Chapter 2 Dynamics(动力学)
(Newton’s Laws of Motion)
§ 2-1 Newton’s Laws Force Inertial Reference
Frame 牛顿定律 力的概念 惯性参考系
§ 2-2 General Properties of Forces in Mechanics
力的基本性质
§ 2-4 Fundamental Quantities and Units
Dimensions ﹡ 基本量和力学单位制 量纲
§ 2-5 Applying Newton’s Law of Motion
牛顿定律应用
§ 2-3 The Fundamental Forces of Nature ﹡
四种基本力
教 学 要 求
1,理解牛顿运动定律的内容及实质;
2.掌握用隔离法解一般动力学问题;
牛顿,Sir Isaac Newton,
1643~1727,英国物理学家,
数学家和天文学家, 经典
物理学的创始人,科学史上
的巨人 。
主要成就,( 1) 微积分; ( 2) 牛顿三大定理 ( The
Mathematical Principles of Natural Science); ( 3) 万有
引力定理; ( 4) 光学及他的光的 ‘ 微粒 ’ 学说 (Optics);
( 5) 反射式望远镜的发明;
We will face the question,What leads to motion of a
particle?
particlescauses effects
forces
Newton’s third law
mass
first law
Changes
of motion
state
Relation?
Newton’s second law
amF
??
?
Dynamics is to study the forces and
their effects on the motions of
objects.
In this chapter,we shall see that the
cause of acceleration is a force exerted
( 使于 ) by some external( 外部的 )
agent(力量 ) or environment( 环境 ),
§ 2-1 Newton’s Laws Force
Inertial(惯性) Reference Frame
1.Newton’ First Law ( The Law of Inertia惯性)
A body at rest remains( 保
持 ) rest and a body in
motion continues to move at
constant( 恒定 ) velocity
unless acted upon by an
external force( 外力 ),
⑴ An important property of all bodies — Inertia,
the tendency( 趋势 ) of bodies to maintain their
original( 原来的 ) state of motion,The force,not
being the cause of motion of body,,is the cause of
change of motion of a body.
It should be noted:
⑵ A qualitative definition of the concept of force —
as,that which changes the state of motion.
?F
?F
The changes of their motions are same
Conclusion(结论),
?? ? FF
⑶ An implication( 暗示 ) what is known
as inertial reference frame — those special
reference frame in which Newton’s law is
valid.
Question,Try to give some examples to say why or
why not a reference frame is an inertial reference
frame.
Move on the surface of Mars
Fly from Earth to Mars
Conclusion(结论),
2,Newton’s Second Law
Newton’s second law of motion can be
summarized in a simple vector equation:
It is expressed in word as,A external force acting on
a body produces an acceleration which is in the
direction of the force and has a magnitude inversely
proportional to反比于 the mass of the body.
外力amF ?? ? (2-1)
To understand Newton’s Second Law,we must
note what physical meanings it includes.
(1)Newton’s second law is valid
( 有效 ) only in particles or the
objects that can be regarded as
particle.
particle
可看成
(2) If several external forces,..,.,act
simultaneously ( 同时 ) on a body,its
acceleration is the sum of these produced by a
single force given by
??? F,F,F
???
?F
?
?F
?
?F
?
a?
.,,,aa)FFF(ma ???????? ????? ???????
amFFFFF in e t ??????? ?????? ????
That is mFa ii ?? ?
which is called as the principle ( 原理 ) of
superposition of forces or principle of independence of
forces( 叠加,独立 ),
?F
?
?F
?
?F
?
a?
⑶ The relation holds(成立) instantaneously.
amF ?? ?
F? a
? No force,no acceleration!
x
y
o
P
r?
⑷ The components ( in two dimensions) of (2-1) are
dd 2
2
t
xmmaF
xx ???
dd 2
2
t
ymmaF
yy ???
F?
a?
In natural coordinate system,
dd tVmmaF tt ???
2
r
VmmaF
nn ???
ta?
na
?
?
A
C a?
V?F
?
⑸ The acceleration and force in (2-1) are measured by
the observer in the inertial reference frame,which means
that Newton’ low is valid only in the inertial reference
system.
a?
F?
observer
⑹ The role of the first law in determining the inertial
reference frame in which Newton’s mechanics holds
justifies( 证明 …,正当 ) its status(地位 ) as a separate
law,and the first law cannot be considered as( 认为 )
the special example( 特例 ) of Newton’ second law.
