§ 1-2 热力学第二定律与反应方向
解决的问题:任意反应 A + B ? C
在一定 条件下能否 (自发 )进行?进行的最大程度?
? (一 ) 热力学第二定律
? 1,自发过程和热力学第二定律,
? 自发过程,在一定条件下,体系不借助于外力即可进行
的过程
? 如,水流, 电流, 物体
? 特点,1)方向性
? 2) 可做功
? 3) 有限性 ——达到平衡状态
? 注意,不自发 ?不可能;自发 ?迅速
? 热力学第二定律:
? 研究发现,决定一切热力学过程自发方向的根本原因
都是,热 —功转换的方向性,,即一定条件下,
功 可以 100%转化为热,而热 不可以 100%转化为功
限于基本要求,不予详细讨论
? 热力学第二定律的发现, 在历史上可分为二个阶段:
通过实践总结出 能量减小原理 和 熵增原理
然后归纳上升为热力学第二定律
? 2,能量减小原理
? 体系在一定条件下总是自发地把能量释放出来, 使 势
能 降低 ——E?原理
? 如:水 高 ?低, 物体 高 ?低, 电流 电势高 ?低
? 一个化学反应,势能 ?,即过程 (反应物 ?产物 )的 ?rH<0
? 因此, 用 E?原理可以,
– 判断反应方向,?rH<0 自发
?rH>0 不自发
如:用玻璃瓶装 HCl,HF气体?
SiO2(s) + 4HF(g) == SiF4(g) + 2H2O(g) ?rHm? = -166.3 kJ·mol-1
SiO2(s) + 4HCl(g) == SiCl4(g) + 2H2O(g) ?rHm? = 87.6 kJ·mol-1
– 判断化合物的相对稳定性:
?fHm?趋于 负 ? 稳定 ?fHm?趋于 正 ?不稳定
如,H2(g) + F2(g) == 2HF(g) ?Hm? = 2?fHm? =-546.6 kJ·mol-1
H2(g) + Cl2(g) == 2HCl(g) ?Hm? = 2?fHm? =-184.6 kJ·mol-1
所以 HF 比 HCl 更稳定
HF(g) HCl(g) HBr(g) HI(g) H2O(g) H2S(g)
?fHm? -273.3 -92.3 -36.3 26.5 -241.8 -20.6
? E?原理是否 总 正确? 是否唯一判定反应方向的根据?
? 如,KNO3(s) + 水 ?溶液 自发无疑 但 吸热 (?H>0)
? 又如,CaCO3(s) == CaO(s) + CO2(g) ?rHm?298 =177.6 kJ·mol-1
? 在 850℃ 时自发进行! [ ?rHm?(1123)??rHm?(298)=177.6 ]
? 违反 E?原理的过程也自发! Why?
自然界一定存在另一规律:
? 3、熵增原理
? 1) 定义, 熵 (Entropy)S,体系的混乱度 (dS=?Q可逆 /T,火 +商 )
? S的大小,体系混乱度大小的量度
? 如何量度?
? 用体系的微观状态数 ? 如:
? 1 mol 理想气体,分子数 =6.02× 1023个
? 可以 近似 设想,任一瞬间,各分子的 运动速度 (大小 +方
向 ) 几乎互不相同 (近似, 因热力学不必区分运动方向 )
? 所有分子 运动速度 的一种分布称 体系的一种微观状态
? 各种不同的分布总数:微观状态数 ?= 6.02× 1023! 个
? 而,对于总的 ?,只要 A中一个微观状态
改变,总的微观状态就已经改变。
? 如果 A中有 1个变化,因 B中有 ? B个变化,所以总 ?变化有 ? B个
? 如 A中还有第 2个变化,总 ?变化即有, ? B+? B=2? B,等等
? 实际上 A中共有 ?A个变化,所以:总 ?=?A× ?B
总 S=SA+SB 总 ? =?A× ?B
? 表明,S具有 加和性 关系,而微观状态数 ?为 乘积 关系
在数学上,只有 对数函数 可以实现这种联系,因此:
? Boltzmann给出了,S? ln? 或 S = k ln?
k=1.3806503(24)× 10-23 J·K-1=R/N0 ——Boltzmann 常数
创新思维 ——发现公式定理,并非高不可攀 ?
