习题三解答
设总体X的数学期望已知,方差未知,为来自X的样本。下列表达式中哪些是统计量:
1); 2); 3);
4);5)。
答:1)、2)、3)是统计量,4)、5)不是。
某大型写字楼中工作人员上下班花在路上的时间X服从均值为87分钟,标准差22分钟的正态分布。从中任取16个人。
求样本均值的标准差;
求样本均值小于100分钟的概率;
求样本均值大于80分钟的概率;
求样本均值在85分钟和95分钟之间的概率;
假设独立地抽取50人,不做任何计算,说明对于第二个样本,问题2),3)和4)中的概率会比第一个样本的大,小或相同?请画图说明。
解:1)
2)
3)
4) 5)抽取50个人的样本均值标准差为3.1,通过下图
(n=50,标准差为3.1)
(n=16,标准差为5.5)
O 80 85 87 95 100 X
可以看出,独立地抽取50个人时样本的概率2)、3)、4)要比第一个样本大。
3.根据美国统计局的统计结果,波士顿地区的平均家庭收入为37907美元,标准差为15102美元。假设从波士顿地区随机抽取100个家庭的样本,用表示样本均值。
1)服从什么分布?
2)的取值超过35000美元的概率为多少?
解:1)大样本,近似服从均值为37907美元,标准差为1510.2美元的正态分布。
2)
4.某大商场发现在购买VCD机的顾客中,有30%会同时购买光盘。从这些顾客中随机地抽取280人。
求这些人中同时购买光盘的人数比率的标准差;
求样本比率超过0.25的概率;
求样本比率低于0.32的概率;
不做任何计算,判断样本比率最可能落在哪个区间:0.29-0.31,0.30-0.32,0.31-0.33,0.32-0.34?
解:1)顾客在购买VCD机时同时会购买光盘的人数比率p=0.3,则其标准差。
2)
3)
4)样本比率最可能落在区间(0.29,0.31)。
5.已知一大批计算机芯片的次品率为10%,设从中随机地抽取一个容量为100的样本。
令Y为这个样本中含次品的个数,则Y服从什么分布?
这个样本含次品个数的期望值是多少?这个数值代表什么意思?
样本中含次品个数的标准差为多少?
写出样本中的次品数恰好为10的概率的计算公式(不必算出结果)。
近似地计算样本中的次品数在7到12之间的概率(不需要大量的数字运算)。
解:1)Y服从二项分布,Y~B(100,0.1)。
2),这个数值代表样本可能次品数的均值为10。
3)
4)
根据中心极限定理: