CBCHC8C6CR
C8DJDIB2CRBGBCBOA3CTCZBMB0A4BDBRDIBSANCRBGBHDGAXBOC2BRA4
C5B9CNBUBCBOBVLBYAG L = {F
i
}
i∈I
∪{f
j
}
j∈J
∪{c
k
}
k∈K
.
CBCHC3C5CM
C5CM3.15 B2B9CNBUBCBOBVL, N
L
AXC8DJI DID7ALAXA4BEASCLA5
〈D
I
, {F
i
}
i∈I
, {f
j
}
j∈J
, {c
k
}
k∈K
〉
? D
I
DIAWBGB9CDBVBQA3AIAGI AXCMBDBTBGABBD,C3BYAG D .
?B2LAXCRBGAHAOACBEBCBOF
i
,DCCZAGnBEAX(i ∈ I), F
i
DIDDAAXAW
BGnBEBKAKA3BX F
i
? D
n
,AIF
i
AGF
i
BKI BUAXC8DJA6
?B2LAXCRBGBNA2ACBEBCBOf
j
,DCCZAG m BEAX (j ∈ J), f
j
DI D DAAX
AWBG m BEBNA2A3BX f
j
: D
m
→ D DIAWBGB2DBA3AIf
j
AG f
j
BKI BU
AXC8DJA6
?B2 L AXCRBGBGABAHBEBCBO C
k
(k ∈ K), c
k
DI D BUAWBGBEA5A3BX
c
k
∈ D,AIc
k
AGc
k
BKI BUAXC8DJA4
CSCFC3C5CM
C5CM3.16 DCI DILAXAWBGC8DJA3D AGI AXCMBDA3N
L
BKI BUAXAW
BGBSCYDIBSD7ALAXBNA2 σ : {x
0
,x
1
,x
2
, ···}→D. APDDA3σ(x
i
) ∈ D AI
AGx
i
BKBSCY σ ALAXBR (i ∈ N)
C5CM 3.18
DCσDIN
L
BKC8DJIBUAXAWBGBSCYA3x
i
DIAWBGBGABACBEBCBOA3a ∈ D,
σ(x
i
/a)DIN
L
BKI BUAXD7ALBSCYA5
σ(x
i
/a)(x
j
)=
braceleftBigg
aj= i
σ(x
j
) j negationslash= i
BXA5 σ(x
i
/a)DIC5σ BUB2 x
i
BSCYAXBRBFAG a,CZBA x
j
(j negationslash= i, j ∈ N)AX
BRA8ALAFACA4 σ(x
i
/a)B8AIAG σ AXAWBG x
i
–BSCYA4
1
CE 3.20
DCL = {F
2
,f
1
1
,f
2
2
,f
2
3
,c}, B2APLCCAXB7D7ALCJBGC8DJA5
(1) I
1
= 〈N, {F
2
}, {f
1
1
, f
2
2
, f
2
3
}, {c}〉, CZBUA5
NAGBZD4A2BVA6
F
2
AGNDAAXANAYBKAKA3BXA5
F
2
= {<n,n> | n ∈ N}
f
1
1
AGNDAAXBRC0BNA2A3BXA5
f
1
1
: N → N, f
1
1
(n)=n +1 (D5 n ∈ N)
f
2
2
AGNDAAXC1B6BNA2A3BXA5
f
2
2
: N
2
→ N, f
2
2
(<m,n>)=m + n (D5 m, n ∈ N)
f
2
3
AGNDAAXAKB6BNA2A3BXA5
f
2
3
: N
2
→ N, f
2
3
(<m,n>)=m · n (D5 m, n ∈ N)
c AGNBUAXBEA50.
(2) I
2
= 〈Q, {F
2
}, {f
1
1
, f
2
2
, f
2
3
}, {c}〉, CZBUA5
QAGB7CFA2BVA6
F
2
AGQDAAXANAYBKAKA6
f
1
1
AGQDAAXC11 BIA6A3BXA5
f
1
1
: Q → Q, f
1
1
(a)=a +1 (D5 a ∈ Q)
f
2
2
BB f
2
3
BA?AGQDAAXC1B6BBAKB6BNA2A4
c D6AGQBUAXBEA50.
CT: ?AWBGAWC6BCATLCCAXB7B4BGAF?AXC8DJA4
2
CLC3CR
DC σ DIN
L
BK I BUAXAWBGBSCYA3D7ALBLCWB0B0 N
L
AXAO tBK I BU σ
ALAXBR t
σ
I
(C3BYAG t
σ
):
(1)AU t AGBGABACBEBCBOx
i
(i ∈ N) DDA3(x
i
)
σ
I
= σ(x
i
).