惯性 amF ?? ?
3.Newton’s Third Law ( Action — Reaction Law )
BAAB FF
?? ??
A BABF
? BAF?
Put it in words:
Whenever a body exerts a force on another body,the
latter exerts a force of equal magnitude and opposite
direction on the other.
This is the quantitative expression of Newton’s Third Law.
To apply Newton’s third law correctly,you must be
aware of(意识到的, 知道的 ) the following aspects ( 方
面 ),
(1)Two members of an action —reaction pair always
act on different bodies so that they can not possibly
cancel抵消 each other.
(2) The action — reaction pair of forces exerts on the
interaction bodies simultaneously and vanishes ( 消
失 ) simultaneously also.
(3) The action — reaction pair of forces belongs ( 属
于 ) to some category ( 类 ) of force,that is,if the
action force is gravitational ( 引力 ),or elastic ( 弹
力 ),or frictional ( 摩擦力 ) force,thus the reaction
force is the gravitational elastic,frictional force also:
⑷ Some action—reaction forces exist by contact,some
not:
§ 2-2 General Properties of Forces in Mechanics
1,Weight
Weight is the pull of the Earth gravity(重力),
gmG ?? ?
mg
mNote,the difference betweenweight & mass,as varies
with different altitude(海拔 ),
the weight of a given body is
different on different
altitude,but mass is the same at
different location(地方 ),
g?
2,Elastic forces
⑴ Normal force is the perpendicular(垂直)
force…
contacting
surface
⑵ Tension( 张力 ) at the end of a cord(绳 ) is the
force with which the cord pulls( 拉 ) on what is
attached to it,along the cord & points( 指向 ) the
direction of the contraction( 收缩 ), If the mass of a
string( 弹簧 ) can be neglected,then the tension acting
on any segment( 片段 ) of the string is equal to the
tension at the end.
bodyCord(绳子)
In right figure,the origin
coincides( 重合 ) with the
equilibrium( 平衡 ) position,
and then Hooke’s Law can be
written as
xkF ?? ??
What does the negative sigh(负号) mean?
o x
⑶ Restoring force of a spring obeys Hooke’s law:
3.Frictional Force(摩擦力)
⑴ Kinetic friction between two bodies
Nf kk ??
⑵ Static friction force exits between two surfaces at rest.
sf
If external force is increased,static frictional force
will automatically increase until the external force is
sufficiently large to overcome ( 克服 ) the frictional
force and to accelerate the body,The maximum of
( the breakaway( 突破 ) is
Nf ss ??m a x
?F
?
sf
Nf ss ??m a x
s?
is coefficient(系数) of static friction which depends
on the materials and the contacting surface(接触面), In
general:
Nf ss ??
ks μ ?

It exerts on the body which moves through a fluid
( 流体 ),such as air or water…, The experiments
have shown( 证明, 表明 ) that the resistance( 阻力 )
acted on the body by the surrounding( 周围 ) fluid is
given approximately(近似地 ) by
Vkf ?? ?? at low velocity
2kVf ?? at great velocity
⑶ Fluid friction ( Drag拖 force )
V?
4,Newton’s Law of Universal Gravitation
Every particle of matter in the universe attracts
( 吸引 ) every other particles with a force which
is directly proportional to( 正比于 ) the product
( 乘积 ) of the masses of the particles and
inversely proportional to( 反比于 ) the square
( 平方 ) of the distance between them:
?
???
r
mmGF
rr mmGF ?
?
?
??
?? ? m
1
m2
r?
12F
?
21F
?
or in vector form
221110670.6 ???? kgmNG
※ § 2-3 The Fundamental Forces of Nature
At the fundamental level,all the forces mentioned above fall into
Two categories:
1,Gravitational Force ( Weight is an example) 万有 引力
The mass of gravitation & the mass of inertia (see p40-41)
(引力质量与惯性质量 —— 参见张书第 40-41 页)
2.Electromagnetic Force ( all the others ) 电磁力
Beyond them there are only two other forces known in nature:
3,Strong Force (acting on nuclear particles) 强力
4,Weak Force ( acting on most elementary particle ) 弱力
(自然界的四种基本力)
万有引力 电磁力 强力 弱力
适用范围
(m)
长程力 长程力 10
- 15
<< 10
- 1 6
相互作用举例
恒星结合在一
起形成银河系
电子和原子核
结合形成原子
质子和中子结
合形成原子核
表征核子 ?

