起,从而具有 b 层
的时均流速 。
u
dA yu?
dAu y??
u l
dy
udlu?
dy
udlu?
但是这个流体微团原来所具有的 x 方向的动量
小于它到 b 层后所具有的 x 方向的动量 。因而
它与 b 层流体混合后,必然使整个 b 层流体在 x 方向上的动量
有所降低,也就是使其 x 方向上的时均速度有所降低,这样在
b层上就出现了一个瞬时的速度脉动 。(,-”号表示它的
方向与 x 轴相反)。
udAu y??
???????? ??? dyudludu y?
xu??
u
dy
udlu ?
设在时均流动中有 a, b 两层流体,a 层的时均速度为, b
层的时均速度为 。
41
xu??
Because of the new fluctuating velocity fluid micelle mixing in
layer b occurs a new fluctuating momentum change on
direction x,According to the momentum theorem the momentum change
causes the shear force between layer a and layer b, So
? ?0????? xy udu?
xy uduF ????? ? the tangential force between layer a and layer b is
yx uu ???? ??
( 5— 16)
This is the Reynolds shear force caused by fluctuation,
In the curse of averaging time Reynolds shear force doesn’t
disappear and its average value of time is
yx
T
yx
T uudtuu
TdtT ????????? ?? ???? 00
11 ( 5— 17)
when, micelle fluctuates from layer a to layer b, On layer
b ;
when, micelle fluctuates from layer a to layer a, On layer
a ;
0??yu
0??xu
0??yu
0??xu
0????? yx uu??
so are reverse always and,Minus of xu? yu? 0
xyuu???
42
xu??
由于新产生的脉动速度,使混合到 b 层的这个流体微团
在 x方向上产生了一个新的脉动性的动量变化 。按照
动量定理,这个动量变化必然引起 a, b 两层之间的切向作用力 F,
所以
? ?0????? xy udu?
xy uduF ????? ? a, b两层之间的切应力为
yx uu ???? ??
( 5— 16)
这就是由于脉动引起的雷诺切应力。
当,微团由 a 层向 b 层脉动,b 层的 ;
当,微团由 b 层向 a 层脉动,a 层的 。
0??yu 0??xu
0??yu 0??xu
所以永远反号,因而与,0????? yxyx uuuu
0????? yx uu??
在时均化的过程中,雷诺切应力并不消失,它的时均值为
yx
T
yx
T uudtuu
TdtT ????????? ?? ???? 00
11 ( 5— 17)
43
This shows that though Reynolds chear force caused by the fluctuation is a
fluctuating variable but it has average value of time and it has the influence on
flow,
Obtain from formula (5— 19) and( 5— 20)
dy
udlkku
y 21???
( 5— 21)
Substitute formula( 5— 21) into formula
( 5— 17),result is 22221 ????????? dyudlkk??
let, then average value of fluctuating chear force is 22
21 kkk ?
( 5— 22) ? ? 2
2
2
2 ??
?
?
???
??
???
?
???
??
dy
udL
dy
udkl ???
In this formula is called mixing length,klL ?
dy
u d l and the difference between layer a and layer b are in proportion
( 5— 20)
Prandtl consider,
are in proportion to each other and ( 5— 19)
xu? yu? 1yxu k u????
xu?
2x
duu k l
dy? ?
44
这说明,由于脉动原因所产生的雷诺切应力虽然是个脉
动量,但它存在时均值,对流动施加确定的影响。
普朗特认为,
dy
udlku
dy
udlbau
ukuuu
xx
xyyx
2
1
???
??????
也成比例。即两层的时均速度之差、与
互相成比例。即与
( 5— 19)
( 5— 20)
由式( 5— 19)、( 5— 20)可得
dy
udlkku
y 21???
( 5— 21)
将式( 5— 21)代入式( 5— 17)中,得
2
22
21 ???
?
???
??
dy
udlkk??
令,则脉动切应力的时均值。 22
21 kkk ?
( 5— 22) ? ? 2
2
2
2 ??
?
?
???
??
???
?
???
??
dy
udL
dy
udkl ???
式中 称为混合长度。 klL ?
45
4,the shearing stress distribution and velocity distribution of
turbulent flow in pipe
?
Center of
turbulent flow
Transition layer
Viscous sub-layer
Figure 5— 8 Turbulent flow structure
Definition,
When flow is turbulent completely there are two states on the near wall, if
Reynolds number is smaller turbulent flow sub-layer near wall covers the coarse
protuberance on pipe wall,The roughness does nothing to the turbulent flow, as
shown in Figure 5— 9( a),is called hydraulic smooth-pipe,As Reynolds increases
turbulent flow sub-layer turns thin,When the coarse protuberance is higher than the
turbulent flow sub-layer the coarse protuberance causes quick turbulent flow, The
coarse protuberance is more high the resistance is more big, as shown in Figure5— 9
( b),is called hydraulic rough pipes,
The turbulent flow structure in viscous sub-layer,waterpower
lubricity and waterpower coarseness round pipe,as shown in Figure
5— 8,near the pipe wall viscous force
predominates, On this place the mix is
confined to form laminar layer which is
called laminar sub-layer, Out of laminar
sub-layer is transition layer and out of it
is the core area of turbulent flow,
46
三、管中紊流的切应力分布和速度分布
?
紊流中心
过渡层
粘性底层
图 5— 8 紊流结构
定义,
完全紊流时,近壁处存在两种状态:雷诺数较小时,近壁处层
流底层完全掩盖住管壁粗糙突起,其时粗糙度对紊流不起作用,如
图 5— 9中( a)所示,称为水力光滑;随雷诺数增大,层流底层变
薄,当粗糙突起高出层流底层之外时,粗糙突起造成加剧紊动,粗
糙突起突出越高,阻力越大,如图 5— 9中( b)所示,称为水力粗
糙。
粘性底层、水力光滑与水力粗糙圆管中的紊流结构。如图
5— 8所示。
在靠近管壁处,粘性力占优势,
其处混合受限制,形成层流层,称为
层流底层。在层流底层,外面紧接的
是过渡层;过渡层外面紧接的是紊流
核心区。
47
the depth of laminar sub-layer hydraulic roughness is
determined approximately by the below formula
?
?? Re30
d? (5— 23)
In the formula
Hydraulic friction coefficient (different with
laminar flow )
—
Reynolds number —
Inner diameter of pipe —
Depth of laminar sub-layer —
?
?
Re
d
( a)
? l?
??l?
?
l?
( b) ??
l?
