第三章 功 和 能
Chapter 3 Work and Energy
§ 3-1 Work(功)
§ 3-2 Kinetic Energy(动能) and The Law of
Kinetic Energy(动能定理)
§ 3-3 Conservative Force(保守力) & Potential
Energy of Weight Elastic Potential Energy
(弹性势能) Universal Gravitational
Potential Energy
§ 3-4 Conservation of Mechanical Energy(机械能)
§ 3-5 The Conservation of Energy
1.掌握变力作功的计算和动能定理的应用;
2,掌握保守力作功作功特点及与相关势能
的关系;
3,明确功与能(动能、势能)关系与区别;
4,掌握机械能守恒定律的物理意义及应用
条件,
教学基本要求
Energy is an important concept in Physics,which
was introduced by Thomas Young in 1807.
The following physicists who made greater
contributions to the discovery of the Conservation of
Energy( 能量守恒 ),
能量守恒
(Iraq and Korea(D.P.R)
焦耳 ( J,P,Joule,
1818~1889),英国物理学家,
发现能量守恒及转换定理的
主要代表 。
迈尔( Robert Mayer,1814~1878),德国物理学
家,医生,第一个提出能量守恒的科学家;
亥姆霍兹( Hermann Von Helmhotz,
1821~1894),德国物理学家,生理学家,系统地论
述了能量守恒定理;
Energy,The conservation of energy must be satisfied( 满
足 ) in all the processes( 过程 ) in the nature,The
different types of physical ‘motions’ are transformed( 转
化 ) through the important link of Energy(纽带 ),
化学能量 气体热运动
机械运动 F16
§ 3-1 Work(功)
1,Work done by a constant force
?
F?
?
F?
s
The work done by is
given by
F?
SFW ?? ??
(3-2)
(3-1)
SFW )c os( ??
(or)
The SI unit of W is Joule,
1Joule =1J = 1N·m = 1kg·m2/s2.
箭箭击中 100环
学习要用功 方法要对路
2,Work done by a variable force(变力的功)
is a variable force (变力 ) acting on a particle moving
along a curvilinear( 曲线 ) path,Let us find the work
done ( 作功 ) by it as follows,
F?
ir??
iF
?
i?
iiiiii rFrFW ?????? ?c o s
??
(1) Divide( 分割 ) the path into a number of intervals
of △ r1,△ r2,△ r3…,△ ri,…,the element work( 元功 )
△ Wi done by over △ ri is given by (3-2):
iF
?
ir??
iF
?
i?
ir??
iF
?
i?
?
??
??
irl i m
ii rFW
?
? ??
(3-3)
Reducing △ ri,to infinite small,
we have
?? ??? iii rFWW ?? ??
(2) The total work(总功) over the path is
? ? 0?? m a xir
How is the sum accomplished(完成)?
⑶ According to definition of ( 曲线积分定义) curvilinear
integral,Eq.(3-3) becomes
?? ??? BABA sFrFW d d ?c o s??
(3-4)
where ds is the magnitude of,r?d
?cosF
Special cases:
sFabF
rrFrFW ab
b
a
???
?????
????
????? ? )(d
(3-5)
② In the case of one dimension
?? ??? 21 d d xxba xxFrFW )(?? (3-6)
① if F = a constant vector over the entire path,(3-4)
becomes
where
abS ??
a
b
F?
Constant
vector
mg
52B
3,Work done by resultant force ( 合力的功)
If,we can compute its work as
follows
????? ???? ??? FFFF
?
?
??????
??
????
???????
??
???
?
321
321
ddd
d
WWW
rFrFrF
rFW
b
a
b
a
b
a
b
a
(3-7)
which is equal to the sum of work done by each force,
iF
?
安定团结
4,Power (功率)
The unit of P is 1w = 1J/s,
( 3-8) VF
t
rF
t
WP ???? ?????
d
d
d
d (请同学自学)
Example 3-1:一物体在 x轴上运动, 受到力 F=-5x的作用, 求物体
从 运动到 过程中, F所作的功 。
??ax ??bx
解:根据功的定义,有
J
x
xdxF d xW
b
a
x
x
?
