Integ 0 pi2,50,f, 1.000082250762=f x( ) x sin x( )?:=
Integ a b,n,f,( ) h b a?( )n¡û
s 0¡û
s1 f i 1?( ) h?[ ] f i h?( )+[ ] h2?¡û
s s s1+¡û
i 1 n..¡Êfor
:=
2,Àû Óà Çó »ý ·Ö µÄ ÌÝ ÐÎ ¹« ʽ ±à д ³Ì Ðò ¼Æ Ëã º¯ Êý ÔÚ Ò» ¸ö ÓÐ ÏÞ Çø ¼ä ÉÏ µÄ ¶¨ »ý ·Ö
Find x y,( ) 2214¡ú
2x 4y+ 100=
x y+ 36=
Given
henrabit1 "Chickens"22 "Rabbits"14=
henrabit1 chikens 1¡û
break mod 100 2 chikens 4,( ) 0= chikens 100 2 chikens 4+ 36=¡Äif
chikens chikens 1+¡û
chikens 36¡Üwhile
"Chickens"
chikens
"Rabbits"
100 2 chikens
4
:=
henrabit "Chickens"22 "Rabbits"14=
henrabit
break k 100 2 k( )4+ 36= mod 100 2 k 4,( ) 0=¡Äif
k 1 36..¡Êfor
"Chickens"
k
"Rabbits"
36 k?
:=
1 tong Mathcad, 36,100,.¼¦ Íà Áý ÎÊ Ìâ µÄ ³Ì Ðò Í· ½Å Çó ¼¦, Íà ¸÷ Èô ¸É
Mathcad (2)±à ³Ì ¾Ù Àý30 ʵ Ñé
Integ1 a b,n,f,( ) h b a?( )n¡û
s f a( ) f b( )+( ) h2?¡û
s1 f a i h?+( ) h?¡û
s s s1+¡û
i 1 n 1?..¡Êfor
:=
Integ1 0 pi2,50,f, 1.000082250762=
0
pi
2
xf x( )
ÿ
ÿ? d 1¡ú 1=
3,,,±à д ³Ì Ðò ͳ ¼Æ Ò» ¸ö °à ¼¶ ¿¼ ÊÔ ³É ¼¨ µÄ ·Ö ×é ͳ ¼Æ ½á ¹û Êä ³ö ´Î Êý ·Ö ²¼ ×Ü ³É ¼¨
.ƽ ¾ù ³É ¼¨ ÒÔ ¼° ±ê ×¼ ²î
stat Data( ) n length Data( ) 1?¡û
xi 0¡û
i 0 4..¡Êfor
x0 x0 1+¡û Datai 60<if
x1 x1 1+¡û 60 Datai¡Ü 70<if
x2 x2 1+¡û 70 Datai¡Ü 80<if
x3 x3 1+¡û 80 Datai¡Ü 90<if
x4 x4 1+¡û otherwise
i 0 n..¡Êfor
p j 5 j?¡û
j 0 4..¡Êfor
cum0 x0¡û
cumj cumj 1? xj+¡û
j 1 4..¡Êfor
augment p x,x 100?n 1+,cum,cum 100?n 1+,
:=
score
71
73
78
:=
:,¸÷ ÁР˳ ´Î Ϊ ³É ¼¨ µÈ ¼¶
,,ÈË Êý °Ù ·Ö ±È ÀÛ »ý Ƶ ÊýÀÛ »ý °Ù ·Ö ±È
stat score( )
5
4
3
2
1
3
14
23
20
5
4.615
21.538
35.385
30.769
7.692
3
17
40
60
65
4.615
26.154
61.538
92.308
100
=
mean score( ) 75.969= ƽ ¾ù ³É ¼¨
sum mean score( ) length score( )?:=
sum 4938= ×Ü ³É ¼¨
stdev score( ) 9.702= ±ê ×¼ ²î
int
55
65
75
85
95
:= h
3
14
23
20
5
:= cum
3
17
40
60
65
:=
50 100
20
³É ¼¨ Ƶ Êý ·Ö ²¼ ͼ
50 100
50
³É ¼¨ ÀÛ »ý ·Ö ²¼ ͼ
int
50
60
70
80
90
100
:= hist int score,( )
3
14
23
20
5
=
40 60 80 100
10
20
30
4,±à д ³Ì Ðò ½« Ò» ¸ö Ê® ½ø ÖÆ µÄ Õû Êý ת »» ³É ¶þ ½ø ÖÆ Êý
Decimal_bin x( ) n floor ln x( )ln 2( )¡û
reduck x¡û
reduck 1+ floor
reduck
2
¡û
x reduck 1+¡û
k 0 n..¡Êfor
digitj reducj 2 reducj 1+¡û
j 0 n..¡Êfor
binary
0
n
i
digiti 10i?¡Æ
=
¡û
:=
Decimal_bin 451( ) 111000011= Decimal_bin 127( ) 1111111=
5,Èç Ï µÄ Á½ ¸ö ³Ì Ðò Óà ÓÚ ÅÐ ¶Ï Ò» ¸ö Õû Êý ÊÇ ²» ÊÇ ËØ Êý
Prime n( )
pk mod n k,( )¡û
k 2 floor n( )..¡Êfor
m floor n( ) 2?¡û
prk 1¡û pk 2+ 0¡Ùif
prk pk 2+¡û otherwise
k 0 m..¡Êfor
"The number is prime!"