Figure 5 - 9 hydraulic smooth and waterpower coarseness
48
( a)
? l?
??l?
?
l?
( b) ??
l?
图 5 9 水力光滑和水力粗糙
层流底层厚度 近似地可用下式确定 ?
?? Re30
d? (5— 23)
式中
时不同)。水力摩擦系数(与层流—
雷诺数;—
管子内径;—
层流底层厚度;—
?
?
Re
d
49
(2),Shear stress distribution
? ?
22
21
0
R
l
p
l
Rpp ????? ( 5— 24)
In the formula R is diameter of pipe,is the pressure
difference of two sections which axial distance is, If take out
flow pipe which radius is between the two sections,then in
a same way we can obtain the shear stress on the surface of flow
pipe,it is
p?
l
? ?Rrr ?
2
r
l
p??? ( 5— 25)
Obtain form formula (5— 24) and( 5— 25)
R
r
0?? ?
( 5— 26)
This is the distribution regulation of shear stress on cross section
of pipe,
xu
To the average time turbulent flow,each point in fluid only has
a axial velocity in average time in pipe,Shear stress on wall of
pipe is
50
2,切应力分布
? ?
22
21
0
R
l
p
l
Rpp ????? ( 5— 24)
式中 R为管半径,为轴向距离 的两断面上的压强差,
如果在此二断面之间取出半径为 的流管,则同样可得
流管表面上的切应力为
p? l
? ?Rrr ?
2
r
l
p??? ( 5— 25)
由式( 5— 24)及式( 5— 25)两式可得
R
r
0?? ?
( 5— 26)
这就是过流断面上切应力的分布规律。
xu
对时均化的紊流来说,流体每一点在管中只有一个轴向时
均速度,管壁上的切应力为
51
(3),Velocity distribution
Because laminar sub-layer is very thin, can be expressed by
shear stress approximately,so after integral
?
0?
yu x ?? 0? ( 5— 27)
as shown in Figure 5— 10,the velocity distribution in laminar
sub-layer is linear regulation, This is the approximate result of
laminar velocity parabola regulation in laminar sub-layer,
R
x
y
?u
xu
y
? 0?
r
Figure5— 10 velocity distribution of turbulent
flow
yo
L
kyL ?
R
ykyL ?? 1
Figure 5— 11 mixing length
distribution
In the viscous sub-layer dy du dy du x x ? ? ? ? ? ? Namely
52
3,速度分布
dydudydu xx ???? ?? 即
因为层流底层很薄,可近似用壁面上的切应力 表示。于
是积分可得
? 0?
yu x ?? 0? ( 5— 27)
如图 5— 10所示,在层流底层中速度分布是直线规律,这是
层流速度抛物线规律在层流底层中的近似结果。
R
x
y
?u
xu
y
? 0?
r
图 5— 10紊流的速度分布
yo
L
kyL ?
R
ykyL ?? 1
图 5— 11混合长度分布
在粘性底层中
53
in the core of turbulent flow,,obtain from formula( 5— 26) 2
2 ??
?
?
???
??
dy
duL x??
?????? ??? RyRr 100 ???
( 5— 28)
According to the Karman experiment, The distribution of mixing length is
shown in Figure 5— 11,the function formula of L and y can be expressed
approximately
R
ykyL ?? 1 ( 5— 29)
As, That is near the wall Ry ??
kyL ?
( 5— 30)
In it k =0.4 is experience constant,
Substitute formula( 5— 28) and( 5— 29) into fluctuating shear stress
expression
2
2 ??
?
?
???
??
dy
duL x??
Simplify it and do integral
Cyku x ?? ln10??
( 5— 31)
Shows that velocity in the core of turbulent flow and y are
in logarithm relation,xu
54
在紊流核心中,, 由式( 5— 26)得 2
2 ??
?
?
???
??
dy
duL x??
?????? ??? RyRr 100 ???
( 5— 28)
根据卡门 实验,混合长度的分布规律如图 5— 11所示,L 与 y
的函数关系可近似表示为 ? ?K a rm a n
R
ykyL ?? 1 ( 5— 29)
当,即在壁面附近时 Ry ??
kyL ?
( 5— 30)
其中 k =0.4为经验常数。
将式( 5— 28)、( 5— 29)代入脉动切应力的表达式
2
2 ??
?
?
???
??
dy
duL x??
则化简、积分得
Cyku x ?? ln10??
( 5— 31)
说明紊流核心中速度 和 y 成对数关系。 xu
55
§ 5-5 Friction Resistance in Pipeline
Friction resistance is the reason that causes the on-way head loss
,The formula calculating the friction loss is darcy formula but the
regulation of the coefficient of friction resistance in it is
wait to discussed deeply, ?????? ?? df R e,?
Nikuradse daubed the sands which had been sifted to have the
same diameters on the inner wall of pipeline with different diameters
to make a manual rough pipeline to do experiment,Reynolds number
of experiment range, relative roughness
,the experimental curve is shown in Figure 5— 12,
610500Re —?
3011 0 1 41 —?? d
1,Nikuradse experiment
56
§ 5-5 管路中的沿程阻力
沿程阻力是造成沿程水头(或压强、能量)损失的原因。
计算沿程损失的公式是达西公式,但式中的沿程阻力系数
的规律有待深入探讨。 ?
?
??
?
? ??
df R e,?
尼古拉兹将不同管径的管道内壁均匀地粘涂上经过筛分
具有同粒径的砂粒,以制成人工粗糙管道进行实验研究,实验
范围雷诺数,相对粗糙度,实验曲
线如图 5— 12所示。
610500Re —? 3011 0 1 41 —?? d
一、尼古拉兹实验
57
0.1
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.1
6.2 8.2 2.3 4.3 6.3 8.3 0.40.3 2.4 4.4 6.4 8.4 0.5 2.5 4.5 6.5 8.5 0.6
a
b
c
e
d f 1014
1??
d
5041??d
252
1??
d
120
1??
d
60
1??
d
30
1??
d
1 2
3
5
4
)100lg( ?
Relg
Figure 5— 12 Nikuradse experimental curve
58
0.1
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.1
6.2 8.2 2.3 4.3 6.3 8.3 0.40.3 2.4 4.4 6.4 8.4 0.5 2.5 4.5 6.5 8.5 0.6
a
b
c
e
d f 1014
1??
d
5041??d
252
1??
d
120
1??
d
60
1??
d
30
1??
d
1 2
3
5
4
)100lg( ?
Relg
图 5— 12 尼古拉兹实验曲线
59
See from Figure 5— 12,the relation of,and can be
divided five different zone, the changing rules of it is,
? Re d?
