CYC8CNBYCXCIC1CRCHCOCK K
L
? K
L
DGAVBBC1N
L
BXC3AW?AMASA0AMDFAFA9A1
? K
L
DGBF PAWBQALD9BZCFAWA7
K
L
AWBCBWAI?B5D6AGA8
N
L
C0CQCGD5CV
K
L
AUDGAJAZB7CTBBD4AXD2AXAWB4CMBRB6BKLBSBNA2B0ARAWA7
AVA0B6BKC9A8
1. B4CMBRB6BKA8
LBPB6BKA7
2. CMBRB6BKA8
(2.1)BBA5ABBAB6BKA8 x
0
,x
1
,x
2
, ···.
(2.2)CIAMB6BKA8 ? .
(2.3)CGC4AMB6BKA8 ?, → .
(2.4)B7BRB6BKA8 ),
,
,(.
B1A0K
L
AWBDDF(B8 N
L
AWBDDFCBDJA7)
1. K
L
AWAKBHCUAXAYD6AGA8
(1.1)BBA5ABBAB8BBA5AGBAADK
L
AWAK.
(1.2)D8t
1
,t
2
, ···,t
m
AD K
L
AWAKA6f
m
AD K
L
AWAVBB
mBABJDIABBAB6BKA6BH f
m
(t
1
,t
2
, ···,t
m
) AD K
L
AWAKA7
1
2. K
L
AWBDDFBHCUAXAYD6AGA8
(2.1)D8t
1
,t
2
, ···,t
n
ADLAWAKA6F
n
AD K
L
AWAVBB n
BA?AMABBAB6BKA6BH F
n
(t
1
,t
2
, ···,t
n
) AD K
L
AW
BDDFA7 BBBTBDDF
(2.2)D8α
1
,α
2
AD K
L
AWBDDFA6BH (?α
1
), (α
1
→α
2
) AD
K
L
AWBDDFA7
(2.3)D8 α AD L AWBDDFA6x AD K
L
AWBBA5ABBAB6BKA6BH
(?x)αAD K
L
AWAVBBBDDFA7
DAA8 K
L
AWAMDFB9ARDG N
L
AWAMDFB9ARAWAVBBBTB9ARA6B0B0A2CPDE
B3D6AGAJA8BACXBLBCAXA8
?BUB4B8BCDHA9
?CABKDBCLBGBHA9
? P BPBDDFBF K
L
BPAWASD7DDCE
?BXALBDDFA8
(α∨β)AD ((?α)→β)AWBXALA9
(α∧β)AD (?(α → (?β)))AWBXALA9
(α?β)AD ((α→β) ∧(β→α))AWBXALA9
(?x)αAD(?((?x)(?α)))AWBXALA7
2
K
L
C0CQCGCLC9C5D6
1. BDCDA8
(K1) α→(β→α)
(K2) (α→(β→γ))→((α→β)→(α→γ))
(K3) (?α→?β)→(β→α)
(K4) ?xα → α(x/t),D8tAZxBFαBPBUB4A7
(K5) α →?xα,D8xADBFαBPBUB4AKAHA7
(K6) ?x(α→β) → (?xα→?xβ)
(K7) D8αDGK
L
AWAVBBBDCDA6BH (?x)αAUADK
L
AWAVBBBDCDA7
CYBPA8α, β, γADK
L
AWBDDFA6xADK
L
AWBBA5ABBAB6BKA6tADK
L
AWAKA7
2. BGBHA8
B5CCBGBH (M)A8 B4αBTα→β C8AVAUβ.
D7CCCUCB
C4CZ3.13 K
L
BDDFAWAVBBB5AIAQCK α
1
,α
2
, ···,α
n
AHAD K
L
BPAW
AVBBBKCRAQCKA4BKCRA5A6D6BICOBB α
i
(1 ≤ i ≤ n)AYCNBVAGCKA7BYBM
AVA8
(1) α
i
DG K
L
AWAVBBBDCDA9BP
(2) α
i
DGB4CTCHBBα
j
,α
k
(1 ≤ j, k < i)B2B3(M)AVAUAWA7
ANDCA6AHα
n
AD K
L
AWAVBBCVAXCD,BVAD turnstileleft
K
L
α
n
,BPBXALADturnstileleft α
n
.