(2)AG t AGBGABAHBEBCBOc
k
DDA3(c
k
)
σ
I
= c
k
.
(3)AU t AG f
m
(t
1
,t
2
, ···,t
m
) DDA3t
σ
I
= f
m
(t
σ
1
,t
σ
2
, ···,t
σ
m
).
CE
BKCG 3.20BUA3 σ DIN
L
BK I
1
BUAXD7ALBSCYA5
σ(x
i
)=i (D5 i ∈ N)
BMA5 x
σ
i
= σ(x
i
)=i(i ∈ N)
c
σ
= c =0
(f
1
1
(x
1
))
σ
= f
1
1
(x
σ
1
)=f
1
1
(1) = 1 + 1 = 2 ∈ N
(f
2
2
(x
1
,x
2
))
σ
= f
2
2
(x
σ
1
,x
σ
1
)=x
σ
1
+ x
σ
2
=1+2=3
(f
2
3
(x
1
,x
2
))
σ
= f
3
2
(x
σ
1
,x
σ
1
)=x
σ
1
· x
σ
2
=3
(f
1
1
(f
2
2
(x
1
,x
4
)))
σ
= f
1
1
((f
2
2
(x
1
,x
4
))
σ
)=f
1
1
(f
2
2
(x
σ
1
,x
σ
4
))
=(x
σ
1
+ x
σ
4
)+1=1+4+1=6
B2D5D5AZAOt BWBSCY σ, t
σ
∈ D.
3
C7CGC3CR
C5CM3.19 DC σ DIN
L
BKC8DJI BUAXAWBGBSCYA3D7ALBLCWB0B0 N
L
AXA1BHDGα BK I BUA9 σ COC0A2A5
?AUαDIBFBXBHDGF
n
(t
1
,t
2
, ···,t
n
)DDA3αBKIBUA9σCOC0AUD0C9
AUF
n
(t
σ
1
,t
σ
2
, ···,t
σ
n
)AJCHA3BXAUD0C9AU<t
σ
1
,t
σ
2
, ···,t
σ
n
>∈ F
n
.
?AUαAG (?β)DDA3αBKI BUA9 σ COC0AUD0C9AUβ BKI BUAFA9σ
COC0A4
?AU α AG (α
1
→α
2
) DDA3α BKI BUA9 σ COC0AUD0C9AU α
1
BKI BU
AFA9σ COC0BTBN α
2
BKI BUA9 σ COC0A4
?···
?AU αAG(?x
i
)β DDA3αBKI BUA9 σ COC0AUD0C9AUB2CRBGa ∈ D
I
,
β BKI BUB1CXA9σ(x
i
/a) COC0A4
BY α BK I BUA9 σ COC0AG I |
σ
α, BBBMBYAG I |
σ
/α. AQB5
(1) I |
σ
F
n
(t
1
,t
2
, ···,t
n
) AUD0C9AU <t
σ
1
,t
σ
2
, ···,t
σ
n
>∈ F
n
;
(2) I |
σ
?β AUD0C9AU I |
σ
/β;
(3) I |
σ
α
1
→α
2
AUD0C9AUA5D9I |
σ
α
1
, BM I |
σ
α
2
;
(4) I |
σ
(?x
i
)β AUD0C9AUA5B2D5AZ a ∈ D, I |
σ(x
i
/a)
β .
(5) I |
σ
α ∨ β AUD0C9AU I |
σ
α BT I |
σ
β;
(6) I |
σ
α ∧ β AUD0C9AU I |
σ
α B5D0I |
σ
β;
(7) I |
σ
α?β AUD0C9AU I |
σ
α AXAMAUADC4AG I |
σ
β;
(8) I |
σ
(?x
i
)β AUD0C9AUA5ARBK a ∈ D, DFAWI |
σ(x
i
/a)
β
4
CE 3.21
DCL = {F
2
}.
I =< N,{R},?,? > DILAXAWBGC8DJA3CZBU R = {<a,a>|a ∈ N}.
a
1
,a
2
, ···,a
n
, ···AGDBUBEA5AXASCLA3COC0A5a
0
= a
1
= a
2
negationslash= a
3
.
σ DIN
L
BK I BUAXD7ALBSCYA5 σ(x
i
)=a
i
(D5 i ∈ N).
AU α AGK
L
BUALCLBHDGDDA3 I |
σ
α AJCHBBBBA7
(1) F
2
(x
1
,x
2
); (2) F
2
(x
2
,x
3
);
(3) F
2
(x
1
,x
2
)→F
2
(x
2
,x
3
);
(4) ?x
1
F
2
(x
1
,x
2
); (5) ?x
1
?x
2
F(x
1
,x
2
).