0
m
k
prk¡Ç
=
0¡Ùif
"The number is not prime!" otherwise
:=
x 299:= Prime x( ) "The number is not prime!"= Prime 9013( ) "The number is prime!"=
FPrime n( )
pk k¡û
k 1 2..¡Êfor
pk mod n k,( )¡û
k 2 floor n( )..¡Êfor n 2>if
m floor n( )¡û
s 0¡û
prk 1¡û
s s 1+¡û
pk 0¡Ùif
k 0 m..¡Êfor
"Prime" m s=if
"No Prime" otherwise
:=
x 299:= FPrime x( ) "No Prime"= FPrime 9013( ) "Prime"=
6,r,1,2,3,5,Áù ÖÖ Òø ÐÐ ´æ ¿î ·½ °¸ ±È ½Ï Ϊ Àû ÂÊ Ïò Á¿ Æä ¸÷ ·Ö Á¿ ·Ö ±ð ÊÇ Äê ¶¨ ÆÚ ´æ ¿î
, x, x´æ ¿î Ò» ÂÉ ²» ¼Æ ¸´ Àû ³Ì Ðò ÖРΪ ±¾ ½ð Êä ³ö ½á ¹û Ϊ °´ ÕÕ ¸÷ ÖÖ ·½ °¸ ½« ±¾ ½ð ´æ Èë
,,.Òø ÐÐ Îå Äê ºó ±¾ Àû ÒÔ ¼° Àû Ï¢ ¶î
r0
.024
.0245
.025
.0258
:=
deposit x r,( )
schemek k 1+¡û
corpusk x¡û
k 0 5..¡Êfor
p
x 1 5 r3?+( )?
x 1 3 r2?+( )? 1 2 r1?+( )?
x 1 3 r2?+( )? 1 r0+( )2?
x 1 r0+( )5?
x 1 2 r1?+( )2? 1 r0+( )?
x 1 2 r1?+( )? 1 r0+( )3?
¡û
accrual p corpus?¡û
s augment scheme p,( )¡û
augment s accrual,( )
:=
deposit 20000 r0,( )
1
2
3
4
5
6
22580
22553.5
22544.38
22518
22536.21
22527.1
2580
2553.5
2544.38
2518
2536.21
2527.1
=
Integ a b,n,f,( ) h b a?( )n¡û
s 0¡û
s1 f i 1?( ) h?[ ] f i h?( )+[ ] h2?¡û
s s s1+¡û
i 1 n..¡Êfor
:=
2,Àû Óà Çó »ý ·Ö µÄ ÌÝ ÐÎ ¹« ʽ ±à д ³Ì Ðò ¼Æ Ëã º¯ Êý ÔÚ Ò» ¸ö ÓÐ ÏÞ Çø ¼ä ÉÏ µÄ ¶¨ »ý ·Ö
Find x y,( ) 2214¡ú
2x 4y+ 100=
x y+ 36=
Given
henrabit1 "Chickens"22 "Rabbits"14=
henrabit1 chikens 1¡û
break mod 100 2 chikens 4,( ) 0= chikens 100 2 chikens 4+ 36=¡Äif
chikens chikens 1+¡û
chikens 36¡Üwhile
"Chickens"
chikens
"Rabbits"
100 2 chikens
4
:=
henrabit "Chickens"22 "Rabbits"14=
henrabit
break k 100 2 k( )4+ 36= mod 100 2 k 4,( ) 0=¡Äif
k 1 36..¡Êfor
"Chickens"
k
"Rabbits"
36 k?