3
BZCECFCA
C4C93.5 DAαADPAWAVBBCVAXCDA6α
prime
DGαBFK
L
BPAWAVBBASD7DD
CEA6BHturnstileleft
K
L
α
prime
C4C93.6 (1)D8turnstileleft
K
L
α→β,D0turnstileleft
K
L
α,BHA8 turnstileleft
K
L
β .
(2)D8turnstileleft
K
L
(α→β),D0turnstileleft
K
L
(β→γ),BHturnstileleft
K
L
(α→γ).
ANCSA4BPAW (1)D5BVAD(M), (2)D5BVAD (Tr).
CA 3.14
D8AKtAZBBA5ABBAB6BKxBFαBPBUB4A6BHA8 turnstileleft α(x/t)→?xα .
D7A8
B0AD(?α)(x/t)=?(α(x/t)),APB0
turnstileleft?x(?α)→(?α)(x/t K4)
turnstileleft?x(?α)→?(α(x/t))
turnstileleft (?x(?α)→?(α(x/t))) → (α(x/t)→??x(?α))
(CSA4CVAXCD)
turnstileleft α(x/t)→??x(?α)(M)
BUA8 turnstileleft α(x/t)→?xα
4
C4C9 3.7
D8turnstileleft
K
L
α,BHturnstileleft
K
L
?xα.
BKA8B0turnstileleft
K
L
α,BFAQBF K
L
BPBDDFAQCKA8
α
1
,α
2
, ···,α
n
(= α)
ADαAWAVBBBKCRA7
AGAZi (1 ≤ i ≤ n)BHCUBKCRA8 turnstileleft
K
L
?xα
i
(?)
(1)ATi =1DCA6α
1
ADAVBBBDCDA6APB0?xα
1
AUADAVBBBDCDA6BF
turnstileleft
K
L
?xα
1
.
(2)DAi<kDCA6(?)AICFA6AGBKi = k DC(?)AUAICFA7
(2.1)D8α
k
D5ADBDCDA6B3(1)C8BKA7
(2.2)D8α
k
DGB4α
l
,α
j
(1 ≤ l, j < k)B3(M)AVAUAWA6ADB2DA
α
j
= α
l
→α
k
. BHA8
turnstileleft
K
L
?xα
l
,(BHCUBWDA)
turnstileleft
K
L
?xα
j
A1 (BHCUBWDA)
turnstileleft
K
L
?x(α
l
→α
k
). (BHCUBWDA)
turnstileleft
K
L
?x(α
l
→α
k
) → (?xα
l
→?xα
k
)(BDCDK5).
turnstileleft
K
L
?xα
l
→?xα
k
,(AXCD3.6)
turnstileleft
K
L
?xα
k
.(AXCD3.6)
BHCUBKAAA6(?)AICFA6APB0turnstileleft
K
L
?xα
n
,BUturnstileleft
K
L
?xα.
5
CA 3.15(1)
D8xADBFαBPBUB4AKAHA6BHA8
turnstileleft?x(α→β)→(α→?xβ)
D7A8
B0turnstileleft
P
(p→(q→r)) → ((s→q)→(p→(s→r))).
AW?x(α→β), ?xα, ?xβ, αB5ACA6BOCYBPAW p, q, r, sAVA8
turnstileleft
K
L
(?x(α→β)→(?xα→?xβ))
→ ((α→?xα)→(?x(α→β)→(α→?xβ))).
turnstileleft
K
L
?x(α→β)→(?xα→?xβ), (K5)
turnstileleft
K
L
(α→?xα)→(?x(α→β)→(α→?xβ)).
turnstileleft
K
L
α→?xα. xADBFαBPBUB4AKAHA6 (K5)
turnstileleft
K
L
?x(α→β)→(α→?xβ).
6
CA 3.15(2)
D8xADBFαBPBUB4AKAHA6BHA8
turnstileleft (α→?xβ)→?x(α→β)
D7A8
B0turnstileleft
P
(p→q)→((r→p)→(r→q)),
B5ACAW?xβ, β, αASBOCYBPAW p, q, rAVA8
turnstileleft
K
L
(?xβ→β) → ((α→?xβ)→(α→β)).
turnstileleft
K
L
?xβ→β,
turnstileleft
K
L
(α→?xβ) → (α→β).
turnstileleft
K
L
A→B. ABVα→?xβ, B BVα→β
xADBFABPBUB4AKAH
turnstileleft
K
L
?x(A→B). (AXCD3.7)
turnstileleft
K
L
?x(A→B) → (A→?xB). (1)
turnstileleft
K
L
A→?xB,
turnstileleft
K
L
(α→?xβ) →?x(α→β).