C8A5
(1) I |
σ
F
2
(x
1
,x
2
)AUD0C9AU<x
σ
1
,x
σ
2
>∈ F
2
AUD0C9AU<a
1
,a
2
>∈ R.
B6B9a
1
= a
2
, BJ <a
1
,a
2
>∈ R, AQB5I |
σ
F
2
(x
1
,x
2
).
(2) I |
σ
F
2
(x
2
,x
3
)AUD0C9AU<x
σ
2
,x
σ
3
>∈ F
2
,AUD0C9AU<a
2
,a
3
>∈ R.
B6B9a
2
negationslash= a
3
, BJ <a
2
,a
3
>negationslash∈ R, AQB5I |
σ
/F
2
(x
2
,x
3
).
(3) I |
σ
F
2
(x
1
,x
2
)→F
2
(x
2
,x
3
)AUD0C9AUI |
σ
/F
2
(x
1
,x
2
)BTI |
σ
F
2
(x
2
,x
3
).
ATB6 (1)(2)BQA5 I |
σ
/F
2
(x
1
,x
2
)→F
2
(x
2
,x
3
).
(4) I |
σ
?x
1
F
2
(x
1
,x
2
)
AUD0C9AUA5D5AZ a ∈ D, I |
σ(x
1
/a)
F
2
(x
1
,x
2
).
AUD0C9AUA5D5AZ a ∈ D, <x
σ(x
1
/a)
1
,x
σ(x
1
/a)
2
>∈ F
2
.
AUD0C9AUA5D5AZ a ∈ D, <a, a
2
>∈ R.
AT a
3
∈ D, < a
3
,a
2
>negationslash∈ R. AQB5 I |
σ
/ ?x
1
F
2
(x
1
,x
2
).
5
(5) I |
σ
?x
1
?x
2
F
2
(x
1
,x
2
)
AUD0C9AUA5D5AZ a ∈ D, I |
σ(x
1
/a)
?x
2
F
2
(x
1
,x
2
).
AUD0C9AUA5D5AZ a ∈ D, ARBK b ∈ D, DFAWA5
I |
σ(x
1
/a)(x
2
/b)
F
2
(x
1
,x
2
).
AUD0C9AUA5D5AZ a ∈ D, ARBK b ∈ D, DFAWA5 <a, b>∈ R.
C1BRAWBGADC4DIAJCHAXA3B1AGBTAUD3 b = a BXCCA4
BJ I |
σ
?x
1
?x
2
F
2
(x
1
,x
2
).
CE 3.22
LBB I
1
D7CG3.20, σ AGLBK I
1
BUAXD5AWBGBSCYA4AI σ BK I
1
BUDIBB
COC0ALCSAXBHDG β:
?x
1
?x
2
((?x
3
F
2
(f
2
3
(x
1
,x
3
),x
2
) ∧?x
4
F
2
(f
2
3
(x
2
,x
4
),x
1
)) → F
2
(x
1
,x
2
))
C2A5I
1
|
σ
β
?B2D5AZ m
1
∈ N,
I
1
|
σ(x
1
/m
1
)
?x
2
((?x
3
F
2
(f
2
3
(x
1
,x
3
),x
2
)
∧?x
4
F
2
(f
2
3
(x
2
,x
4
),x
1
)) → F
2
(x
1
,x
2
)).
?B2D5AZAX m
1
∈ N, m
2
∈ N,
I
1
|
σ(x
1
/m
1
)(x
2
/m
2
)
(?x
3
F
2
(f
2
3
(x
1
,x
3
),x
2
)∧?x
4
F
2
(f
2
3
(x
2
,x
4
),x
1
))→ F
2
(x
1
,x
2
).
?B2D5AZ m
1
,m
2
∈ N,
D9 I
1
|
σ(x
1
/m
1
)(x
2
/m
2
)
?x
3
F
2
(f
2
3
(x
1
,x
3
),x
2
) ∧?x
4
F
2
(f
2
3
(x
2
,x
4
),x
1
),
BM I
1
|
σ(x
1
/m
1
)(x
2
/m
2
)
F
2
(x
1
,x
2
).
6
?B2D5AZ m
1
,m
2
∈ N,
D9 I
1
|
σ(x
1
/m
1
)(x
2
/m
2
)
?x
3
F
2
(f
2
3
(x
1
,x
3
),x
2
),
D0 I
1
|
σ(x
1
/m
1
)(x
2
/m
2
)
?x
4
F
2
(f
2
3
(x
2
,x
4
),x
1
),
BM I
1
|
σ(x
1
/m
1
)(x
2
/m
2
)
F
2
(x
1
,x
2
).
