强迫运动
9.1 概述用于分析具有地基输入加速度、速度和位移的约束结构常见例子是地震(瞬态分析)、正弦扫描器测试仿真(频响分析)
Nastran中将作用在未约束结构上的力转化为等效约束结构的强迫运动使用的方法有:大质量法、大刚度法、Lagrange乘子法
9.2 瞬态分析中的强迫运动如果卡片TLOADi中的第5字段选择,给定的加速度、速度、位移不会执行
Nastran中仅能作用力{P(t)}在结构上,如果选择强迫运动,即假设用户在大质量上施加了一个运动,因此作用在大质量上的力是与加速度成正比的
9.3 瞬态分析中的大质量法对强迫加速度
对作用在大质量上的力P可以得到期望的,质量ML 在卡片CMASSi 或 CONM2 中输入;比例因子 ML (对力)在 DAREA 或DLOAD 中输入对瞬态响应中期望,用卡片TLOAD1或TLOAD2的第5字段进行区分大质量应该为结构质量的103~108倍,106倍效果最好根据卡片TLOADi输入的强迫加速度、速度、位移得到加速度历程定义
b) 强迫加速度强迫速度强迫位移使用大质量法,同样要乘比例因子
9.4 瞬态分析中的大刚度法对强迫位移,
作用力P于弹簧或结构表面得到期望的,弹簧KL 在卡片CELAS1 或 CELAS2 中输入;比例因子 KL 在 DAREA 或DLOAD 中输入大质量应该为结构质量的102~104倍,其中为激励的截断频率
9.5 瞬态分析中的LAGRANGE乘子法通过DMIG或模拟约束的瞬态函数增加动态矩阵的行和列每行表示如下形式的约束每列表示称为Lagrange乘子的附加自由度,其值为第j个约束自由度的约束力在直接瞬态分析中,EPOINTs,SPOINTs或GRID用于描述Lagrange乘子,模态响应分析中仅用EPOINTs
Nastran输入中需要设置卡片SDCOMP = 32
9.6 强迫位移例子
(1)大质量法在TLOAD1的第5字段中,指定uB为强迫运动
(2)大刚度法在TLOAD1中指定PB为力,乘以强迫运动值kB,在DAREA中输入
Large Mass Method
SOL 109
TIME 10
CEND
TITLE=SDOF,GROUND MOTION
SUBTI= LARGE MASS
LABEL = X VIA X
SET 1=1
DLOAD=105
TSTEP=6
DISPL=ALL
ACCEL=ALL
OLOAD=1
BEGIN BULK
DAREA,105,1,1,1.0E8
CONM2,3,2,,1.0
CONM2,999,1,,1.0E8
CROD,1,1,1,2
GRID,1,,0.,0.,0.,,23456
GRID,2,,1.,0.,0.,,23456
MAT1,1,1.,,0.
PARAM,USETPRT,1
PROD,1,1,39.4784
TABLED1,8,,,,,,,,+TAB1
+TAB1,0.,0.,.025,0.,.05,0.,.075,0.,+TAB2
+TAB2,5.075,12.5,10.075,25.0,ENDT
TLOAD1,105,105,,1,8
TSTEP,6,199,.025,1
ENDDATA
Large Stiffness Method
SOL 109
TIME 10
CEND
TITLE=SDOF,GROUND MOTION
SUBTI= LARGE STIFFNESS
LABEL = X VIA FORCING
SET 1=1
SPC = 100
DLOAD=105
TSTEP=6
DISPL=ALL
ACCEL=ALL
OLOAD=1
BEGIN BULK
DAREA,105,1,1,4.0E8
CONM2,3,2,,1.0
CROD,1,1,1,2
GRID,1,,0.,0.,0.,,23456
GRID,2,,1.,0.,0.,,23456
GRID,99,,-1.,0.,0.
SPC,100,99,123456
CELAS2,5,4.0E8,99,1,1,1
MAT1,1,1.,,0.
PARAM,USETPRT,1
PROD,1,1,39.4784
TABLED1,8,,,,,,,,+TAB1
+TAB1,0.,0.,.025,0.,.05,0.,.075,0.,+TAB2
+TAB2,5.075,12.5,10.075,25.0,ENDT
TLOAD1,105,105,,0,8
TSTEP,6,199,.025,1
ENDDATA
(3)Lagrange乘子法运动方程(静力部分)为其中,x为一个小整数,用K2PP输入Lagrange乘子
Lagrange Multiplier Method
SOL 109
TIME 10
CEND
TITLE=SDOF,GROUND MOTION
SUBTI= LAGRANGE MULT - DISPL
K2PP=STIF
SET 1=1
DLOAD=105
TSTEP=6
DISPL=ALL
ACCEL=ALL
OLOAD=ALL
BEGIN BULK
DAREA,105,1001,0,1.0
CONM2,3,2,,1.0
CROD,1,1,1,2
DMIG,STIF,0,6,1,0
DMIG,STIF,1001,,,101,,-1.0E-10
DMIG,STIF,1001,,,1,1,.1
EPOINT,1001
GRID,1,,0.,0.,0.,,23456
GRID,2,,1.,0.,0.,,23456
MAT1,1,1.,,0.