7
CA 3.16
D8turnstileleft α→β,BHA8
1. turnstileleft?xα→?xβ A1
2. turnstileleft?xα→?xβ.
D7A8
1. (1) turnstileleft α→β (A4DA)
(2) turnstileleft?x(α→β)(AXCD3.7)
(3) turnstileleft?x(α→β)→(?xα→?xβ)(K6)
(4) turnstileleft?xα→?xβ (M)
2. (1) turnstileleft α→β
(2) turnstileleft (α→β)→(?β→?α)(CSA4CVAXCD)
(3) turnstileleft?β→?α (M)
(4) turnstileleft?x?β→?x?α (1)
(5) turnstileleft (?x?β→?x?α)→(??x?α→??x?β)
(6) turnstileleft??x?α→??x?β (M)
BUA8 turnstileleft?xα →?xβ
8
D2CDCJC1CMCX
C4CZ
C4CZ3.14 DAΓDG K
L
AWAVBBBDDFBS(ADAVAXB5AI). K
L
BPBDDFAWAV
BBB5AIAQCKα
1
,α
2
, ···,α
n
AHADK
L
BPB4CZA3ΓAAAKα
n
AWAVBBBK
CR,D6BICOBBα
i
(1 ≤ i ≤ n)CNBVAGCKA7BYBMAVA8
(i) α
i
∈ Γ.
(ii) α
i
DGAVBBBDCDA7
(iii) α
i
DGB4α
j
,α
k
(1 ≤ j, k ≤ i)B3(M)AVAUA7
ANDCA6AUAHBFK
L
BPB4CZA3ΓC8AAAKα
n
,BVADΓ turnstileleft
K
L
α
n
BPΓ turnstileleft α
n
.
CSD8
CSD8 (1) turnstileleft
K
L
αAWAJATA7BYDGA8AZK
L
AWD4AVBBBDDFBSΓ, Γ turnstileleft
K
L
α.
CSD8 (2)DA Σ,αB5ACDG P BPBDDFBSB8BDDFA6 Σ ∪{α} AWBDDFBP
AKAHAWCSA4ABBAB6BKAYBF p
0
,p
1
, ···,p
n
BMBPA6C0 Σ B8α BPAW
p
0
,p
1
, ···,p
n
B5ACA6BOAD K
L
BPBDDFα
0
,α
1
, ···,α
n
, AVAU
K
L
AWBDDFBS Σ
prime
B8α
prime
. D8Σ turnstileleft
P
α,BHΣ
prime
turnstileleft
K
L
α
prime
.
CSD8 (3)D8Σ turnstileleft
K
L
α,Σturnstileleft
K
L
α→β,BHΣ turnstileleft
K
L
β .
CSD8 (4)D8Σ turnstileleft
K
L
α→β,Σturnstileleft
K
L
β→γ,BHΣ turnstileleft
K
L
α→γ .
CSD8 (5)D8Σ turnstileleft
K
L
α,B0xDGAVBBADBF ΣAWD4BMBDDFBPBUB4AKAHAW
AVBBBBA5ABBAB6BKA6BH Σ turnstileleft
K
L
?xα .
9
CSD8 (5) C0D7CC
D7A8
B0Σ turnstileleft
K
L
α,BHAQBF K
L
BPBDDFAQCKA8
α
1
,α
2
, ···,α
n
(= α)
ADBFCZA4 ΣAGAAAKαAWAVBBBKCRA7
AGAZi (1 ≤ i ≤ n)BHCUBKCRA8 Σ turnstileleft
K
L
?xα
i
(?)
(1)ATi =1DCA6α
1
ADAVBBBDCDBPα
1
∈ Σ.
(1.1)D8α
1
ADAVBBBDCDA6BH?xα
1
AUADAVBBBDCDA6BFturnstileleft
K
L
?xα
1
,
APB0Σ turnstileleft
K
L
?xα
1
.