?B2D5AZ m
1
,m
2
∈ N,
D9ARBK m
3
∈ N DFAW
I
1
|
σ(x
1
/m
1
)(x
2
/m
2
)(x
3
/m
3
)
F
2
(f
2
3
(x
1
,x
3
),x
2
),
D0ARBK m
4
∈ N DFAW
I
1
|
σ(x
1
/m
1
)(x
2
/m
2
)(x
4
/m
4
)
F
2
(f
2
3
(x
2
,x
4
),x
1
),
BM I
1
|
σ(x
1
/m
1
)(x
2
/m
2
)
F
2
(x
1
,x
2
).
?B2D5AZ m
1
,m
2
∈ N,
D9ARBK m
3
∈ N DFAWm
1
· m
3
= m
2
,
D0ARBK m
4
∈ N DFAWm
2
· m
4
= m
1
,
BM m
1
= m
2
.
?B2D5AZ m
1
,m
2
∈ N, D9 m
1
|m
2
, D0 m
2
|m
1
, BM m
1
= m
2
.
AQB5I
1
|
σ
β .
CCCIC4, B2LBK I
2
BUAXD5AWBGBSCY σ,
I
2
|
σ
β ? B2D5AZ m
1
,m
2
∈ Q,
D9ARBK m
3
∈ Q DFAWm
1
· m
3
= m
2
,
D0ARBK m
4
∈ Q DFAWm
2
· m
4
= m
1
,
BM m
1
= m
2
.
AQB5I
2
|
σ
/β
7
C5CD 3.13
DCσ
1
,σ
2
DIN
L
BKCZCVBGC8DJI BUAXCJBGBSCYA3t(v
1
,v
2
, ···,v
n
)
DIN
L
AXAWBGAOA3CZBUA5 v
1
,v
2
, ···,v
n
DI N
L
AXBGABACBEBCBOA3
t(v
1
,v
2
, ···,v
n
) BUANAMAXBGABACBEBCBOB1BK v
1
,v
2
, ···,v
n
BUA3
D9B2D5AZ i :1≤ i ≤ n, σ
1
(v
i
)=σ
2
(v
i
),BM t
σ
1
= t
σ
2
.
CQA5B2 t AXBEBJARBLCWBPCTA3BXB2tBUA7BMAXBNA2ACBEBCBOAXBGA2 d
CAAQBLCWBPCTA4
(1)AU d =0DDA3t AGBGABACBEBCBOBTBGABAHBEBCBOA4
(1.1)D9 t AGBGABACBEBCBOA3BM t ABAG v
1
,v
2
, ···,v
n
BUAXCVAW
BGA3AFB7DC t = v
i
(CV i :1≤ i ≤ n),BMA5
t
σ
1
= v
σ
1
i
= σ
1
(v
i
)=σ
2
(v
i
)=v
σ
2
i
= t
σ
2
(1.2)D9tAGBGABACBEBCBOcDDA3BMA5 t
σ
1
= c
σ
1
= c = c
σ
2
= t
σ
2
.
(2)C2DCd<lDDCUAAAJCHA3CBAG d = l DDD1AP (l>0).
DC t BUBMB7 l BGBNA2ACBEBCBOA3 t = f
m
(t
1
,t
2
, ···,t
m
), CZ
BUA5 f
m
DILBUAXAWBG mBEBNA2ACBEBCBOA3t
1
,t
2
, ···,t
m
DI N
L
AXAOA3B6BLCWC2DCAWA5 t
σ
1
1
= t
σ
2
1
, t
σ
1
2
= t
σ
2
2
, ···, t
σ
1
m
= t
σ
2
m
, AQB5
t
σ
1
= f
m
(t
σ
1
1
,t
σ
1
2
, ···,t
σ
1
m
)=f
m
(t
σ
2
1
,t
σ
2
2
, ···,t
σ
2
m
)=t
σ
2
.