?A变 1 ?B不变
A B
如何将 ?与 S联系起来?
设体系
?, A边 SA,B边 SB,总 S=SA+SB
? 由此可见,熵的 物理意义 是体系中微粒的不同排布方
式 (空间位置 +能量 )混乱程度大小的量度
显然,体系的微观状态数 ??,即混乱度 ?,S?
? 例, 在 0 K时,CO分子有两种可能的取向 CO和 OC。
求算 CO晶体在 0 K时的 mol熵值为多少?
? 解,根据 热力学第三定律,完美晶体在 0 K时 都是一个
取向,相互不可区分,其微观状态数 ?=1,因此
Sm=kln? =0
当分子混乱排列时,每个分子都有 2种取向 CO和 OC,
总微观状态数,? =2^(6.02× 1023)
(每一分子有 2种, 6.02× 1023 个分子有 2× 2× 2…… × 2)
? 所以, Sm=kln?=k× N0× ln2=R× ln2=5.76 (J·K-1)
? 自然,S是状态函数,且有 绝对数值
(附录一,298.15 K下的标准摩尔熵 S?m)
? 一般,S的相对大小,
? g >> l > s; 高 T > 低 T; 低 p > 高 p
? 软 >硬 S(C石墨 ) > S(C金刚石 )
? 复杂分子 >简单 S(O3) > S(O2)
? e多 >e少 S(Ar) > S(Ne)
? 混合物 >纯净物
? 2) 反应熵变的计算,aA + bB == gG + hH
?? ?????
反应物产物
B
B,B
B
B,B
??? ??
mmmr SSS
)B()298()( 2 9 8,
B
B
??? ?
mmrmr SSTS ????? ?
)B()A()H()G( ???? mmmm bSaShSgS ????
S?m从附录一查表,注意单位 J·K -1·mol-1
? 3) 可逆过程与熵变,指体系 内, 外强度性质 (T,p等 )相
差无穷小, 无限缓慢进行的过程
? 根据经典热力学, dS=?Q可逆 /T,?? ???
T
QSS rδd
? 教材 P14为恒温 可逆 过程,?S=Q可逆 /T
如何用熵函数判定过程的方向?
? 4) 熵增原理与反应方向
? 人们发现,体系总是力图向混乱度增大的方向变化
? 如:集合 -解散,气体混合、扩散,溶质溶解等
? 又如:




搅棒
? 体系并不复原!
? 及前面:
? KNO3(s) + 水 ?溶液 ?H>0 ?S >0
? CaCO3(s) == CaO(s) + CO2(g) ?rHm>0 ?rSm>0
? 顺时针搅 100转 逆时针再搅 100转?
? 如果 ?H=0,则 ?S>0 可用于判定过程方向,即:
? 由热力学第二定律 ?熵判据,
?S孤立 >0自发; =0可逆 /平衡; <0不可能进行
? 对于封闭体系,?S孤立 = ?S封闭 + ?S环境
? 而环境的熵变 很容易 计算:
环境
体系
环境 T
Q
S
?
??
1211,习题:
? 正因为体系有 S?趋势,所以,热力学第二定律,
? 1) 不可把热从低温物体传到高温物体而不引起其它变化
? 2) 不可从单一热源取热做功 ——制不成第二类永动机
? 实质,热在 100%转化为功时,不可避免 (体系 +环境 )S?
用以上两个原理判断方向很不方便
? 因为, E?原理成立,则要 ?S?0; S?原理成立,则要 ?H ?0
? 绝大多数情况 并非如此,即:
E?原理
?H符号
满足
-
不满足
+
不满足
+
满足
-
S?原理
?S符号
满足
+
不满足
-
满足
+
不满足
-
结 论 自 发 不自发 自发 KNO3+水不自 -5℃ 冰融化 自发 NH3+HCl不自 5℃ 水结冰
? 因此,无法直接用于 判定过程的方向
? 为此,1875年 Gibbs(美 )提出 了一个新的状态函数 G
? 定义,G=H-TS (Gibbs 函数,自由能 /free energy)
? 在恒温、恒压条件下,?G = ?H-T·?S Gibbs公式
? 若一个反应中 各物质分别都处于各自的标准态,同样有
?rG?m= ?rH?m - T?rS?m
则明确解决“反应方向”的判定 ——创新 ?