(1.2) D8 α
1
∈ Σ, BH x ADBF α
1
BPBUB4AKAHA6B4 (K5) BLA8 turnstileleft
K
L
α
1
→?xα
1
,APB0Σ turnstileleft
K
L
α
1
→?xα
1
. B6Σ turnstileleft
K
L
α
1
,BFA8Σ turnstileleft
K
L
?xα
1
.
(2)DAi<kDCA6(?)AICFA6AGBKi = k DC(?)AUAICFA7
(2.1)D8α
k
D5ADBDCDBPα
k
∈ Σ,B3(1)C8BKA7
(2.2) D8 α
k
DGB4 α
l
,α
j
(1 ≤ l, j < k) B3 (M) AVAUAWA6ADB2
DAα
j
= α
l
→α
k
. B4BHCUBWDAAVA8 Σ turnstileleft
K
L
?xα
l
,Σturnstileleft
K
L
?xα
j
,BUA8
Σ turnstileleft
K
L
?x(α
l
→α
k
). B6B4B7turnstileleft
K
L
?x(α
l
→α
k
) → (?xα
l
→?xα
k
)
(BDCDK5). BFA8 Σ turnstileleft
K
L
?x(α
l
→α
k
) → (?xα
l
→?xα
k
) B4AOBO(2)
BLA8 Σ turnstileleft
K
L
?xα
l
→?xα
k
,Σturnstileleft
K
L
?xα
k
.
BHCUBKAAA6(?)AICFA6APB0Σ turnstileleft
K
L
?xα
n
,BUA8 Σ turnstileleft
K
L
?xα.
DAA8D9CQAWBKCRBNDGAZAXCD3.7AWBKCRBXCJADARAWAPB9A7
10
CA 3.17
D8xADBFβ BPBUB4AKAHA6BHA8
{?x(α→β), ?β}turnstileleft?x?α
D7A8
?x(α→β)(CZA3)
?x(α→β)→(α→β)(K4)
α→β (M)
(α→β)→(?β→?α)(CSA4BQARDF)
?β→?α (M)
?β (CZA3)
?α (M)
?x?α (AOBO(4))
K
L
C0CWD0C4C9
C4C93.8 Σ,αturnstileleft
K
L
β ATD0C5AT Σ turnstileleft
K
L
α→β.
BKCRB8 PBPASAZAXCDAWBKCRB4AGCBDJA6BNATC0A2 PAWBDDFA3B9
ADA2 K
L
AWBDDFA3BUC8A7
11
CA 3.15 C0D9CPD7CC
BKCRA8 {α→?xβ, α}turnstileleftβ
D7A8
α→?xβ (CZA3)
α (CZA3)
?xβ (M)
?xβ→β (K4)
β (M)
B4ASAZAXCDAVA8 {α→?xβ}turnstileleftα→β .
B4AOBO(4)AVA8 {α→?xβ) turnstileleft?x(α→β)(BSAXA8 xADBFα→?xβ
BPBUB4AKAH)
BEB4ASAZAXCDAVA8 turnstileleft (α→?xβ)→?x(α→β).
CA 3.19
D8xADBFβ BPBUB4AKAHA6BKCRA8 turnstileleft
K
L
?x(α→β)→(?xα→β)
D7A8
B4CE3.17AVA8 {?x(α→β), ?β}turnstileleft?x?α.
APB0A8 {?x(α→β)}turnstileleft?β→?x?α.
B0A8 turnstileleft (?β→?x?α)→(??x?α→β)
BFA8 {?x(α→β)}turnstileleft(?β→?x?α)→(??x?α→β)
B4AOBO(1)BLA8 {?x(α→β)}turnstileleft??x?α → β.
BUA8 {?x(α→β)}turnstileleft?xα → β.
BFA8 turnstileleft?x(α→β)→(?xα→β)
12
N
L
D4 K
L
C1C3C7CT
D1C9 3.2
D8γ ADK
L
AWAVBBBDCDA6BHAZ K
L
AWD4AVB5AIBDDFBSΣ, Σ turnstileleft
N
L
γ .
D7A8
AZγ AWBEBGB8BDAOBHCUBKCRA7
(1) D8γ AD(K1)—(K6)BPAWCTAVA7DCA7
(1.1)D8γ AD(K1)—(K3)BPCTA7DCA6B4AXCD3.1C8BKA9
(1.2)ATγ AD(K4)DCA7B4(??)BLA8 ?xα turnstileleft
N
L
α(x/t)(CYBPA8
tAZ xBF α BPBUB4), B4 (→ +) BLA8 ?turnstileleft
N
L
?xα→α(x/t). B4B7Σ
DGB5AIBSA6BFC8B5AIAODEB3 (+)AVA8 Σ turnstileleft
N
L
?xα→α(x/t).