1,laminar flow zone
as, all experimental points concentrates on a straight
line ab,which shows that it has nothing with relative roughness
,but the relation between and fits equation which is
consistent completely with the laminar theory formula of round pipe,
2300Re ?
d?
? Re Re64??
2,transition zone
This area is the transition area of laminar flow turning into
turbulent flow, At this time has nothing with, as shown in
zone 2 of the Figure,
? d?
3,turbulent smooth pipe zone
as, though flow keeps turbulent,but experimental
points with different roughness all concentrates on line cd, which
shows that roughness has nothing to do with but only has relation
with Reynolds number, the depth of laminar sub-layer is bigger
than roughness of pipe,
2300Re ?
?
Re
。???
60
由图 5— 12看出,和 及 的关系可分为五个不同的区,
其变化规律为,
? Re d?
1、层流区
当,所有的实验点聚集在一条直线 ab上,说明
与相对粗糙度 无关,而 与 的关系符合 方程,这
与圆管层流理论公式完全一致。
2300Re ?
d? ? Re Re64??
2、过渡区
该区是层流转变为紊流的过渡区,此时 与 无关,如图
中的区域 2 所示。
? d?
3、紊流光滑管区
当,流动虽已处于紊流状态,但不同粗糙度的实验
点都聚集在 cd 线上,说明粗糙度对 仍没有影响,只与雷诺数
有关。层流底层厚度大于管子粗糙度,
2300Re ?
? Re
。???
61
4,transition zone of turbulent flow
with the increase of Reynolds number experimental points
leaves from line cd according the roughness of different points
separately and goes into the transition zone of turbulent flow, As
shown in area 4 of Figure,
The limit range of five resistance zone and their calculating
formulas are listed in the below table,?
5,Rough pipes zone or complete turbulence zone
In the zone of Figure where the experimental curve parallels
with x axis,friction resistance is in direct ratio with the
square of velocity,is called complete rough pipe zone or the
resistance square zone,See from the Figure that in this zone has
noting with but only has relation with roughness, Re
?
d?
???
62
4、紊流过渡区
随着雷诺数的加大,实验点根据不同点的粗糙度分别从
cd线上离开,进入紊流过渡区。如图中 4 区所示。
五个阻力区的界限范围及其 计算公式汇总列于下表中。 ?
5、粗糙管区域或阻力平方区
图中实验曲线与横轴平行的区域,,沿程阻力与速度
平方成正比,称为粗糙管区或阻力平方区,从图中可以看出
在此区域 与 无关,而仅与粗糙度 有关。 Re?
d?
???
63
complete
rough pipe
zone the
resistance
square area
transition
zone of
turbulent
flow
turbulent
smooth pipe
zone
transition zone
laminar flow zone
experience
formula of
The theory of or
experience formula
of radius
range Resistance
zone
?
?
2300Re ? Re64?? Re75??
3 0 0 0Re2 3 0 0 ?? 31Re0 0 2 5.0??
782.22Re3 0 0 0 ?
?
??
?
?
???
d ? ? 8.0Relg21 ?? ??
237.0
65
25.0
5
Re
221.0
0 0 3 2.0
103Re10
Re
3 1 6 4.0
10Re
??
???
?
?
?
?
8
9
7
8
5 9 7Re2.22 ?????? ????????? ? dd
)
Re
51.2
7.3
l g (2
1
?
?
?
?
??
d
25.0
Re
6811.0 ?
?
??
?
? ???
d?
8
9
597Re ?????? ?? d 27.3lg2
1
??
?
??
? ?
?
??
?
?
?
?
d
? 25.0
11.0 ?????? ?? d?
64
粗糙管区
阻力平方区
紊 流
过渡区
紊 流
光滑管区
过渡区
层流区
的经验公式 的理论或
半径经验公式
范 围 阻力区 ? ?
2300Re ? Re64?? Re75??
3 0 0 0Re2 3 0 0 ?? 31Re0 0 2 5.0??
782.22Re3 0 0 0 ?
?
??
?
?
???
d ? ? 8.0Relg21 ?? ??
237.0
65
25.0
5
Re
221.0
0 0 3 2.0
103Re10
Re
3 1 6 4.0
10Re
??
???
?
?
?
?
8
9
7
8
5 9 7Re2.22 ?????? ????????? ? dd
)
Re
51.2
7.3
l g (2
1
?
?
?
?
??
d
25.0
Re
6811.0 ?
?
??
?
? ???
d?
8
9
597Re ?????? ?? d 27.3lg2
1
??
?
??
? ?
?
??
?
?
?
?
d
? 25.0
11.0 ?????? ?? d?
65
The half experience formula in the table is obtained by
coordinating experimental data on the basis of the mixing length
theory and velocity distribution,They have more accuracy but
structures are complicated, The accuracy of experience formula in
last column is little worse but it is easy to calculate,Sometimes
using experience formula to calculate the first approximation and
then substitute it into the right hand of half experience formula of
smooth pipe or transition zone of turbulent flow,and then
calculate the second approximation, If substitute it into right hand
again we can calculate the third approximation from left hand,
Iterate two or three times we can obtain the accurate value which
left hand is equal to right hand,
66
表中半经验公式是建立在混合长度理论及速度分布的基
础上并配合实验数据而得到的,它们的准确性较高,但是结
构较复杂,最末一栏的经验公式准确性稍差,但公式简单便
于计算,有时也可以先用经验公式求第一次近似值,然后将
其代入光滑管或紊流过渡区的半经验公式右端,从其左端求
出第二次近似值,如果将它再代入右端则从左端又可求出第
三次近似值,迭代两三次即可得左、右基本相等的准确值。
67
Moody makes the Diagram in the figure 5— 13 about friction loss coefficient
and Reynolds number,relative roughness for industry pipeline by means of
before formulas depending on much experimental data,According to this Figure we can
expediently calculate the value of loss coefficient and judge the resistance zone it is,
?
Re d?
?
310 410 510 610 710 810
008.0
01.0
015.0
02.0
025.0
03.0
04.0
06.0
05.0
07.0
08.0
09.0
Re
d?
05.0
04.0
03.0
015.0
02.0
01.0
008.0006.0
004.0002.0
001.0 0008.0
0006.0
0004.0 0002.0
0001.0 00005.0
00001.0
Figure 5— 13 Moody Figure
2,Moody Diagram
68
莫迪 依据大量实验资料,并借助于前述各公式对工业
用管道制作了关于损失系数 与雷诺数 和相对粗糙度 的图 5—
13。根据此图表可很方便地求得损失系数 的值,并可以判断所在
的阻力区。
? ?oody?