??
??
?
?
??
????
?
?
?
?
?
??
Example 3.2 Work done by friction (摩擦力功 ), a
small body of mass m acted upon by an frictional force
moves from A to B on a horizontal( 水平 ) table with a
coefficient of kinetic friction, Calculate the work done
by frictional force,⑴ the path is a half of circle of radius
( 半径 ) R,⑵ the path is the diameter(直径 ) AB.
k?
Solution,The element work is
smgsosfrfW kkk d d cdd ?? ????? ??
RmgsmgrfW kBA BAkk ??? ?????? ? ?? ???? dd
⑴ The path is arc AB⌒
(路径是半圆弧)
AA B
m g RsmgrfW kBA BAkk ?? 2dd2 ?????? ? ? ??
which means that the work done by
frictional force depends on the path.
( 摩擦力的功取决于路径 。 )
⑵ The path is diameter AB ̄ (路径是直径)
AA B
以后知道这类力是非保守力,没有相关的势能。
Example 3.3 Work done by a spring ( 弹性力的功 )
with a force constant k in Fig.3-5,find the work done by
the spring when the block( 物块 ) moves from x1 to x2.
Solution,Set origin of the
coordinate axis ox at its relaxed
position O:
kxF ??
xkxxxFW ddd ??? )(
2
2
2
1
2
1
2
1
2
1
2
1
kxkx
dxkxdxxFW
x
x
x
x
??
??? ? ?)(
( 3-10)
弹性力的功取决于始末位置,与路径无关。
以后知道这种力叫保守力,有相关的势能。
Example 3.4 Work done by universal force of gravitation(引力的
功):
rrMmGF ?? 30??
Find the work done by F when the particle m moves from point i to f
along path iaf.
Solution:
)(
if
r
r rrMmGr
rMmGW f
i
11d
020 ???? ?
引力的功取决于始末位置,与路径无关。以后知道这种
力叫保守力,有相关的势能。
r d rrMmGrdrrMmGrdF 3030 ?????? ????
m
M
ir
?
fr
?
r?d
§ 3-2 Kinetic Energy The Law of Kinetic Energy
动能 动能定理
1,The concept of energy
能:就是作功的能力或作功的本领
The everyday experiences( 经验 ) tell us that a moving
body or a body due to its position can done work,For
example:
(1) Colliding( 碰撞 ) door; (2) jumping ( 跳过 ) over a
bob; (3) circus( 马戏 )
How many of work will be done by a body moving at
a velocity V0? See the following experiment:
at rest
m
0V
? M
at rest
f
s
The body m moves with the acceleration,.
Hence,we have,m
fa ?
maf ?
Using asV 20 2
0 ??,the force f is given by
s
mVf
2
2
0??
Therefore,the work done on the body M by the
moving body m is equal to
2
0
2
0
2
1
2 mVs
mVsfsW ?????? )(
which is independent of(无关) s and path,and
determined by the state of body,mass and velocity,
at rest
m
0V
? M
at rest
f
s
2
02
1 mVE
k ?
is the kinetic energy of a body moving at V0,
m
0V
iV
?
x
y
o
2,The Law of Kinetic Energy(动能定理)
fV
?What effect will be
caused when a force
has done an amount of
work on a particle?
sFrFdW d d ?c o s??? ??
The element work is
VmVtVtVmW ddddd ??
tdd Vs ?
t
VmF t
d
d?
tFF ??c o s
积分得
1 1 )-(3
d
??
?
?
?
?
?
?
?? ??
if
V
V
f
i
mVmV
VmVsc o sFW
f
i
d?
Here,in Eq.(3-11) is the kinetic energy
of the particle,Therefore Eq.(3-11) becomes
2
2
1 mVE
k ?
kkikf EEEW ????
(3-12)
iV
?
x
y
o
fV
?
It implies(意味着 ) that the work of the resultant
external force on a body is equal to the increment( 增
量 ) of kinetic energy of the body.
( 3-12) 称为质点动能定理, 它表明合外力所做的
功等于质点动能的增量 (increment)。
kkikf EEEW ????