:=
1 tong Mathcad, 36,100,.¼¦ Íà Áý ÎÊ Ìâ µÄ ³Ì Ðò Í· ½Å Çó ¼¦, Íà ¸÷ Èô ¸É
Mathcad (2)±à ³Ì ¾Ù Àý30 ʵ Ñé
Integ1 a b,n,f,( ) h b a?( )n¡û
s f a( ) f b( )+( ) h2?¡û
s1 f a i h?+( ) h?¡û
s s s1+¡û
i 1 n 1?..¡Êfor
:=
Integ1 0 pi2,50,f, 1.000082250762=
0
pi
2
xf x( )
ÿ
ÿ? d 1¡ú 1=
3,,,±à д ³Ì Ðò ͳ ¼Æ Ò» ¸ö °à ¼¶ ¿¼ ÊÔ ³É ¼¨ µÄ ·Ö ×é ͳ ¼Æ ½á ¹û Êä ³ö ´Î Êý ·Ö ²¼ ×Ü ³É ¼¨
.ƽ ¾ù ³É ¼¨ ÒÔ ¼° ±ê ×¼ ²î
stat Data( ) n length Data( ) 1?¡û
xi 0¡û
i 0 4..¡Êfor
x0 x0 1+¡û Datai 60<if
x1 x1 1+¡û 60 Datai¡Ü 70<if
x2 x2 1+¡û 70 Datai¡Ü 80<if
x3 x3 1+¡û 80 Datai¡Ü 90<if
x4 x4 1+¡û otherwise
i 0 n..¡Êfor
p j 5 j?¡û
j 0 4..¡Êfor
cum0 x0¡û
cumj cumj 1? xj+¡û
j 1 4..¡Êfor
augment p x,x 100?n 1+,cum,cum 100?n 1+,
:=
score
71
73
78
:=
:,¸÷ ÁР˳ ´Î Ϊ ³É ¼¨ µÈ ¼¶
,,ÈË Êý °Ù ·Ö ±È ÀÛ »ý Ƶ ÊýÀÛ »ý °Ù ·Ö ±È
stat score( )
5
4
3
2
1
3
14
23
20
5
4.615
21.538
35.385
30.769
7.692
3
17
40
60
65
4.615
26.154
61.538
92.308
100
=
mean score( ) 75.969= ƽ ¾ù ³É ¼¨
sum mean score( ) length score( )?:=
sum 4938= ×Ü ³É ¼¨
stdev score( ) 9.702= ±ê ×¼ ²î
int
55
65
75
85
95
:= h
3
14
23
20
5
:= cum
3
17
40
60
65
:=
50 100
20
³É ¼¨ Ƶ Êý ·Ö ²¼ ͼ
50 100
50
³É ¼¨ ÀÛ »ý ·Ö ²¼ ͼ
int
50
60
70
80
90
100
:= hist int score,( )
3
14
23
20
5
=
40 60 80 100
10
20
30
4,±à д ³Ì Ðò ½« Ò» ¸ö Ê® ½ø ÖÆ µÄ Õû Êý ת »» ³É ¶þ ½ø ÖÆ Êý
Decimal_bin x( ) n floor ln x( )ln 2( )¡û
reduck x¡û
reduck 1+ floor
reduck
2
¡û
x reduck 1+¡û
k 0 n..¡Êfor
digitj reducj 2 reducj 1+¡û
j 0 n..¡Êfor
binary
0
n
i
digiti 10i?¡Æ
=
¡û
:=
Decimal_bin 451( ) 111000011= Decimal_bin 127( ) 1111111=
5,Èç Ï µÄ Á½ ¸ö ³Ì Ðò Óà ÓÚ ÅÐ ¶Ï Ò» ¸ö Õû Êý ÊÇ ²» ÊÇ ËØ Êý
Prime n( )
pk mod n k,( )¡û
k 2 floor n( )..¡Êfor
m floor n( ) 2?¡û
prk 1¡û pk 2+ 0¡Ùif
prk pk 2+¡û otherwise
k 0 m..¡Êfor
"The number is prime!"
0
m
k
prk¡Ç
=
0¡Ùif
"The number is not prime!" otherwise
:=
x 299:= Prime x( ) "The number is not prime!"= Prime 9013( ) "The number is prime!"=
FPrime n( )
pk k¡û
k 1 2..¡Êfor
pk mod n k,( )¡û
k 2 floor n( )..¡Êfor n 2>if
m floor n( )¡û
s 0¡û
prk 1¡û
s s 1+¡û
pk 0¡Ùif
k 0 m..¡Êfor
"Prime" m s=if
"No Prime" otherwise
:=
x 299:= FPrime x( ) "No Prime"= FPrime 9013( ) "Prime"=
6,r,1,2,3,5,Áù ÖÖ Òø ÐÐ ´æ ¿î ·½ °¸ ±È ½Ï Ϊ Àû ÂÊ Ïò Á¿ Æä ¸÷ ·Ö Á¿ ·Ö ±ð ÊÇ Äê ¶¨ ÆÚ ´æ ¿î
, x, x´æ ¿î Ò» ÂÉ ²» ¼Æ ¸´ Àû ³Ì Ðò ÖРΪ ±¾ ½ð Êä ³ö ½á ¹û Ϊ °´ ÕÕ ¸÷ ÖÖ ·½ °¸ ½« ±¾ ½ð ´æ Èë
,,.Òø ÐÐ Îå Äê ºó ±¾ Àû ÒÔ ¼° Àû Ï¢ ¶î
r0
.024
.0245
.025
.0258
:=
deposit x r,( )
schemek k 1+¡û
corpusk x¡û
k 0 5..¡Êfor
p
x 1 5 r3?+( )?
x 1 3 r2?+( )? 1 2 r1?+( )?
x 1 3 r2?+( )? 1 r0+( )2?
x 1 r0+( )5?
x 1 2 r1?+( )2? 1 r0+( )?
x 1 2 r1?+( )? 1 r0+( )3?
¡û
accrual p corpus?¡û
s augment scheme p,( )¡û
augment s accrual,( )
:=
deposit 20000 r0,( )
1
2
3
4
5
6
22580
22553.5
22544.38
22518
22536.21
22527.1
2580
2553.5
2544.38
2518
2536.21
2527.1
=