? Re d?
?
310 410 510 610 710 810
008.0
01.0
015.0
02.0
025.0
03.0
04.0
06.0
05.0
07.0
08.0
09.0
Re
d?
05.0
04.0
03.0
015.0
02.0
01.0
008.0006.0
004.0002.0
001.0 0008.0
0006.0
0004.0 0002.0
0001.0 00005.0
00001.0
图 5— 13 莫 迪 图
二、莫迪图
69
[example 5—1] Water flows in the welded steel pipe which
diameter is 50cm,If the energy loss for unit length of pipe is 0.006
,try to calculate the discharge and depth of viscous sub-layer in
pipe,
? ?0 0 0 0 9.05 0 00 4 6.0 ??? ??
[solution] From formula (5— 13),obtain that
ggdl
h f
25.0
1
2
1006.0 22 ???? ?????
Obtain from above formula
?? /243.0?
Assume,0 3 0.0?? then
smvsm 2610007.1,4.1 ?????
5
6 10710007.1
4.15.0Re ??
?
???
?v
d ?
C 0 20
70
C020 [例题 5—1] 的水在管径为 50cm的焊接钢管内流动,若
单位管长的能量损失为 0.006,试计算管中流量、粘性底层厚度
。 ? ?0 0 0 0 9.0
5 0 00 4 6.0 ??? ??
[解 ] 由式( 5— 13)得
ggdl
h f
25.0
1
2
1006.0 22 ???? ?????
由上式得到
?? /243.0?
设,0 3 0.0?? 则
smvsm 2610007.1,4.1 ?????
5
6 10710007.1
4.15.0Re ??
?
???
?v
d ?
71
Check from Moody Diagram
,then ? ? 0 1 3 6.0,0 0 0 0 9.0,107Re 5 ????? ?d
sm08.20 1 3 6.02 4 3.0 ???
6
6 1010007.1
08.25.0Re ?
?
??
?
Check it again 0 1 3 1.0??
610Re,12.2243.0 ??? sm
??
so is the velocity to be ask for,Then
sm12.2??
? ?
smQ
32 416.012.2
4
5.0 ????? ??
Again from formula( 5— 23)
? ? mmmv 136.010136
0131.012.2
10007.13030 66 ???
?
???? ??
???
72
由莫迪图查得,则 ? ?
0 1 3 6.0,0 0 0 0 9.0,107Re 5 ????? ?d
sm08.20 1 3 6.02 4 3.0 ???
6
6 1010007.1
08.25.0Re ?
?
??
?
再查莫迪图 0 1 3 1.0??
610Re,12.2243.0 ??? sm
??
可见 为所求的速度,则
sm12.2??
? ?
smQ
32 416.012.2
4
5.0 ????? ??
再由式( 5— 23)
? ? mmmv 136.010136
0131.012.2
10007.13030 66 ???
?
???? ??
???
73
§ 5-6 Minor Resistance in Pipeline
Minor resistance will occur and then cause local head loss on
where the flow sections changing quickly and fluid changing
direction, Though manifold pipe fitting on pipeline,the reason
to occur head loss includes,
( 1) Redistribution of velocity of flow in fluid ;
( 2) viscous force does work in swirling,
( 3) momentum change caused by the mix of liquid particles,
because the quick change on border enforces the turbulent degree of
fluid flow, so minor loss is normal in direct ratio with the square of
average velocity of flow, It can be expressed by
gh j 2
2?
??
( 5— 32)
In formula
Coefficient minor loss,—
Minor loss —
?
j h
74
§ 5-6 管路中的局部阻力
在液流断面急剧变化以及液流方向转变的地方,发生局
部阻力,引起局部水头损失,管路上安装的各种管件虽然多
种多样,但产生局部水头损失的原因不外是由于,
( 1) 液流中流速的重新分布;
( 2)在旋涡中粘性力作功;
( 3)液体质点的混掺引起的动量变化。
由于边界的急剧变化,加强了流体流动的紊动程度,故局部
损失一般和平均流速的平方成正比。可表达为
gh j 2
2?
??
( 5— 32)
式中
局部损失系数。—
局部损失;—
?
jh
75 0 0
l
2z1z
1
1
2
2
G
1?
2?
1?
2??
?
?
Figure 5— 14 section of pipeline sudden expansions
by means of theory analysis to confirm the minor head loss,
the most representative instance is that the pipeline sudden
expansions,
??
?
?
??
?
?
????
?
?
??
?
? ?
????
?
?
??
?
? ?
??
??
?
?
??
?
?
?
?
????
?
?
??
?
?
?
?
??
ggg
z
g
z
gg
z
gg
zh j
22
22
2
22
2
112
2
1
1
2
222
2
2
111
1
????
??
??
?
??
?
—— ( 5— 33)
as shown in Figure 5— 14,because fluid occurs swirling via
the place where enlarging suddenly,after length l main fluid
enlarges to all section,Section 1— 1and section 2— 2 can be
considered gradual changing flow section, Because the distance
between section 1— 1and 2— 2 is more shorter,its friction loss can
be ignored, Then apply bernoullis equation
76
0 0
l
2z1z
1
1
2
2
G
1?
2?
1?
2??
?
?
图 5— 14管道截面突然扩大
借助于理论分析来确定局部水头损失时,最有代表性的
是管路突然扩大的情况。
??
?
?
??
?
?
????
?
?
??
?
? ?
????
?
?
??
?
? ?
??
??
?
?
??
?
?
?
?
????
?
?
??
?
?
?
?
??
ggg
z
g
z
gg
z
gg
zh j
22
22
2
22
2
112
2
1
1
2
222
2
2
111
1
????
??
??
?
??
?
—— ( 5— 33)
如图 5— 14所示,由于流体经突然扩大处发生旋涡,经过 l
长度后主流扩大到整个断面,断面 1— 1及断面 2— 2可认为是渐
变流断面,又因 1— 1与 2— 2断面间的距离较短,其沿程损失可
忽略不计,则应用伯努利方程得
77
again apply momentum equation to fluid in the control surface
AB22,First analyze component of outer forces along flow direction of
fluid in the control surface AB22
( 5) The friction resistance of fluid between section AB and can be
ignored by comparing with the above forces,
? ? ? ?212212 /co s zzgAlzzlgAG ???? ???
( 4) Component of fluid gravity in control surface via flow direction is
( 1) whole pressure acting on section 1— 1 is, is pressure on
axes, 11
Ap
? ?12 AA ?