动能的
增量
合外力
的功
iV
?
x
y
o
fV
?
If W>0,we say that the external force do work on the
body whose kinetic energy increases; otherwise,W<0
usually tells us that the body has done work on
somebody or something and its kinetic energy decreases.
Come on! Winner
Important
iV
?
fV
?
动能:状态量,物体作
功本领的大小由
物体的状态决定
功:过程量
与物体运动状态的变化
的过程相联系
W
It gives us a new way to look at (考虑 ) familiar
problems and find the solution of certain kinds of
problem much easier.
由于动能定理只须求出运动过程中合外力的功
( 它总是等于始末动能之差 ) 而不必求解瞬时问题,
用起来较为方便 。
iV
?
fV
?
W
Example 3-5,质量 m=1.0kg的物体, 从静止出发在水平面内沿 x
轴运动, 其所受合外力方向与运动方向相同, 合外力大小为:
求 ( 1) 物体在开始运动的 3m 内, 合力作的功; ( 2) 在 x=3m处,
物体的速度大小 。
xF 23 ??
解,( 1) 物体在开始运动的 3m 内作的功:
Jdx)x(dx)x(Fw ???????? ? ??? ??
( 2)在 x=3m处,物体的速度大小为:
?
?
?? mVW smV /6?
Example 3-6,质量为 m的质点在外力的作用下,其运动方程为
jtBitAtr ??? ?? s i nc o s)( ??,式中 A,B和 ?都是常数,则力
在 到 这段时间内所作的功为:01 ?t ?? 2
2 ?t
( A) )BA(m ??? ?
?
? ? ( B) )BA(m ??? ??
( C) )AB(m ??? ?
?
? ?)BA(m ??? ?
?
? ? ( D)
Example 3-7:一个作直线运动的物体, 其速度与时间的变化曲
线如图所示 。 设时刻 t1至 t2间外力作功为 w1; 时刻 t2至 t3间外力
作功为 w2; 时刻 t3至 t4间外力作功为 w3,则:
V
o t1 t2 t3 t4 t
(A)w1>0,w2<0,w3<0; (B)w1>0,w2<0,w3>0;
(C)w1=0,w2<0,w3>0; (D)w1=0,w2<0,w3<0;
§ 3-3 Conservative Force and potential energy
(1) Work done by weight 重
力的功
)yy(mg
ymgSdFW
ba
y
yab
b
a
??
???? ?? d
??
1,The work done by three forces (see above examples)
y
x
mgay
by
(2) Work done by elastic force
弹性力的功
)xx(k
xkxxdFW
ba
x
x
ab
b
a
??
?
?
?
?
????? ?? d
??
o x
ax bx
kxF ??
(3) Work done by universal gravitational force
万有引力的功
)
rr
(G M m
r
r
Mm
GsdFW
ba
r
r
ab
b
a
?
?
?
??
????? ??
?
d
??
m
M
ar
?
br
?
三种力作功特点:
所作的功只与物体运动的始末位置有关, 而与所经过
的路径无关;沿一闭合路径运动一周, 所作的功为零 。
To summarize,the work done by the three forces above
have the following distinguishing features(显著特点):
2.Conservative Force
(1)It is independent of(无关) the path;
(2)It is equal to the difference( 差 ) between the final
and initial values of an energy function;
(3) It is completely recoverable(可恢复的),
这类力叫保守力,反之叫非保守力。
保守力,沿任意闭合路径, 所作的功为零 。 否
则, 为耗散力 ( 非保守力 )
Definitions of the conservative and dissipative forces
保守力和耗散力 ( 非保守力 ),
A force is conservative if the work it does on a particle
that moves through a round( 圆的 ) trip is zero;
otherwise,the force is dissipative ( 耗 散 力 ) ( or
nonconservative( 非保守 ),
a
b
c
The conservative forces,重力、万有引力、弹性
力和静电力。
The nonconservative forces,磨擦力、拉力、磁
力和非静电力 ……….
3.Potential Energy 势能
1) As shown in right figure,
a particle moves in the field
of conservative force from a
to b,The work is given by:
ppapbpbpaab EEEEEW ???????? )(
( 3-13)
a
b保守力
pbE
2) or are called potential energy whose values
depends on the choice of zero potential
paE
They are relative.