变的力
相对强度 10
- 39
10
-3
1 10
- 14
自然界的四种基本力:
? 应用牛顿定律进行数量计算时,各物理量的单位必须“配套”。
相互配套的一组单位称为,单位制,。目前国内外通用的单位
制叫 国际单位制,代号为 SI 。 在确定各物理量的单位时,总
是根据它们之间的相互关系选定少数几个物理量做为 基本量 并
人为的规定它们的单位。这样的单位叫 基本单位 。
※ § 2-4 Fundamental Quantities Units & Dimension
基本物理量 力学单位制和量纲
?其它的物理量都可以根据一定的关系从基本量导出,这些物
理量叫 导出量,它们的单位 都是基本单位的组合,叫 导出单位 。
由于基本单位的选择不同,就组成了不同的单位制。 SI的力学
基本单位是 秒 (s),米 (m),和 千克 (kg).
基本量和导出量:⒈
? 有了基本单位,就可以由它们构成导出量的单位。如
速度的 SI单位是“米 /秒”( m/s),加速度的单位 是
,” ( )等。
2/秒米 2/ sm
?以 T,L和 M分别表示基本量的时间、长度和质量。如果单考虑
某一导出量是如何由这些基本量组成的,则一个导出量可以
用 T,L和 M的幂次的组合表示出来,表示一个物理量怎样由基
本量组合的式子称为该物理量的量纲 。例如速度、加速度、
力、动量的 量纲 可以这样来表示:
? ? ? 2LT ??a
? ? 2M L T ??F
? ? 1M L T ??P
量纲 Dimension:⒉
§ 2-4 Fundamental quantities and Units
Dimensions
请同学自学
§ 2-5 Applying Newton’s Laws of Motion
Question,In right figure,
gmmT )( 21 ???
Answer,incorrect generally.
Why
The conditions in which Newton’s law are valid,particles
隔离法,受力分析,对‘对象’用 Newton’s law
T
1m 2m
Massless
In the following,some examples are considered in detail.
Example 2.1 如图,一质量为 m的物体 A,用平行于斜面
的细线拉着置于光滑的斜面上,若斜面向左方作减速运
动,当线中张力为零时,物体 A的加速度大小为多少?
解:( 1)研究对象 A
( 2)受力分析如图, mg,N,T。
mg
NT
( 3) 建立坐标如图
x
A
a
?
m
y
(4)根据 Newton’s law,有:
??
?
??
???
maTN
mgNT
??
??
c oss i n
c oss i n 0
( 5)从上面方程可解出 T
)(c o ss i n ag t gmT ??? ???
则,?gt ga ? 时张力 T=0
Example 2.2:如图所示, 质量分别为 20kg和 10kg的物体 A和 B开始
时静止在地板上, 今以力 F作用于滑轮, 设滑轮和绳子的质量以及
滑轮轴处的摩擦可忽略, 绳子不可伸长 。 求 F为下列各值时, 物体
A和 B的加速度,( 1) 96N,( 2) 196N,( 3) 394N。
O
A B
F
x
解,( 1) 研究对象:物体 A,B和滑轮
( 2) 受力分析和坐标系如图 ( 设能运动 )
T T
T T
F
mAg mBg
( 3) 应用 Newton’s law于每一个对象:
设物体 A和 B的加速度分别为 aA和 aB
?
?
?
?
?
??
??
??
)( 滑轮02 TF
amgmT
amgmT
BBB
AAA
可解出:
A
A
A m
gmFa
2
2??
B
B
B m
gmFa
2
2??
( 4) 代 F的值并讨论有:
当 F=96N和 196N时, aA和 aB都为 0;
当 F=394N,aA=0.05m/s2,aB=9.8m/s2。
O
A B
F
x
Example 2.3:如图:锥面的轴线 EE‘位于竖直方向与母线的夹角
?=30°, 质量为 m=12kg的物体在光滑的锥面上以转速 n=12r/min转
动, 悬线长 L=1.5m。 求 ( 1) 物体 m的线速度; ( 2) 悬线的张力,
及锥面对物体 的反作用力; ( 3) 使锥面的反作用力变为零所需的
转速 。
解,( 1) 研究对象:物体 m
( 2) 受力分析,mg,N,T
( 3) 物体在水平面内做圆
周运动, 则线速度为
??
????????? ?? s i nLrV
即:
smV /,940?