? ?121 AApF ??
( 3) Acting force of ringy area pipe wall of AB,that is reverse
force of the swirling acts on the ringy area, Experiment shows that
pressure on ringy area distributes according to the static pressure rules,
22Ap ( 2) whole pressure acting on section 1— 1 is, is pressure on
axes,
1p
2p
78
再对控制面 AB22内流体运用动量方程。首先分析控制面
AB22内流体所受外力沿流动方向的分力有,
( 1)作用在断面 1— 1上的总压力,其中 为轴线上的压强;
11Ap 1p
( 5)断面 AB至 2— 2间流体所受管壁的摩擦阻力,因与上述诸力
相比可忽略不计。
? ? ? ?212212 /co s zzgAlzzlgAG ???? ???
( 4)控制面内流体重力沿流动方向的分力为
? ?12 AA ?
? ?121 AApF ??
( 3) AB环形面积 管壁对流体的作用力,即旋涡作用于环
形面积上的反力,实验表明,环形面积上压强的分布按静压强规律分
布,即总压力 ;
22Ap 2 p
( 2)作用在断面 2— 2上的总压力,其中 为轴线上的压强;
79
Momentum equation in control surface AB22 is
? ? ? ? ? ?212121221112 zzgAAApApApQ ??????? ????
Substitute into it and is divided by,the end is
22?AQ ? 2gA?
? ? ??
?
?
???
? ??
???
?
???
? ???
g
pz
g
pz
g ??
??? 2211122
( 5— 34)
Substitute formula (5— 34) into formula 5— 33),the result is
? ?
gh j 2
2
21 ?? ??
This formula is minor loss formula ( Borda formula) that round
pipe enlarging expansion,according to continuity equation
The above formula can be write like
2211 VAVA ?? ?
80
控制面 AB22动量方程有
? ? ? ? ? ?212121221112 zzgAAApApApQ ??????? ????
以 代入,并除以 得 22?AQ ? 2gA?
? ? ??
?
?
???
? ??
???
?
???
? ???
g
pz
g
pz
g ??
??? 2211122
( 5— 34)
将式( 5— 34)代入式( 5— 33)得
? ?
gh j 2
2
21 ?? ??
此式即为圆管突然扩大的局部损失公式(包达公式)。根据
连续性方程 上式又可写成
2211 VAVA ?? ?
81
gg
h j
22
1
2
2
2
2
2
2
1
2 ??? ?
???
?
???
? ?
?
??
gg
h j
22
1
2
1
1
2
1
2
1
2 ??? ?
???
?
???
?
?
???
or
?
( 5— 35)
Know from the formula
2
1
2
2
2
2
1
1 1,1 ??
?
?
???
?
?
???
???
?
???
?
?
??? ??
shows,most of the minor resistance loss coefficient can
be confirmed by experiment,
82
gg
h j
22
1
2
2
2
2
2
2
1
2 ??? ?
???
?
???
? ?
?
??
gg
h j
22
1
2
1
1
2
1
2
1
2 ??? ?
???
?
???
?
?
???
或
?
( 5— 35)
从上式可知
2
1
2
2
2
2
1
1 1,1 ??
?
?
???
?
?
???
???
?
???
?
?
??? ??
说明:绝大多数局部阻力损失系数由实验确定。
83
§ 5-7 Pipeline Calculation
pipeline calculation is a important aspect of fluid mechanics
engineering application,
Divided by structure
characters of pipe
Costamtr diameter pipes
series Pipelines
parallel Pipelines
Branched pipes ?
Divided by calculation
characters of pipe ?
Long pipes
Short pipes
long pipe and short pipe are not completely geometry concepts of
long and short, but a concept on resistance calculation, In pipe
calculation many physical variables are concerned and many
problems need to be solved, The basic kind of problem are
known to seek for or known to seek for or
known to seek for,
Qdl,、
fh fhdl,,Q Qhl f、、
d
84
§ 5-7 管路计算
管路计算是流体力学工程应用的一个重要方面。
管路按结构特点分
等径管路
串联管路
并联管路
分支管路 ?
按计算特点分
?
长 管
短 管
长管和短管并不完全是个几何长短概念,而是一个阻力计算
上的概念。管路计算中所涉及的物理量很多,需要解决的问题也
很多,不过问题的基本类型或是已知 求,或是已知
,求,或是已知,求 。
Qdl,,fh
fhdl,,Q Qhl f、、
d
85
1,Combining principle of head loss
Though sometimes it is some bigger than factual value or sometimes
it is some smaller than factual value, but in normal instance this
combining principle can be trusted to use,If amount minor resistance loss to a friction resistance loss on
properly length, then let
( 5— 36)
g
u
d
lh
f 2)(
2
?? ???
( 5— 37)
?
??? ??
e
e l
d
l 或
In formula is called whole resistance length of pipeline,
ellL ???
In formula is called equivalent pipe length of minor resistance,
so whole head loss on a pipeline can be simplified e
l
( 5— 38)
g
u
d
L
g
u
d
llh e
f 22
22
?? ???
Whole head loss of all pipe should be summation of all friction
head loss and all local head loss, namely
86
1,水头损失的叠加原则
虽然它有时比实际值略大,也有时比实际值略小,但一般情
况下这种叠加原则还是可信可行的。
如果将局部阻力损失折合成一个适当长度上的沿程阻力损失,
则令
( 5— 36)
g
u
d
lh
f 2)(
2
?? ???
( 5— 37)
?
??? ??
e
e l
d
l 或
式中 称为管路的总阻力长度。
ellL ???
式中 称为局部阻力的当量管长,于是一条管路上的总水头
损失可以简化为
el
( 5— 38)
g
u
d
L
g
u
d
llh e
f 22
22
?? ???
全管段的总水头损失应为所有沿程水头损失和所有局部
水头损失的总和,即
87
On the contrary,if amount friction loss to a properly minor loss
,then let
in a general way, if friction loss is main on pipeline we should use
formula( 5— 38),else if minor loss is main we should use formula
( 5— 40)
( 5— 39)
ed
l ?? ?
is called equivalent minor resistance coefficient of friction
resistance, so e?
( 5— 40)
g
u
g
uh
ef 22)(
22
??? ????
In the formula is called whole resistance coefficient of
pipeline, ??? ??? e
88
反之,如果将沿程损失折合成一个适当的局部损失,则令
一般来说,管路上如果主要是沿程损失,则用( 5— 38)式;
如果主要是局部损失,则用( 5— 40)式。
( 5— 39)
ed
l ?? ?
称为沿程阻力的当量局部阻力系数,于是
e?
( 5— 40)
g
u
g
uh
ef 22)(
22
??? ????
式中 称为管路的总阻力系数。 ??? ???
e
89
(1),Short pipe calculation
definition,
[example 5—2] pipeline of water pump is shown in Figure 5— 15,
diameter of cast iron pipe d=150mm,length, A filtrating
water net, a open stop valve, three elbow which ratio of pipe
radius to curvature radius is, altitude h =100 m discharge
, temperature of water,try to calculate the
output power of water pump,
mml 180?
? ?6??
5.0?Rr
hmQ 32 2 5? C020
In head loss friction loss and minor loss each occupies a certain
proportion, This sort of pipeline is called short pipe,
short pipe is a sort of most familiar pipeline on engineering
especially oil pipes on mechanical equipment and water pipes in
workshop etc,Their minor resistance can’t be ignored usually so we
should consider the friction resistance loss and minor resistance loss at
one time in calculation,
90
一、短管计算
定义,
[例题 5—2]水泵管路如图 5— 15所示,铸铁管直径 d=150mm,
长度,管路上装有滤水网 一个,全开截止阀一个,
管半径与曲率半径之比为 的弯头三个,高程 h =100 m,
流量,水温 。
试求水泵输出功率
mml 180? ? ?6??
5.0?Rr
hmQ 32 2 5? C020
水头损失中沿程损失、局部损失各占一定比例,这种管路称
为短管 。
短管是机械工程中最常见的一种管路,尤其是机械设备上的
油管、车间中的水管等等,它们的局部阻力往往不能忽略,因此
在计算中需要同时考虑沿程阻力损失和局部阻力损失。
91
[solution ] First judge flow state to confirm the friction resistance
coefficient, As temperature is the kinematic viscosity is
, so
? C020
smv 26100 0 7.1 ???
5
6
1027.5007.115.03600 1022544Re ???? ????? ??? dvQvd
Cast iron pipe
Re3 3 2 0 06 0 02.222.22
6 0 0
,0 0 1 6 6.0,25.0
7
8
?????
?
?
?
?
?
?
?
?
?
?
??
d
d
d
mm
Turbulent flow of non smooth pipe
Re1097.7597 58
9
????
?
??
?
?
??
d
Knowing that flow state is transition zone of turbulent flow,
d
h
Figure 5— 15 pipeline of water
pump
92
[解 ] 首先需要判断流动状态以便确定沿程阻力系数
时,水的运动粘度,于是
?
C020 smv 26100 0 7.1 ???
5
6
1027.5007.115.03600 1022544Re ???? ????? ??? dvQvd
铸铁管
Re3 3 2 0 06 0 02.222.22
6 0 0
,0 0 1 6 6.0,25.0
7
8
?????
?
?
?
?
?
?
?
?
?
?
??
d
d
d
mm
非光滑管紊流
Re1097.7597 58
9
????
?
??
?
?
??
d
可知流动状态为紊流过渡区。
d
h
图 5— 15水泵管路
93
First use experience formula to calculate the approximation of ?
0 2 2 7.0
Re
6811.0 25.0 ??
?
??
?
? ???
d
?
212.6Re 51.27.3lg21 ??
?
??
?
? ????
?? d
solve out, it is near to first approximation,so use this
value as standard,
0 2 5 5 9.0??
Substitute this value into right hand of half experience formula and
then calculate the second approximation of from its left hand, So ?
From minor resistance coefficient table and given data in problem we
know that entrance, elbow,stop valve
,filtrating water net, exit, so we can obtain the
equivalent pipe length of minor resistance
5.0?? 29443.0?? 9.3??
6?? 1??
mdl e 98.7115.00 2 5 5 9.0 28.12 ?????? ? ?
94
先用经验公式求 的近似值 ?
0 2 2 7.0
Re
6811.0 25.0 ??
?
??
?
? ???
d
?
212.6Re 51.27.3lg21 ??
?
??
?
? ????
?? d
解出,与第一次近似值相差不多,即以此值为准。 0 2 5 5 9.0??
将此值代入半经验公式的右端,从其左端求 的第二次近似
值,于是
?
从局部阻力系数表及题给出数据可知:入口,弯头
截止阀,滤水网,出口,于是
得局部阻力的当量管长
5.0??
29443.0?? 9.3?? 6?? 1??
mdl e 98.7115.00 2 5 5 9.0 28.12 ?????? ? ?
95
whole resistance length of pipeline
Water pump lift
At last output power of water pump is
mllL e 25298.71180 ??????
Substitute into formula,we can obtain
2
4
d
Q
?? ? gdLh f 2
2?
??
mQdg Lh f 4.273 6 0 015.081.9 2 2 52 5 20 2 5 5 9.088 252
2
2
52 ????
?????
??
?
mhhH f 4.1 2 74.271 0 0 ?????
kWWg Q HP 787 8 0 0 04.1 2 73 6 0 02 2 59 8 1 0 ?????? ?
96
管路总阻力长度
水泵扬程
最后得水泵输出功率
mllL e 25298.71180 ??????
将 代入 公式中可得
2
4
d
Q
?? ? gd
Lh
f 2
2?
??
mQdg Lh f 4.273 6 0 015.081.9 2 2 52 5 20 2 5 5 9.088 252
2
2
52 ????
?????
??
?
mhhH f 4.1 2 74.271 0 0 ?????
kWWg Q HP 787 8 0 0 04.1 2 73 6 0 02 2 59 8 1 0 ?????? ?
97
(2),Pipeline speciality
This pipeline speciality curve has especially function on using water
power machinery,Each long pipe and short pipe has its own speciality
curve, as shown in Figure 5— 16,list bernoullis equation on begin
section 1 and end section 2 of pipeline,
The function relation between a head H and discharge Q on a
pipeline is called pipeline speciality, The curve showing that is called
pipeline speciality curve,
definition,
Figure 5— 16 pipeline speciality curve
CH
CH
H
Q
98
二、管路特性
这种管路特性曲线在水力机械的使用中有着特别重要的作用,
任何长管和短管都有各自的特性曲线。
如图 5— 16所示,在管路的始点 1 和终点 2之间列伯努利方
程式可得
一条管路上水头 H与流量 Q之间的函数关系称为管路特性;
用曲线表示则称为管路特性曲线。
定义,
图 5— 16 管路特性曲线
CH
CH
H
Q
99
In formula
is called resistance synthetical parameter of pipeline or synthetical parameter of pipeline, The resistance synthetical parameter K contains
many factors such as length,diameter,friction resistance and minor
resistance etc,
gd
LhH
f 2
2?