3).The calculation of potential energy can be made as the
following way:
? ??? 势能零点aabpa rFWE ?
?
d
( 3-14)
(1) Choose(选) a point (level)at which potential
energy is zero such as b point; (零点选取)
( 2) According to ( 3-13),the potential energy at a point
is determined by
Zero point b
Point a
abW
常见的三种势能 (very important):
重力系统,m g hE
p ?
h=0处为势能零

弹性系统,2
2
1 kxE
p ?
x=0处为势能零点
引力系统,r??处为势能零点
r
MmGE
p ??
不是唯一选择,但上面选择通常最方便!
注意:
1,势能是状态函数,Ep=Ep(x,y,z);
2,势能是相对的,但其差值与参考点的选择无关;
3,势能是属于系统的,取决于系统内物体之间的
相互作用和相对位置。
§ 3-4 Conservation of Mechanical Energy
机械能守恒定律
1,Kinetic energy of a system 质点系动能定理
12f
?
21f
?
1F
?
2F
?
1m
2m
A system,m1 and m2
1F
?
2F
?
External forces:
12f
?
21f
?
Internal forces:
12f?
21f?
1F?
2F?
iV1
?
iV2
?
1m
2m
12f?
21f?
1F? 2
F?
1m
2m
fV1
?
fV2
?
ikfk
f
i
ikfk
f
i
EEr)fF(
EEr)fF(
?????
?????
????
????
?
?
???
???
d
d
Applying the law of kinetic energy to m1 & m2,we have
Rewrite them as
ikfkinex
ikfkinex
EEWW
EEWW
????
????
???
???
外力的功 内力的功
Adding the two sides up,we have
kikfinex EEWW ???
(3-15)
12f
?
21f
?
1F
?
2F
?
1m
2m
Which is called the kinetic energy law of system,
Here:
系统动能定理,系统外
力和内力作功总和等于
系统动能的 增量,
21 exexex WWW ?? 21 ininin WWW ??
fkfkkf EEE 21 ?? ikikki EEE 21 ??
Therefore,the above
equation leads to
kikfinex EEWW ???
12f
?
21f
?
1F
?
2F
?
1m
2m
2,Work – Energy Theorem功能原理
In (3-15) the internal forces usually include either
conservative forces or nonconservative forces,so that,we
divide the work done by internal forces into two kinds:
Considering
)( pipfc o i n EEW ???
(3-15) becomes:
)()( kipikfpfn o i nex EEEEWW ?????
n o i nc o i nin WWW ??
(3-16)
in which is called the mechanical energy of
system,kp EEE ??
That is:
ifn o i nex EEWW ???
(3-17)
which is called Work - Energy Theorem,
系统的功能原理,
外力和非保守内力
作功总和等于系统机
械能的 增量 。
外力的功 非保守内
力的功
机械能的增量
12f
?
21f
?
1F
?
2F
?
1m
2m
3,Conservation Law of mechanical energy
机械能守恒定律
The most important case that we concern( 关心 ) is
that in (3-17),if
0?? n o i nex WW
(3-18) is the law of
conservation of
mechanical energy
机械能守恒定律,
常数?? if EE
(3-18)
ifn o i nex EEWW ???
当作用于质点系的外
力和非保守内力或作功
为零时, 系统机械能守
恒, 即, 系统中的保守
内力可以使物体的动能
和势能相互转化, 但动
能与势能之和不变 。
机械能守恒定律:
If no external force and nonconservative
internal force act on the particles in the system or
their work are zero,the mechanical energy of the
system remains(保持 ) constant.
外力和非保
守内力为零
外力和非保
守内力的功为零
Example 3-8:一个质量为 m的质点, 仅受到力, 式中 k>0
为常数, 为某一定点到质点的矢径, 该质点在 处被释放,
由静止开始运动, 求它到达无穷远时的速度大小 。
?? r
rkF ??
r?
??rr ??
解:设质点达无穷远时的速度大小
为 V,根据动能原理, 有
0
3
2 1
2
1
0 r
k
r
rdrkmV
r
??? ? ?
