1
a0a1a2
a3 GJ.0311
a4a5a6a7a8a9a10a11a11a12
a13
a14a15
a16a17a18a19 2003
a20a21a22a23a24
a192006
a251 a269 a27
a28a29 a30a2
06030 a31a32
a33a2 a34 a35 a36 a37 a38 a39 a40 a41a42
a43a42
a44a45a46a47a48a49a50 (
a51a52a53a54a55a56a57a58a59a60a61
a62a63
a19a64a65
a50 4
a66
a19a6720
a66).
1,a68a69
a36a70a71
ABC a19a72
a73a74a75a76a77a78a79a80a81a82a83a84a85
A,a86
a87a88B.
a89
a87a88C.
a76a90a91
a88D.
a92
a87a93 ( A B C D )
2,a72
a94a95a96a76
a19
a77a78a97a98a34a99a100a34a95a101a102a103a35a104a105a91
Γ,
A,a106
a107a108a81a109
a68a110
a84a91a111
a88
B.a112a113
a114a115a116a38a117
(a118
a76a119a37a117a120a91
) a88
C.a112a113
a114a115a116a37a117
(a118
a76a119a36a117a120a91
) a121a118
a76a34a117a122a84a123a91
a88
D.
3summationtext
i,j=1
aijxixj = 0 (aij = aji)a124|aij|negationslash= 0,( A B C D )
3,a125
a29a34a95a101a102a103a35a104a105a91a126a127a79a128
a87
a105a91a84a129a130a126
a93
A,A33
a126a127a101a131
a88 B,Γ
a132l∞
a126a127a82a133a123
a88
C,Γ
a126a127a134a128a135a136a91
a88 D,Γ
a84a115a34a137a138a126a127a139a140a120a141a137a138
a93
( A B C D )
4,a125
a29a101a102a103a35a104a105a91
Γ
a84
a106
a95a137a138
l,lprime
a79a120a141a137a138a84a129a130a126
a93
A.
a34a95a137a138a114a84a119a142a143a117a126a144a34a137a138a84a145a117
a88
B.
a140a146a147a137a70a148a149a150
a72a19a151 l,lprime
a84a152a153a42a29a79
k,kprime,a154a155a156a157kkprime =?1;
C.a151t,tprime
a79
Γ
a84
a106
a95a135a136a91
a19
a154a155 (llprime,ttprime) =?1;
D,l,lprime
a79a158
Γ
a84a76
a87
a79a111
a87
a84a91a111a76a159a34
a68a160
a72
a84a34
a68a68a110
a137a91
a93
( A B C D )
5,a72
a94a117
a68
A,(1,0,0) a132(1,1,?2);
C,(1,1,1) a132(0,0,1);
B,(0,1,0) a132(4,5,7);
D,(1,0,1) a132(1,2,3).
a126a161
a69
a35a104a105a91
Γ,x21 + x22 + x23?6x1x2 + 2x1x3 + 2x2x3 = 0
a84a120a141a117
a93 ( A B C D )
2 a162
a163a164a165a166 (
a167a168a169a170 a171
√a172
a173a174a175
a169a170 a171×a172a173a176a177a166 1a178
a173a179 5
a178).
1,a180a181
a182a183a184a185a186a187a188a189a190a191a192a193a194a195a196a197a198
( )
2,a199
a200a201a183a184a185a186Γ
1 a202
a203
a199
a200a201a183a184a185a186Γ
a204
a205a194a206a207
a181
a182
a199
a200a201a183a208a185
a186
Γ2,( )
3,a171
a209a192a195
a210a197
a204a211
a212a213
a172
a207a214a215a216a217
a204
a218a219a220a221a198
( )
4,a222a211
a223
a204a180
a217a183a224a215a225a226a227a228a229a230a231
a181
a192a232a226a196a233
a181
a182a232a226a234a186a198
( )
5,a235a203
a183a184a185a186
Γ,S ≡
3summationtext
i,j=1
aijxixj = 0 (aij = aji),A33
a236
a214a215a232a226a237a198
( )
a238
a163a239a240a166 (a176a177a1668
a178
a173a17916
a178).
1,a235
a203
a183a184a185a186
Γ,S ≡
3summationtext
i,j=1
aijxixj = 0,aij = aji,(aij) ≥ 1,a241a242a243
a244a245a246a247a248a198
(1),a249a250
a183a184a185a186
a204
a251a252a196
a204
a253a254a198
(2),a255a0Γa188a163a189
a251a252a196
a204
a1a2a207a3a4a5
(3).
a231a3a4a182a6a245
a173 Γ
a188a7
a181
a251a252a196
a173
a188a189a8a191
a204
a251a252a196a5
(4),a9a10Γa188
a251a252a196
P0,P0
a202
a203Γ
a204
a194a186a207a11a7
a181
a230a231a5
a236
a3a4a5
3
2,a12
a13a14a15a16a17
Γ,S ≡ x21 + x22?2x1x2 + 2x1x3 + 2x2x3 = 0,
(1),a18
a19a17
l[1,?1,0] a20
a21Γ
a22
a23a24a25a26a27
(2),a18
a24
P(1,1,1) a20
a21Γ
a22
a23a17a28a29a27
a30
a31
a32a33a34(16
a35).a36a37
a38
a39a40a41a42a43a44a14a15a16a17
Γa45a46
a24
T a22a47
a19a17
l,lprimea48
a49a50
Γa51
a21X,Y ;A,B,BX ×AY = C; AX ×BY = D,CD
a51 Γa21E,F; a51 la21S,a52
Ra53Γa45a54a46
a24
a38RF ×l = P; RE ×l = Q.
a18
a55a56
(1),a57
a24a58
CDT a53Γ a22a46
a59
a60a23
a57
a24a58a27
(2),TE,TF a48
a49a50
Γ a61a62
a21
E,F.
(3).
a41
Γa45a63(EF,XY ) =?1.
(4),S,T; P,Q a64
a24a65
l a45a66
X,Y a53
a40a67a24
a22
a68a69
a22a47
a68a68a70
a24a27
4
a71
a31
a32a33a34 (12
a35).a72A,Ba53a20
a21
a14a15a16a17
Γ a22
a73a74a24
a38
a39
Aa54a75a46a76
a17
a51
Γa21Q,Ra38a77BQ,BRa48
a49
a51Γa21S,P.
a18
a55a56 A,S,P
a57
a24a73a17a27
a78
a31
a79a80a34
(15a35),a12
a13a42a43a44a14a15a16a17
Γa45a61a81a82
a24
A,B,C,D(a83a84
a85
a57
a24
a73a17
)a38a66
a86Γa41A
a87a22a62
a17
aa38a52
a19a17
p
a39a24
Aa88
a40a89
a21a(
a36a37).
a18a75
a56 p
a50
Γ a22
a90
a46
a59
a51
a24
E,(a91a18
a56
a75a37
a92a93a94
a75a95
a96a55a97a27
)
5
a98
a31a99a100
a34 (16
a35),a12
a13a14a15a16a17
Γ,x21 + 2x23 + 4x1x2 + x1x3 = 0.
(1),a55a97Γa64a46
a101a102a16a17
a103
(2),a18Γ a22a84
a104
a25a26a96a105a106a17a28a29
a103
(3),a18
a107a108a25a26a67a109a110
a38a111 Γ
a22
a28a29a44
a53
a107a108a26a112a28a29a27