???
(5— 41)
substitute into it, then
A
Q??
)(88 5252 ellgdgd LK ???? ? ?? ?
? ? 252
2
2
2 8
)
4
(2
Qll
gddg
Q
d
LH
e???? ?
?
?
?
(5— 41)
water head in current H corresponds to the potential difference V in
electric current,Flux Q in current corresponds to current intension I in
electric current, so resistance R in circuit just likes resistance
synthetical parameter K in current,Lines showing relation V = RI is
called speciality curve of circuit ( Figure 5— 17),Curve showing
relation is called speciality curve of pipeline ( Figure 5— 16) 2kQH ?
Physical meaning,
100
式中
称为管路的阻力综合参数,或称管路的综合参数,阻力综合参
数 K 中包含着管路的长度、直径、沿程阻力和局部阻力等多种因素
在内。
gd
LhH
f 2
2?
???
(5— 41)
如果用 代入,则
A
Q??
)(88 5252 ellgdgd LK ???? ? ?? ?
? ? 252
2
2
2 8
)
4
(2
Qll
gddg
Q
d
LH
e???? ?
?
?
?
(5— 41)
水流中的水位差 H相当于电流中的电位差 V,水流中的流量 Q相
当于电流中的电流强度 I,因而电路中的电阻 R 就类似于水流中的
阻力综合参数 K。反映 V = RI关系的直线称为电路特性曲线(图 5—
17),反映 关系的曲线称为管路特性曲线(图 5— 16)。 2kQH ?
物理意义,
101
Figure 5— 17 speciality curve of circuit
Function of speciality curve of pipeline,
seeing from formula ( 5— 43),pipeline with different structure
was installed between point 1 an 2 and its value of K is different
naturally, so the speciality curve of different pipeline is different too
naturally,
Even if pipeline structure is certain if changing the valve opening of
pipeline ( just like changing resistance in circuit) the speciality
curve of pipeline is also variable,
From given water head H flux Q of pipeline can be obtained, On
the contrary from given flux Q the head loss which was produced
through pipeline can be obtained again,
102
图 5— 17 电 路 特 性 曲 线
管路特性曲线的作用,
由式( 5— 43)可以看到,1,2两点之间安装不同结构的管
路,其 K值自然不同,于是不同管路特性曲线自然是不一样的。
即使管路结构一定,如改变管路中的阀门开度(类似与电路
中改变电阻),管路的特性曲线也是变化的。
由已知的水位差 H可以得出管路的流量 Q,反过来由已知的
流量 Q 又可以得出通过管路所产生的水头损失 。
103
The resistance synthetical parameter concludes friction resistance
coefficient, so k is a variable when Reynolds is different,But in the
square zone of turbulent flow resistance, has nothing with Reynolds
number,At this time k is a constant so using formula ( 5— 42) to
calculate the turbulent flow of rough pipe is very convenient,
?
?
(1),series pipelines
as shown in Figure 5— 18( the left figure is a pipeline figure and the
right one is simplified figure),use synthetical parameter of pipeline
resistance to write out its basic rules,
Figure 5— 18 series pipes and parallel pipes
104
阻力综合参数中包含着沿程阻力系数,因而不同雷诺数时 k
是变量,但在紊流阻力平方区中,与雷诺数无关,此时 k 是常
量,因此利用式( 5— 42)计算粗糙管紊流问题非常方便。
?
?
1、串联管路
如图 5— 18所示(左边是管路图,右边是简化图),用管路阻
力综合参数写出它的基本规律。
图 5— 18 串 联 与 并 联 管 路
105
in the series pipeline, the discharge is equal everywhere,
Whole head loss equals to summation of head loss on each
sections,so
namely,sythetical parameter K of whole resistance in series circuit
equals to summation of sythetical parameter of resistance on each
section,
(2),parallel pipelines
( 5— 44)
321 QQQQ ???
( 5— 45)
321 HHHH ???
( 5— 46)
22321 )( KQQKKKH ????
Substitute into formula( 5— 45),
we can obtain
233222211,,QKHQKHQKH ???
( 5— 47)
321 KKKK ???
( 5— 48)
321 HHHH ???
( 5— 49) 321 QQQQ ???
as shown in Figure 5— 18,in the parallel pipelines,the head loss
of each pipeline H are all equal,but whole discharge is the summation
of each section discharge,namely
106
串联管路中,流量处处相等,总水头损失等于各段水头损
失之和,于是
即串联电路的总阻力综合参数 K 等于各段阻力综合参数之和
2,并联管路
将
( 5— 44)
321 QQQQ ???
( 5— 45)
321 HHHH ???
( 5— 46)
22321 )( KQQKKKH ????
将 代入式 ( 5— 45)中,可得 2
33222211,,QKHQKHQKH ???
( 5— 47)
321 KKKK ???
( 5— 48)
321 HHHH ???
( 5— 49) 321 QQQQ ???
如图 5— 18所示,并联管路中,每段管路的水头损失 H都相等,
而总流量为各段流量之和,即
107
Substitute above two formulas into( 5— 49),result is
namely that the reciprocal of the square root of sythetical
parameter K of whole resistance in parallel pipeline equals summation
of reciprocal of square root of sythetical parameter on each section,
attention,
( 5— 50)
3
3
2
2
1
1,,K
HQ
K
HQ
K
HQ ???
( 5— 51)
HKHKKKQ 1)111(
321
????
( 5— 52)
321
1111
KKKK ???
igQ?
Head loss of each section on parallel pipeline equal don’t mean that
their energy loss is equal too, Because the resistance and discharge on
each section is different,to multiply different gravity flux (namely
)by same head loss,the power loss of each section is different,
108
代入( 5— 49)式中得
即并联管路的总阻力综合参数 K平方根的倒数等于各段阻力
综合参数平方根倒数之和。
注意,
( 5— 50)
3
3
2
2
1
1,,K
HQ
K
HQ
K
HQ ???
( 5— 51)
HKHKKKQ 1)111(
321
????
( 5— 52)
321
1111
KKKK ???
igQ?
并联管路各段上的水头损失相等并不意味着它们的能量损失也
相等,因为各段阻力不同,流量也就不同,以同样的水头损失乘以
不同的重力流量(即 )所得到的各段功率损失是不同的。
109
(3),Long pipe calculation
in the calculation of long pipe,applying synthetical parameter of
resistance can simplify the calculation process,In the long pipe
, l is factual length of pipe,
52
8
gd
lK
?