??
即:
0
2
mr
kV ?
0r?
??0r?
o
m
Example 3-9:如图,质量为 0.1kg的木块,在水平面上与一个的
倔强系数为 k=20N/m的轻弹簧碰撞,木块将弹簧由原长最大压缩
了 0.4m,假设木块与水平面间的滑动磨擦系数为 0.25,问将要发生
碰撞时木块的速度大小为多少?
m V k
0.4m
解:( 1)选系统:物体 +弹簧
( 2)受力分析:重力、支持力、
磨擦力和弹性力(保守内力)。
重力和支持力不作功,磨擦力
作功。
( 3)根据功能原理,有
22
2
1
2
1 mVkxxf ???

考虑到 ?mgf ??磨,可求得 V:
smgxmkxV /,8152
2
??? ?
Example 3-10:两个质量分别为 m1和 m2的物块, 由绕过滑轮的细
绳连接在一起, 如图所示 。 试求当较重的物块落下一段距离 h时,
每个物体的速度和加速度 。
h
解:( 1)系统,m1,m2和地球
( 2) 受力分析:重力和绳子的张力 。
张力对 m1和 m2作的功代数和为零, 则
系统的机械能量守恒 。
( 3)设下降 h后,两物体的速度为本 V,
并选 m1和 m2初始位置为势能零点,则
2
22
2
11 2
1
2
10 VmghmVmghm ????
即:
gh
mm
mmV
21
12 )(2
?
?? (为什么地球不出现在公式中?)
( 4)设它们的加速度为本,考虑到物体作匀加速运动和 ahV 22 ?
可有
gmm mma
21
12
?
??
h
Example 3-11:如图,质量为 m的物体,从高出弹簧上端 h处由
静止落到竖立放置的轻弹簧上,弹簧的倔强系数为 k,求弹簧被
压缩的最大距离。
解:( 1)选系统:地球 +物体 +弹簧;
( 2)系统的机械能守恒;
2
2
1
m a xm a x kxm g xm g h ???
可解出:
k
m gk hgmmgx
2
842 22 ???
m a x
maxx
h
( 3) 设弹簧被压缩的最大距离为,选
初始弹簧上端位置为重力势能和弹性势
能的零点, 则
maxx
Example 3-12:如图,质量为 m的物体,从高出弹簧上端 h处
由静止落到竖立放置的轻弹簧上,弹簧的倔强系数为 k,求物
体可能获得的最大动能。
解:( 1)选系统:地球 +物体 +弹簧;
( 2)系统的机械能守恒;
( 3)当弹簧被压缩的距离为 x时,物体
的速度为 V,选初始弹簧上端位置为重力
势能和弹性势能的零点,则
2
2
1 kxEm g xm g h
k ????
整理有:
m g hm g xkxxEE kk ????? 221)(
显然,有极大值:
k
gmm g hE
k 2
22
??m a x
h
x V
§ 3-5 The conservation of Energy能量守恒定律
摩擦无处不在
The frictional force is called as a noncoservative
force or a dissipative force which exists everywhere
and its work dependes on the path,If there exist
dissipative forces(internal) such as the internally
frictional force,it is sure that the mechanical energy
of the system decreases.
From equation (3-29) we have
EEEW if ????非保守
( 3-30)
????
?????
i n t
i n ti n tn o i n
EE
EEEW
??
???( 3-31)
Question,disappears?
非保守W
No,it is transformed into other energy such as heat
energy which leads to the increase of temperature of
system so that their internal energy of system has an
increment,
intE?
Therefore,the following conclusion can be made:
2211 内机内机 EEEE ???
That is:
对一个孤立系统,各种形式的能量可以相互转
化,但无论如何转化,能量既不能产生,也不能消
灭,保持守恒。
We can express this generalized (一般) conservation
of energy in words as follows
Energy may be transformed from one kind to
another in an isolated( 孤立 ) system; but it
cannot be created( 产生 ) or destroyed( 消失 ) ;
the total energy of the system always remains
constant.
能量 守恒
两者兼顾