BLCWBPAFA3CUAAAJCHA4
B0CF3.13 A3CTA5AO t(v
1
,v
2
, ···,v
n
) BKBSCY σ ALAXBR t
σ
BTBB
σ B2 t BUANAMAXBGABACBEBCBO v
1
,v
2
, ···,v
n
BSCYAXBRB7BKA3BB σ
B2CZA8BGABACBEBCBOBSCYAXBRAJBKA4
8
C5CD 3.14
DCσ
1
,σ
2
DIN
L
BKCZCVBGC8DJI BUAXCJBGBSCYA3α(v
1
,v
2
, ···,v
n
)
DIN
L
AXAWBGBHDGA3CZBUA5v
1
,v
2
, ···,v
n
DIN
L
AXBGABACBEBCBOA3
α(v
1
,v
2
, ···,v
n
)AXBZB6ACBEBCBOB1BK v
1
,v
2
, ···,v
n
BUA3D9B2D5
AZ i :1≤ i ≤ n, σ
1
(v
i
)=σ
2
(v
i
),BM I |
σ
1
α AUD0C9AUI |
σ
2
α
CQA5B2BHDGα BUA7BMAXCIC7AOBBCKAOAXBGA2 d CAAQBLCWBPCTA4
(1) AU d =0DDA3α AGBFBXBHDGA3DC α AG F
n
(t
1
,t
2
, ···,t
n
),
CZBUA5 F
n
AGLAXAWBG n BEAHAOACBEBCBOA3t
1
,t
2
, ···,t
n
DIN
L
AXAOA4B6B9α BUCQB7CKAOA3BMBKt
i
BUANAMAXCRBGBGABACBEBCBOB1DI
α AXBZB6ACBE (1 ≤ i ≤ n), AQB5BK t
i
BUANAMAXCRBGBGABACBEBCBOBK
σ
1
BB σ
2
ALAXBSCYAXBRANAYA3B6B0CF3.13BQA5B2D5AZ i :1≤ i ≤ n,
t
σ
1
i
= t
σ
2
i
. AQB5I |
σ
1
α AUD0C9AU I |
σ
1
F
n
(t
1
,t
2
, ···,t
n
),
AUD0C9AU <t
σ
1
1
,t
σ
1
2
, ···,t
σ
1
n
>∈ F
n
,
AUD0C9AU <t
σ
2
1
,t
σ
2
2
, ···,t
σ
2
n
>∈ F
n
,
AUD0C9AU I |
σ
2
F
n
(t
1
,t
2
, ···,t
n
),
AUD0C9AU I |
σ
2
‘
α.
(2) C2DCCUAAB2A7B7COC0 d<lAX d AJCHA3CBAG d = l DDD1AP
(l ≥ 1).
(2.1)AUαAG(?β)DDA3B6BLCWC2DCBQA5I |
σ
1
βAUD0C9AUI |
σ
2
β.
AQB5I |
σ
1
α AUD0C9AUI |
σ
1
?β AUD0C9AUI |
σ
1
/β
AUD0C9AUI |
σ
2
/β AUD0C9AUI |
σ
2
?β
AUD0C9AUI |
σ
2
α.
9
(2.2)AU α AG (α
1
→α
2
) DDA3B6BLCWC2DCBQA5
I |
σ
1
α
1
AUD0C9AUI |
σ
2
α
1
, I |
σ
1
α
2
AUD0C9AUI |
σ
2
α
2
.
AQB5I |
σ
1
α AUD0C9AUI |
σ
1
α
1
→α
2
AUD0C9AUI |
σ
1
/α
1
BT I |
σ
1
α
2
AUD0C9AUI |
σ
2
/α
1
BT I |
σ
2
α
2
AUD0C9AUI |
σ
2
α
1
→α
2
AUD0C9AUI |
σ
2
α.
(2.3)AUαAG(?v
0
)β DDA3CZBU v
0
AGLAXAWBGBGABACBEBCBOA4B6
B9α AXBZB6ACBEBCBOB1BK v
1
,v
2
, ···,v
n
BUA3BJ β AXBZB6ACBEBCBO
B1BK v
0
,v
1
,v
2
, ···,v
n
BUA4
BWAZAVA5σ
1
(v
0
/a)(v
i
)=σ
2
(v
0
/a)(v
i
)(B2D5AZAXi :0≤ i ≤ n).
B6BLCWC2DCAWA5 I |
σ
1
(v
0
/a)
β AUD0C9AU I |
σ
2
(v
0
/a)
β,
AQB5I |
σ
1
α AUD0C9AUI |
σ
1
?v
0
β.
AUD0C9AUA5B2D5AZ a ∈ D, I |
σ
1
(v
0
/a)
β.
AUD0C9AUA5B2D5AZ a ∈ D, I |
σ
2
(v
0
/a)
β.
AUD0C9AUI |
σ
2
?v
0
β.
AUD0C9AUI |
σ
2
α.