(1.3)ATγ AD(K5)DCA6B4(?+)BLA8 α turnstileleft
N
L
?xα (CYBPA8 xAD
BFαBPBUB4AKAH), APB0Σ turnstileleft
N
L
α→?xα .
(1.4) AT γ AD (K6) DCA6B4CE 3.6 C8BKA8 Σ turnstileleft
N
L
?x(α→β) →
(?xα→?xβ).
(2) D8 γ AD ?xγ
prime
DCA6CYBP γ
prime
AD K
L
AWAVBBBDCDA6B4BHCUBWDA
AVA8 ?turnstileleft
N
L
γ
prime
,APB0B4 (?+)BLA8 ?turnstileleft
N
L
?xγ
prime
,BFA8 Σ turnstileleft
N
L
?xγ
prime
.
13
K
L
” ? ”N
L
DAΣ,αB5ACADK
L
AWB5AIBDDFBSB8BDDFA6D8Σ turnstileleft
K
L
α,BHΣ turnstileleft
N
L
α.
D7A8
B4B7Σ turnstileleft
K
L
α,BF K
L
BPAQBFB4ΣAAAKαAWBKCRAQCKA8
α
1
,α
2
, ···,α
n
(= α)
AGBKA8AZD4AX i (1 ≤ i ≤ n), Σ turnstileleft
N
L
α
i
(?)
AZiC6ANBHCUBKCRA7
(1) ATi =1DCA6α
1
AD K
L
AWBDCDBP α
1
∈ Σ.
(1.1)D8α
1
AD K
L
AWBDCDA6B4B1CD 3.2BLA8 Σ turnstileleft
N
L
α
1
.
(1.2)D8α
1
∈ Σ,B4(+)BLA8 Σ turnstileleft
N
L
α
1
.
(2) DA (?) AZCNBV i<kAWA1B5BUD3DIi AICF(k>1), ACBK
i = k DC(?)AUAICFA7
(2.1)D8α
k
∈ ΣBPα
k
AD K
L
AWBDCDA6B3(1)C8BKA7
(2.2)D8α
k
DGB4α
j
,α
l
(1 ≤ j,l < k)B3(M)AVAUA6ADB2DAα
j
AD
α
l
→α
k
,B4BHCUBWDAAVA8Σ turnstileleft
N
L
α
j
,Σturnstileleft
N
L
α
l
,BUA8Σ turnstileleft
N
L
α
l
→α
k
.
B4(→?)BLA8 Σ turnstileleft
N
L
α
k
.
BHCUBKABA6 (?)AICFA7APB0Σ turnstileleft
N
L
α
n
,BUA8 Σ turnstileleft
N
L
α.
14
K
L
” ? ”N
L
DAΣ,αB5ACN
L
BPAWB5AIBDDFBSB8BDDFA6D8Σ turnstileleft
N
L
α,BHΣ turnstileleft
K
L
α.
D7A8
B4B7Σ turnstileleft
N
L
α,BFN
L
BPAQBFBKCRAQCKA8
Σ
1
turnstileleft α
1
, Σ
2
turnstileleft α
2
, ···, Σ
n
turnstileleft α
n
DEAVA8 Σ
n
=Σ,α
n
= α .
AGBKA8AZD4AX i (1 ≤ i ≤ n), Σ
i
turnstileleft
K
L
α
i
(??)
AZiC6ANBHCUBKCRA7
(1) AT i =1DCA6Σ
1
turnstileleft α
1
BNCWB4 (∈) AVAUA6APB0α
1
∈ Σ
1
, BF
Σ turnstileleft
K
L
α
1
.