? (二 ) 吉布斯函数变化 ?rG与反应自发进行的方向
? 1、吉布斯函数判据
体系在恒温、恒压,W’=0的条件下:
? ?rG <0 自发过程
? ?rG =0 可逆过程 /达到平衡状态
? ?rG >0 非自发过程
? 2,?G的计算
1) 任意温度下,吉布斯公式,?rG?m(T)=?rH?m-T?rS?m
2) 298 K下,查表:
E?原理
?H符号
满足
-
不满足
+
不满足
+
满足
-
S?原理
?S符号
满足
+
不满足
-
满足
+
不满足
-
结 论 自 发 不自发 自发 KNO3+水不自 -5℃ 冰融化 自发 NH3+HCl不自 5℃ 水结冰
?G符号 - + 低温 高温+ - 低温 高温- +
结 论 自 发 不自发 不自发 自发 自发 不自发
)B()2 9 8( 2 9 8,
B
B
?? ?
mfmr GG ???? ?
?G = ?H-T·?S
? 注意:
? 普化 中近似, ?H(T)≈?H(298),?S(T)≈?S(298) Why?
? 因此,可以用 Gibbs公式计算任意温度下的 ?G(T):
?G(T)= ?H-T·?S
? 3,?G的性质
? 1) G是状态函数,?G与变化途径无关
? 2) ?G是体系 可以 做有用功的量度,?H = ?G + T·?S
体系吸热,一部分用于做有用功,另一部分消耗于增加混乱度
? 3) ?G是自发过程的推动力, ?G越负,反应自发趋势越大 ;
若 ?G=0,则推动力 =0,体系达平衡,宏观过程停止
?? ???????
反应物产物
B
B,B
B
B,B
??? ??
mfmfmr GGG
)B()A()H()G( ???? mfmfmfmf GbGaGhGg ????????
? 4) 与 ?rHm,?rSm一样,?rGm是容量性质,应与反应方
程式配套 (系数 ),即与物质的量有关:
H2(g) + 0.5O2(g) == H2O(g) ?rG?m= -228.6 kJ·mol-1
2H2(g) + O2(g) == 2H2O(g) ?rG?m= -457.2 kJ·mol-1
? 5) ?rG?m不随反应的进行 (反应进度 )而变化,因为已指明,
第一 ??=1 mol
第二 各物质分别都处于各自的 标准态
如气体只能是 100 kPa 的纯态
? 6) T对 ?rGm的影响大 ——直线关系
反应的 ?rG?m计算举例,教材 P17-19,例 1-6~例 1-10自学
注意解题格式、符号、单位严格按例题
习题 14,17,19,20,21
? 4,Gibbs公式的应用
? 1) 温度可以改变反应方向,?rG?m(T)= ?rH?m- T?rS?m
? 若 ?rH?m与 ?rS?m异号,则 ?rG?m(T)不变号,不能试图通
过改变温度使反应方向改变
? 若 ?rH?m与 ?rS?m同号,则 ?rG?m(T)可变号,可通过改变
温度使反应方向改变:
?rHm ?rSm ?rGm 结 论
- + - 永远自发
+ - + 永远不自发 =逆向自发
- - 低 T-,高 T+ 低温自发,高温不自发
+ + 高 T-,低 T+ 高温自发,低温不自发
因此 Gibbs公式的重要应用 ——
? 2) 计算反应可进行的温度
? 例,判断 298 K时碳酸钙能否分解,计算烧制石灰的温度
? 解,对于反应 CaCO3(s) == CaO(s) + CO2(g)
? 查得 ?fH?m / kJ·mol-1 -1207.6 -634.9 -393.5
S?m / J·K-1·mol-1 91.7 38.1 213.8
由 Hess定律得,?rH?m = (-634.9 – 393.5) – (-1207.6)
=179.2 (kJ·mol-1)
同理 得,?rS?m = 38.1+213.8 – 91.7
=160.2 (J·K-1·mol-1)
由 Gibbs公式, ?rG?m = ?rH?m – T· ?rS?m