BLCWBPAFA3CUAAAJCHA4
B0CF3.14DIA3A5B2BHDGα(v
1
,v
2
, ···,v
n
)CEA3A3“ I |
σ
α ”AJ
CHBBBBBTBBσ B2αAXCXCVCUCWv
1
,v
2
, ···,v
n
BSCYAXBRB7BKA3BB σ
B2CZA8BGABACBEBCBOBSCYAXBRAJBKA3
10
CJC9C5CD
CNCD
DC s, x
i
BP t BA?DIN
L
BUAXAOA0BGABACBEBCBOBPAOA4 s
prime
DIC5s BU
A7B7x
i
BSAGtA7AWAXAOA4σ AGN
L
BKCZCVBGC8DJI BUAXAWBGBSCYA3
σ
prime
= σ(x
i
/t
σ
). BM s
σ
prime
=(s
prime
)
σ
.
s
σ
prime
: ··· σ
prime
(x
i
) ··· ··· σ
prime
(x
i
) ···
↓↓
s :(··· x
i
··· ··· x
i
··· )
s
prime
:(··· t ··· ··· t ··· )
↑↑
(s
prime
)
σ
: ··· t
σ
··· ··· t
σ
···
CQA5B2 s AXBEBJARBLCWBPCTA5 s
σ
prime
=(s
prime
)
σ
(?)
(1)AU sAGBGABACBEBCBODDA4
(1.1)D9 s AG x
i
, BM s
prime
AG t,AQB5s
σ
prime
= σ
prime
(x
i
)=t
σ
=(s
prime
)
σ
.
(1.2) D9 s AGBGABACBEBCBO x
j
(j negationslash= i), BM s
prime
AVAG x
j
, AQB5
s
σ
prime
= σ
prime
(x
j
)=σ(x
j
)=(s
prime
)
σ
.
(1.3)D9sAGBGABACAHBEBCBOc,BMs
prime
AVAGc,AQB5s
σ
prime
= c =(s
prime
)
σ
.
(2)D9 s DIAPD7 f
m
(s
1
,s
2
, ···,s
m
) AXAOA3CZBUA5 f
m
DILAX
AWBG m BEBNA2ACBEBCBOA3s
1
,s
2
, ···,s
m
DIN
L
BUAOA4AX s
prime
j
BYA5
C5 s
j
BUA7B7 x
i
BSAG t AWAVAXAO (D5 j :1≤ j ≤ m). BMA5 s
prime
=
f
m
(s
prime
1
,s
prime
2
, ···,s
prime
m
). B6BLCWC2DCBQA5s
σ
prime
j
=(s
prime
j
)
σ
(1 ≤ j ≤ m),BMA5
s
σ
prime
= f
m
(s
σ
prime
1
,s
σ
prime
2
, ···,s
σ
prime
m
)=f
m
((s
prime
1
)
σ
, (s
prime
2
)
σ
, ···, (s
prime
m
)
σ
)=(s
prime
)
σ
.
BLCWBPAAA3(?) AJCHA4
11
C5CD 3.15
DC α, x
i
BP t BA?DIN
L
BUAXBHDGA0BGABACBEBCBOBPAOA3 t B2 x
i
BK
αBUBZB6A4σ AGN
L
BKCZCVBGC8DJI BUAXAWBGBSCYA3σ
prime
= σ(x
i
/t
σ
),
α
prime
= α(x
i
/t). BM I |
σ
α
prime
AUD0C9AUI |
σ
prime
α.
I |
σ
prime
α : ··· σ
prime
(x
i
) ··· (AJBK) ··· σ
prime
(x
i
) ···
↓ (BYB5) ↓ (BGA0) ↓ (BYB5)
α :(··· x
i
··· x
i
··· x
i
···)
α
prime
:(··· t ··· x
i
··· t ···)
↑↑↑
I |
σ
α
prime
: ··· t
σ
··· (AJBK) ··· t
σ
···
CQA5ALB2 α BLCWBPCTA5B2LBK I BUAXD5AZBSCY σ,
I |
σ
α(x
i
/t) AUD0C9AU I |
σ
prime
α.(??)
(1) AU α DIBFBXBHDG F
n
(s
1
,s
2
, ···,s
n
) DDA3AX s
prime
j
BYC5 s
j
BUA7B7 x
i
BSAG t AWAVAXAO (D5 j :1≤ j ≤ n). BM α(x
i
/t)=
F
n
(s
prime
1
,s
prime
2
, ···,s
prime
n
). B6 (?) BQ s
σ
prime
j
=(s
prime
j
)
σ
(D5 j :1≤ j ≤ n). AQ
B5 I |
σ
prime
α? <s
σ
prime
1
,s
σ
prime
2
, ···,s
σ
prime
n
>∈ F
n
? <(s
prime
1
)
σ
, (s
prime
2
)
σ
,···, (s
prime
n
)
σ
>
∈ F
n
? I |
σ
F
n
(s
prime
1
,s
prime
2
, ···,s
prime
n
)? I |
σ
α(x
i
/t).