(2) BWDA(??)AZCNBVi<kAWA1B5iAICFA6C7AF(??)ATi = k
DCD1AMA7
(2.1)D8Σ
k
turnstileleft α
k
DGB3(∈)A0(??)A0(∨?)A0∨+)A0(∧?)A0
(∧+)A0(→?)A0(→ +)A0(??)BP(? +)AVAUAWA6B3D9BJAXCD
2.15C8BKA7
(2.2) D8 Σ
k
turnstileleft α
k
DGAZCTBBΣ
i
turnstileleft α
i
(1 ≤ i<k) B3 (+) AVAU
AWA6BUA8 Σ
k
=Σ
i
∪{γ}, α
k
= α
i
A7B4BHCUBWDAAVA8 Σ
i
turnstileleft
K
L
α
i
,AP
B0Σ
k
turnstileleft
K
L
α
i
,BUΣ
k
turnstileleft
K
L
α
k
.
(2.3)D8Σ
k
turnstileleft α
k
DGAZΣ
i
turnstileleft α
i
B3 (??)AVAUAWA6BUA8 Σ
k
=Σ
i
,
α
i
= ?xβ, α
k
= β(x/t), CYBPA8 t DG N
L
BPAWAKA6 t AZ x BF β
BPBUB4A7B4BHCUBWDABLA8 Σ
i
turnstileleft
K
L
α
i
, BUA8 Σ
k
turnstileleft
K
L
?xβ. B4BDCD
(K4) BLA8 turnstileleft
K
L
?xβ → β(x/t), BF Σ
k
turnstileleft
K
L
?xβ → β(x/t), APB0
Σ
k
turnstileleft
K
L
β(x/t),BUA8 Σ
k
turnstileleft
K
L
α
k
.
15
(2.4)D8 Σ
k
turnstileleft α
k
DGAZΣ
i
turnstileleft α
i
B3 (?+)AVAUAWA6BUA8 Σ
k
=Σ
i
,
α
k
= ?xα
i
,CYBPA8BBA5ABBAB6BKxADBFΣ
i
AWD4BMBDDFBPBUB4AKAHA7
B4BHCUBWDAAVA8Σ
i
turnstileleft
K
L
α
i
. B4D9C2AOBO(4)BLA8Σ
i
turnstileleft
K
L
?xα
i
,BUA8
Σ
k
turnstileleft
K
L
α
k
.
(2.5) D8 Σ
k
turnstileleft α
k
DGAZ Σ
i
turnstileleft α
i
B3 (??) AVAUAWA6BUA8 Σ
i
=
Γ∪{γ},Σ
k
=Γ∪{?xγ}, α
k
= α
i
,CYBPA8ΓDGN
L
AWAVBBB5AIBD
DFBSA6xADBFΓ∪{α
i
}AWD4AVBBBDDFBPBUB4AKAHA7B4BHCUBWDABLA8
Σ
i
turnstileleft
K
L
α
i
,BUA8Γ∪{γ}turnstileleft
K
L
α
i
. B4ASBIAXCDBLA8Γ turnstileleft
K
L
γ→α
i
. B4
B7xADBFΓAWD4BMBDDFBPBUB4AKAHA6BF Γ turnstileleft
K
L
γ→α
i
. B0xADBFα
i
BPBUB4AKAHA6B4D9C2CE3.19BLA8 turnstileleft
K
L
?x(γ→α
i
)→(?xγ→α
i
),BF
Γ turnstileleft
K
L
?x(γ→α
i
)→(?xγ→α
i
), APB0 Γ turnstileleft
K
L
?xγ→α
i
. BEB4ASBI
AXCDBLA8 Γ∪{?xγ}turnstileleft
K
L
α
i
,BUA8 Σ
k
turnstileleft
K
L
α
k
.
(2.6)D8 Σ
k
turnstileleft α
k
DGAZΣ
i
turnstileleft α
i
B3 (?+)AVAUAWA6BUA8 Σ
k
=Σ
i
,
α
i
= β(x/t), α
k
= ?xβ, CYBPA8 N
L
AWBBA5ABBAB6BKx ADBF β BP
BUB4A7B4BHCUBWDABLA8 Σ
i
turnstileleft
K
L
β(x/t). B4D9C2CE3.14BLA8 Σ
i
turnstileleft
K
L
β(x/t)→?xβ,APB0Σ
i
turnstileleft
K
L
?xβ,BUΣ
k
turnstileleft
K
L
α
k
.
BHCUBKABA6 (??)AICFA7
K
L
D3 N
L
C0C2C6CS
AZ N
L
(K
L
)BPAWB5AIBDDFBSΣB8BDDFα,
Σ turnstileleft
K
L
αATD0C5ATΣ turnstileleft
N
L
α .
16