得,?rG?m,298=179.2– 298.15× 160.2× 10-3
=131.4 (kJ·mol-1)
? 当然,查生成 Gibbs函数,亦得 ?rG?m,298=131.4 kJ·mol-1
反应的 ?rG?m,298>0,表明常温下 CaCO3(s)不分解,而是
? 逆向,CaO(s) + CO2(g) == CaCO3(s) 自发
由于 ?rH?m与 ?rS?m同号 (>0),T?时,?rG?m,T?(+?0?-)
? 设 温度为 T时 ?rG?m,T =0,则, T= ?rH?m / ?rS?m
? 即 反应刚好能自发进行的温度 (对应 ?rG?m,T =0)为:
? T = 179.2× 103 J·mol-1 / 160.2 J·K-1·mol-1
? =1118.6 K (? 845.5 ℃ )
? 答:碳酸钙在常温下不能自动分解,当温度高于 845.5℃
时,碳酸钙将在标准压力下分解
3) 计算正常相变温度
? 正常相变,物质在外压为标准大气压 p?atm下的平衡相变
? 相变 =平衡相变 ——两相 共存 ——推动力 ?G≡0
? 因此,T相变 =?相变 H / ?相变 S ≈ ?相变 H298 / ?相变 S298
T正常相变 = ?相变 H?(atm)/ ?相变 S?(atm)
前面所讨论都对应 标准状态, now
(三 ) 非标准状态下化学反应的方向 — ?rGm与 ?rG?m的关系
? 对于各物质为任意状态的反应,aA + bB == gG + dD
? 在一定温度 T(恒温 )下, 有 (化学反应等温式 ):
QRTGG TmrTmr ln,,???? ?
? ?????????
B
B
B?
?p
pQ反应商,dgba
p
p
p
p
p
p
p
p
???
?
???
??
???
?
???
??
???
?
???
??
???
?
???
?? ??
????
DGBA
ba
dg
p
p
p
p
p
p
p
p
Q
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
??
??
BA
DG
等等溶液:
ba
dg
m
m
m
m
m
m
m
m
Q
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
??
??
BA
DG
? 道尔顿分压定律, 混合理想气体的总压力 =各组分气体分压之和。
各组分气体 B的 分压 pB等于同 T下,B单独占有相同体积时的压力
? 表示和用于计算在一定温度, 任意浓度 /分压条件下反
应的方向 (趋势 /推动力 )。 显然
? 对于 初始时刻,
因 Q?0 (<<1),lnQ?-?
?rGm=常数 (?rG?m) +负数 (-?) <0
反应正向进行
? 其后,如果 ?rG?m<0:
? 当 Q较大时,仍然可以保证 ?rGm<0,反应可进行很彻底
QRTGG TmrTmr ln,,???? ?
ba
dg
Tmr
p
p
p
p
p
p
p
p
RTG
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
???
??
??
?
BA
DG
,
ln
? 如果 ?rG?m>0:
? 一般当 ?rG?m>42 kJ·mol-1 (10 kcal/mol)时
? 要使 ?rGm<0 即 RTlnQ < -42 kJ·mol-1,Q298<4.4× 10-8
难见产物!
? 而当 0<?rG?m<42 kJ·mol-1,Q<1,但不太小 (4.4× 10-8~1),
可通过 及时分离产物 的方式使反应进行,如合成氨
? 当然,这里讨论认为 ?rG?m<42 kJ·mol-1 反应可以进行,
必须 增加分离工序 /改变条件
? 习题中一般要求回答 反应 在标准状态下 能否自发,则
仍然以 ?rG?m的符号 为依据 (<0,=0,>0)
QRTGG TmrTmr ln,,???? ?