(2)AUαAG(?β)DDA3α(x
i
/t)AG(?β)(x
i
/t),BXAG?(β(x
i
/t)).
B6BLCWC2DCBQ I |
σ
prime
β AUD0C9AUI |
σ
β(x
i
/t). AQB5I |
σ
prime
/βAUD0C9
AU I |
σ
/β(x
i
/t), BX I |
σ
prime
?β AUD0C9AU I |
σ
?β(x
i
/t), BJ I |
σ
prime
α
AUD0C9AUI |
σ
α(x
i
/t).
(3)AUαAGα
1
→α
2
DDA3α(x
i
/t)AG α
1
(x
i
/t)→α
2
(x
i
/t). B2α
1
BP α
2
DFB4BLCWC2DCAYBP(??) AJCHA4
12
(4)AU α AG (?x
j
)β DDA4
(4.1)D9i = j,BMA5αBUA7B7x
i
B1DIBHA1ANAMA3AQB5α(x
i
/t)=α.
B6B9σ BB σ
prime
B2AFDIx
i
AXBGABACBEBCBOBSCYAXBRAN?A3B6B0CF 3.14
BQ I |
σ
α(x
i
/t) ? I |
σ
α ? I |
σ
prime
α
(4.2)D9 i negationslash= j, BMA5 α(x
i
/t) AG (?x
j
)β(x
i
/t). B6B9t B2 x
i
BK α
BUBZB6A3BJ x
i
AFBK α BUBZB6ANAMBTBN x
j
AFBK t BUANAMA4
(4.2.1)D9 x
i
AFBK α BUBZB6ANAMA3B8 (4.1)CCBP (??) AJCHA4
(4.2.2) D9 x
j
AFBK t BUANAMA3B6B0CF 3.13 AWA5B2D5AZ a ∈ D,
t
σ(x
j
/a)
= t
σ
. AQB5
I |
σ
α(x
i
/t)
AUD0C9AUI |
σ
(?x
j
)β(x
i
/t),
AUD0C9AUA5B2D5AZ a ∈ D, I |
σ(x
j
/a)
β(x
i
/t).
AUD0C9AUA5B2D5AZ a ∈ D, I |
σ
primeprime
β(x
i
/t), σ
primeprime
= σ(x
j
/a)
AUD0C9AUA5B2D5AZ a ∈ D, I |
σ
primeprime
(x
i
/t
σ
primeprime
)
β,(BLCWC2DC)
AUD0C9AUA5B2D5AZ a ∈ D, I |
σ
primeprime
(x
i
/t
σ
)
β,
AUD0C9AUA5B2D5AZ a ∈ D, I |
σ(x
j
/a)(x
i
/t
σ
)
β.
AUD0C9AUA5B2D5AZ a ∈ D, I |
σ(x
i
/t
σ
)(x
j
/a)
β,
(σ(x
j
/a)(x
i
/t
σ
)=σ(x
i
/t
σ
)(x
j
/a))
AUD0C9AUI |
σ(x
i
/t
σ
)
(?x
j
)β,
AUD0C9AUI |
σ(x
i
/t
σ
)
α.
BLCWBPAFA3 (??)AJCHA4 BPAAA4
13
CPCOCA
C5CM3.20DC α AGN
L
AXAWBGBHDGA3I AGN
L
AXAWBGC8DJA3
?D9B2N
L
BK I BUAXCRBGBSCY σ B1B7 I |
σ
α, BMAI α BK I BUBOA3
BYAG I |= α.
?D9B2N
L
BK I BUAXCRBGBSCY σ B1B7 I |
σ
/α, BMAI α BK I BUC2A4
AX I negationslash|= α ADDHα BK I BUAFBOA4BWAZI negationslash|= α BB α BK IBUC2AXD2?A4
CTA5N
L
BUCCCXARBKBHDGα, α BK N
L
AXCVBGC8DJBUBZAFBOAVAFC2A4
C5CD 3.16
DC α, β DIN
L
AXBHDGA3I DIN
L
AXC8DJA3BM
(1) α BK I BUBO(C2)??α BK I BUC2 (BO) ???α BK I BUBO(C2).
(2) α→β BK I BUC2? α BK I BUBOD0 β BK I BUC2A4
CKA5A1 α→β BK I BUBO? α BK I BUC2BTβ BK I BUBOA2AJCHBBBBA7
C5CD 3.17
D9 I |= α, D0 I |= α→β, BM I |= β.