PARAM,USETPRT,1
PROD,1,1,39.4784
TABLED1,8,,,,,,,,+TAB1
+TAB1,0.,0.,.025,0.,.05,0.,.075,0.,+TAB2
+TAB2,5.075,12.5,10.075,25.0,ENDT
TLOAD1,105,105,,1,8
TSTEP,6,199,.025,1
ENDDATA
9.7 频率响应分析中的大质量法
在频率响应中,假设输入和响应都为简谐函数动力学方程为施加加速度如瞬态分析中的大质量法一样,使大质量移动的力和加速度为因此,
对施加位移可以得到加速度为因此作用力为其中,或由卡片TABLED1或TABLED4输入
9.8 频率响应分析中的大刚度法
与大质量方法一样,期望的力为对施加位移,力为对施加加速度,力为用TABLED1 输入或
9.9 例子:具有强迫加速度的直接瞬态响应问题:一250Hz的单位加速度正弦脉冲作用在地基的z方向,1000lb的大质量施加在基础上,结构阻尼系数为0.06,在250Hz处将结构阻尼转化为等效粘性阻尼输入文件
ID SEMINAR,PROB7
SOL 109
TIME 30
CEND
TITLE = TRANSIENT RESPONSE WITH BASE EXCITATION
SUBTITLE = USING DIRECT TRANSIENT METHOD,NO REDUCTION
ECHO = UNSORTED
SPC = 200
SET 111 = 23,33
DISPLACEMENT (SORT2) = 111
VELOCITY (SORT2) = 111
ACCELERATION (SORT2) = 111
SUBCASE 1
DLOAD = 500
TSTEP = 100
$
OUTPUT (XYPLOT)
XGRID=YES
YGRID=YES
XTITLE= TIME (SEC)
YTITLE= BASE ACCELERATION
XYPLOT ACCELERATION RESPONSE / 23 (T3)
YTITLE= BASE DISPLACEMENT
XYPLOT DISP RESPONSE / 23 (T3)
YTITLE= TIP CENTER DISPLACEMENT RESPONSE
XYPLOT DISP RESPONSE / 33 (T3)
$
BEGIN BULK
$
$ PLATE MODEL DESCRIBED IN NORMAL MODES EXAMPLE
$
INCLUDE ’plate.bdf’
PARAM,COUPMASS,1
PARAM,WTMASS,0.00259
$
$ SPECIFY STRUCTURAL DAMPING
$
PARAM,G,0.06
PARAM,W3,1571.
$
$ APPLY EDGE CONSTRAINTS
$
SPC1,200,12456,1,12,23,34,45
$
$ PLACE BIG FOUNDATION MASS (BFM) AT BASE
$
CMASS2,100,1000.,23,3
$
$ RBE MASS TO REMAINING BASE POINTS
$
RBE2,101,23,3,1,12,34,45
$
$ APPLY LOADING TO FOUNDATION MASS
$
TLOAD2,500,600,,0,0.0,0.004,250.,-90.
$
DAREA,600,23,3,2.588
$
$ SPECIFY INTEGRATION TIME STEPS
$
TSTEP,100,200,2.0E-4,1
$
ENDDATA
(3)结果
9.9 例子:具有强迫位移的直接频率响应问题:图示平板在角点受0.1的强迫位移,在频率范围[20,1000]内使用步长20Hz,结构阻尼系数0.06
输入文件
ID SEMINAR,PROB8
SOL 108
TIME 30
CEND
TITLE= FREQUENCY RESPONSE DUE TO,1 DISPLACEMENT AT TIP
SUBTITLE= DIRECT METHOD
ECHO= UNSORTED
SPC= 1
SET 111= 11,33,55
DISPLACEMENT(PHASE,SORT2)= 111
$SDISP(PHASE,SORT2)= ALL
set 222 = 11
OLOAD= 222
SUBCASE 1
DLOAD= 500
FREQUENCY= 100
$
OUTPUT (XYPLOT)
$
XTGRID= YES
YTGRID= YES
XBGRID= YES
YBGRID= YES
YTLOG= YES
YBLOG= NO
XTITLE= FREQUENCY (HZ)
YTTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER,MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER,PHASE
XYPLOT DISP RESPONSE / 11 (T3RM,T3IP)
YTTITLE= DISPLACEMENT RESPONSE AT TIP CENTER,MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT TIP CENTER,PHASE
XYPLOT DISP RESPONSE / 33 (T3RM,T3IP)
YTTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER,MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER,PHASE
XYPLOT DISP RESPONSE / 55 (T3RM,T3IP)
$
BEGIN BULK
$
$ PLATE MODEL DESCRIBED IN NORMAL MODES EXAMPLE
$
INCLUDE ’plate.bdf’
PARAM,COUPMASS,1
PARAM,WTMASS,0.00259
$
$ SPECIFY STRUCTURAL DAMPING
$
PARAM,G,0.06
$
$ APPLY UNIT DISPLACEMENT AT TIP POINT
$
CMASS2,5000,1.0E+5,11,3
$
RLOAD2,500,600,,,310
$
TABLED4,310,0.,1.,0.,10000.,
,0.,0.,-39.4784,ENDT
$
DAREA,600,11,3,25.8799
$
$ SPECIFY FREQUENCY STEPS
$
FREQ1,100,20.,20.,49
$
ENDDATA
结果