E
L
m r
?
轴E’
N T
mg
x
y
TN
mg
?
(4)坐标系和方程:
r
Vmc o sNs i nT ??? ??
0??? mgNT ?? s i nc o s
解之:
?? c o ss i n mgrmVT ?? 2
?? c o srmVs i nmgN ???
请同学算出数值
( 5) 当 N=0,有
02 ?? ?? c o ss i n rmVmg ?r g tgV
??? co sl
g
r
Vn
2
1
2 ??
Example 2.4:质量为 m 的子弹以速度 V0水平射入沙土中, 设子
弹所受的阻力与速度反向, 大小与速度成正比, 比例系数为 k,
忽略子弹的重力 。 求 ( 1) 子弹射入沙土后速度随时间的函数关
系; ( 2) 子弹进入沙土的最大深度 。
xo
y
Vo
解,( 1) 在忽略子弹的重力的
情况下, 子弹将沿 x轴运动, 如
图所示 。
受力:沙土的阻力 kVf ??
( 2) 根据牛顿第二定理, 有
dt
dVmmakVf ????
dtmkVdV ?? tm
keVV ??
0
( 3) 设进入的最大深度为, 则:
maxx
k
mVdteVV d tx tmk 0
0 00 ??? ??
? ??
m a x
Example 2.5 质量为 m的小球,在水中受到的浮力为恒力 F;当它
从静止开始沉降时,受到水的粘滞阻力为 f=kv( k为常数。求小
球下降的速度。
mg
F kv
x
O解:受力分析,坐标系如图:
makVFmg ???
即:
V
m
k
m
Fmg
dt
dV
?
?
?
分离变量:
dt
m
k
k
Fmg
V
dV
??
?
?
两边积分:
Cdtmkk FmgV ????? )l n (
由初始条件,T=0 时,V=0,得
)l n ( k FmgC ???
代入上式并整理得:
)(
t
m
k
e
k
FmgV ???? 1
mg
F kv
x
O
Example 2.6:质量为 m 物体在无摩擦的桌面上滑动, 其运动被约
束于固定在桌面上的半径为 R的圆环内 。 在 t=0时, 物体沿着环的
内壁 ( 即在切线方向 ) 以速度 V0运动, 物体与圆环间的摩擦系数
为 ?。 求 t时刻物体的速度和位置 。
m
mg
N fr
N’
解,( 1) 研究对象和受力分析如图;
( 2) 选自然坐标系;
( 3) 应用 Newton’slaw:
?
?
?
??
?
?
?
??
?
N
R
V
m
N
dt
dV
m ?
( 4) 解上述方程并利用初始条件:
dtRVdV ???? ?
?
?
??
? ??
R
tV
VtV
0
0
1 ?
)(
( 5) 取 t=0时, S=0( S是路程 ),
)t(VdtdS ?
R
tV
dtVdS
?
?
??
? ?
积分得:
?
?
??
?
? ???
??
? ?
? ?
??
R
tVlnR
R
tV
dtVS t ?
??
注意:选角坐标 ?更方便
dtRVdV ???2 ???? ddSRV d tRVdV ??????
???? eVV 0?)( ?? ?SS
m
mg
N fr
N’
(2) To draw ( 画图 ) a free-body diagram and to be sure
all the forces acting on the chosen body,including both
contact forces such as normal force,tension,friction,and
non-contact forces such as gravity and so on;
To summarize( 总结 ),Applying Newton’s laws to
solve the problems includes( 包括 ) the following steps:
(1)To select ( 选择 ) a body to which Newton’s laws
will be applied
(3) To analyze process of its motion;
(4) To write the components equations of Newton’s
Second Law for each body,and solve them to find
the unknown ( 未知的 ) quantities,Analyze the
results if necessary.
(3)To set up ( 建立 ) a coordinate system and
determine components of forces and accelerations
with respect to the axes;
用牛顿第二定律解题的步骤:
1、作简图,找出研究对象(含未知量尽可能少);
2,对物体分别进行受力分析;
3、建立座标系,列出矢量方程,投影为标量方程;
4、解以上方程,一般是先进行文字解题,直到得出所求
未知量的文字公式,然后把数字代入,作数值计算时,
必须统一各个物理量的单位。
注意:受力分析时,不多一个、不漏一个,不错一个 ; 顺序:
外力 重力 隔离处找力:张力、压力、摩擦力 …...