C5CD 3.18
I |= α AUD0C9AUI |=(?x
i
)α.
CQA5(?)DCI |= α. AUBPI |=(?x
i
)α,BTAUBPA5B2N
L
BKI BUAXD5AW
BGBSCY σ, D5AZ a ∈ D, I |
σ(x
i
/a)
α. BWAZI |= α BXCCA4
(?) DC I |= ?x
i
α, ALBP I |= α. B2 N
L
BK I BUAXD5AWBGBSCY
σ, B1 I |
σ
(?x
i
)α, BJB2D5AZ a ∈ D, I |
σ(x
i
/a)
α. A9?AZA3D3
a
0
= σ(x
i
) ∈ D,BM I |
σ(x
i
/a
0
)
α. B5 σ(x
i
/a
0
)=σ, BJ I |
σ
α.
14
C5CM 3.21
DC α AGN
L
AXAWBGBHDGA4
(1)AI α DIB3BODGA3D9 α BK N
L
AXD5AWBGC8DJBUB1AGBOA3BYAG|= α;
(2)AI α AGCPB3DGBTB3C2DGA3D9α BKN
L
AXD5AWC8DJBUB1AGC2A4
AYBPA5
(1) |= α AUD0C9AUA5B2D5AWC8DJI BWD5AWBSCY σ, I |
σ
α.
(2) α DIB3C2DGAUD0C9AUA5B2D5AWC8DJI BUBWD5AWBSCY σ, I |
σ
/α.
C5CD 3.20
B2N
L
AXD5AZBHDGα, β.
(1) α B3BO(C2) ?? ? α B3C2 (BO);
(2) α→β B3C2?? α B3BOD0 β B3C2A6
(3)D9|= α D0|= α→β, BM|= β;
(4) |= α ?? |=(?x
i
)α
C5CM3.9
DCαAGNBUBHDGA3C5BKαBUANAMAXA7B7CUAAACBEBCBOp
0
,p
1
, ···,p
n
?DDBA?BSAGLAXBHDGα
0
,α
1
,α
2
, ···,α
n
,AWAVAXLBUBHDGβ AI
AG α BKLBUAXAWBGASD8DECGA4
15
C5CD 3.21
D9α
prime
DIPBUAXAWBGBVATDGA3BM α
prime
BKN
L
BUAXD5AWBGASD8DECGαDI
B3BODGA4
CQA5DC α
prime
BUANAMAXCUAAACBEBCBOB1BK p
0
,p
1
,p
2
, ···,p
k
BUA3α DI
C5 α
prime
BUA7B7p
i
B1ACBSAGN
L
BUBHDGα
i
AWAVAXBHDG (0 ≤ i ≤ k). AU
BP α DIB3BODGA3BTAUBPA5B2 N
L
AXD5AWBGC8DJI BW N
L
BK I BUAXD5
AWBGBSCY σ, I |
σ
α, AGAPBIBLPAXAWBGBSCY v D7ALA5
v : {p
0
,p
1
, ···,p
n
,···}?→{0, 1}
v(p
i
)=
?
?
?
?
?
?
?
1 D9 0 ≤ i ≤ k D0 I |
σ
α
i
0 D9 0 ≤ i ≤ k D0 I |
σ
/α
i
0 i>k
AXALB2 α
prime
AXBEBJARBLCWBPCTA5 I |
σ
α AUD0C9AUv(α
prime
)=1 (?)
(1)AU α
prime
AGCUAAACBEBCBOp
i
(CV i :0≤ i ≤ k) DDA3BM α AG α
i
,
AQB5v(α
prime
)=1?? v(p
i
)=1?? I |
σ
α
i
?? I |
σ
α.
(2)AUα
prime
DI?β
prime
DDA3DCβ AGC5β
prime
BU p
0
,p
1
,p
2
, ···,p
k
BA?AC
BSAG α
0
,α
1
,α
2
, ···,α
k
AWAVAXN
L
BUAXBHDGA3BM α AG?β. B6BL
CWC2DCBQA5 I |
σ
β AUD0C9AUv(β
prime
)=1.AQB5 I |
σ
α ?? I |
σ
?β
?? I |
σ
/β?? v(β
prime
)=0?? v(?β
prime
)=1?? v(α
prime
)=1.
(3)AU α
prime
AG α
prime
1
→α
prime
2
DDA3B8(2)CCBPA4
BLCWBPAFA3 (?) AJCHA4
AQB5A3B6B9α
prime
AGPAXBVATDGA3BJv(α
prime
)=1,A7AXA3 I |
σ
α.
16