??
The pipeline whose most head loss is friction loss but loss can be
ignored is called long pipe,
definition,
[example 5—3] use a water pump which lift is 100m to supply water
to two equipments G and H in the workshop where
through the pipeline in Figure 5— 19, Given that friction resistance
coefficient on all sections are, the diameter and length are
listed in table 5— 3,the relation of the resistance synthetical parameter
of control valve FG and valve opening S( %) is
,ignore other minor resistance, Require that adjust the opening of
control valve FG to assure the equal supply water quantity, At this time
try to calculate
mhmh HG 60,40 ??
024.0??
FGK
2 ) 4000 (
S K FG ?
110
三,长管计算
要求调整 FG阀的开度以保证两台设备的供水量完全相等,试
求此时
在长管计算中,运用阻力综合参数可以使计算过程更加简化
在长管中, l 为实际管长。
52
8
gd
lK
?
??
[例题 5—3]用扬程为 100m的水泵,通过图 5— 19所示的管路,
向车间中位于 处的 G,H两台设备供水。已知
所有管段上的沿程阻力系数均为,各管段的长度和直径
列于表 5— 3中,调节阀 FG的阻力综合参数 与阀的开度 S( %)
的关系是,忽略其它一切局部阻力。
mhmh HG 60,40 ??
024.0??
FGK
2)4 0 0 0(
SK FG ?
水头损失中绝大部分为沿程损失,其局部损失相对可以忽略
的管路称为长管。
定义,
111
( 1) pressure on point E
( 2) discharge Q of water pump and supply of each equipment
( 3) opening S( %) of each control valve
Ep
q
0.1 30
0.1 15
EH
0.15 60
EF
0.125 30
DE
0.1 30
ACD
diameter length
ABD
Given data table
section ml md
112
( 1) E点处的压强 ;
( 2)水泵的流量 Q与每台设备的供水量 ;
( 3)调节阀的开度 S( %)。
Ep
q
0.1 30
0.1 15
EH
0.15 60
EF
0.125 30
DE
0.1 30
ACD
直径 长度
ABD
已知数据表
管段 ml md
113
[solution] draw out the simplified figure of pipeline to supply water
.as shown in Figure 5— 20,this is a question about series and parallel of
long pipe,
Figure 5 — 19 pipeline to supply water
A
D E
F
G
H
B
C
G Hh
Gh
Figure 5— 20 simplified pipeline figure
A
B
C
D E
F G
H
114
[解 ]绘出供水管路的简化图如图 5— 20所示,这是长管的串并联
问题
图 5 — 19 供 水 管 路
A
D E
F
G
H
B
C
G Hh
Gh
图 5— 20 简 化 管 路 图
A
B
C
D E
F G
H
115
According to problem requirement,From formula ( 5— 43),we
obtain
Substitute data into it and get the synthetical parameter of
resistance on each section
At first we consider the parallel question of ABD and ACD,Using
formula ( 5— 52),we get
Solve it
Then we consider series question of AD and DE,using formula
( 5— 47),we get
552 0 8 2 6.0
8
d
l
gd
lK ?
?
? ??
5 9 4 7,)4 0 0 0(,2 9 7 4
1 5 6 6,1 9 4 9,5 9 4 7
2 ???
???
EHFGEF
DECB
K
S
KK
KKK
CBAD KKK
111 ??
788)19495947( 19495947)( 22 ??????
CB
CB
AD KK
KKK
2 3 5 41 5 6 6788 ????? DEADAE KKK
116
根据题意,由式( 5— 43)得
将数据代入,得出各管段的阻力综合参数为
首先考虑 ABD与 ACD的并联问题,用公式( 5— 52)得
解得
其次考虑 AD与 DE的串联问题,用公式( 5— 47)得
552 0 8 2 6.0
8
d
l
gd
lK ?
?
? ??
5 9 4 7,)4 0 0 0(,2 9 7 4
1 5 6 6,1 9 4 9,5 9 4 7
2 ???
???
EHFGEF
DECB
K
S
KK
KKK
CBAD KKK
111 ??
788)19495947( 19495947)( 22 ??????
CB
CB
AD KK
KKK
2 3 5 41 5 6 6788 ????? DEADAE KKK
117
Substitute data into,then
Connect two formula,we get
pressure on point E
Quantity of water supply of each equipment is
22a n d ( )
2A E A E E H E H
Qh h K Q h h K? ? ? ?
2
21 0 0 2 3 5 4 a n d 6 0 5 9 4 7
4EE
Qh Q h? ? ? ? ?
smQmh E 31 0 2.0,49.75 ??
PaPaghp EE 5104.77 4 0 0 049.759 8 1 0 ?????? ?
ssmQq 151051.02 3 ???
At last solve the parallel problem of EF and valve FG, according
to the formula ( 5— 40)
2)
2)((
QKKhh
FGEFGE ???
assume water head on point A,E and H are respectively
HEA hhh,,
Given, but is our require (because
),so according to formula ( 5— 42),,we can list the
pipeline speciality of section AE and EH are
mhmh HA 60,1 0 0 ?? EE ghp ??
2KQH ?
Eh
118
将数据代入,有
联立解出
E 点压强
每台设备的供水量为
最后再解决 EF与阀 FG的串联问题,根据式( 5— 40)
设 A,E,H各点的水头为 。
HEA hhh,,
22 )
2(
QKhhQKhh
EHHEAEEA ???? 和
45947602354100
2
2 QhQh
EE ????? 和
smQmh E 31 0 2.0,49.75 ??
PaPaghp EE 5104.77 4 0 0 049.759 8 1 0 ?????? ?
ssmQq 151051.02 3 ???
2)
2)((
QKKhh
FGEFGE ???
已知,而 正是我们要求(因
)。于是根据公式( 5— 42),,可以分别列出 AE段与 EH
段的管路特性为
mhmh HA 60,1 0 0 ?? EE ghp ??
2KQH ?
Eh
119
Substitute given data into it
Fherefore Solve out
22 )
2
102.0]()4 0 0 0(2 9 7 4[4049.75
s???
%7.383 8 7.0 ??S
namely,adjusting control valve to this opening can assure
equal to quantity of water supply, They are all, sq 151?
120
将已知数据代入
由此解出
22 )
2
102.0]()4 0 0 0(2 9 7 4[4049.75
s???
%7.383 8 7.0 ??S
即将调节阀开到这样的开度,可以保证两台设备的供水
量相等,都是 。 sq 151?
121
122