课 次 11
授课内容
1. 珠算除法的基础知识
2、珠算商除法
目的要求
1、知道商数定位法
2、掌握商除法
重点
珠算商除法
难点
商数定位法
教学方法与手段
1. 珠算除法的基础知识
25
2. 珠算商除法
20
3. 商数定位法和珠算商除法练习
45
思考题
珠算商除法与笔算除法的关系
第四章 珠算除法
除法是乘法的逆运算,也是同数连减的一种简便运算。它的算式为:被除数除法是把一个数分成若干等份,求一份是多少的计算方法叫做除法。被分的数称为被除数;去分的数叫做除数;每份分得的数称为商数。除法实际上就是连减几个相同数的一种减算,因此,除法就是减法的简捷算法,也是乘法的逆运算,
除法的计算公式是:被除数÷除数 = 商数。
珠算除法的种类较多,常用的有商除法、归除法法、补数除法等。在本章主要介绍商除法。
第一节 商除法
商除法的计算顺序和原理与笔算相同,用较简单的十几句口诀求商,然后用九九口诀进行乘减,只是乘减的顺序略有不同。商除法是从除数的最高位开始与试商相乘(而笔算则是从末位乘起),其积从被除数(或余数)中自左向右逐档减去(而笔算则是从右向左逐位减去)。
这种运算方法的优点主要表现在:定商口诀简单,也可用笔算的方法估商,易学习掌握,和笔算一致,不必另起炉灶再搞一套计算程序;不用顶珠、底珠和悬珠,减少错档;计算顺手,适合于青少年初学和干部训练等,是当前社会上普遍运用的一种方法。
其缺点主要表现在:虽然能用口诀求商,但是有时也会出现商数偏大或偏小,因此,在求商过程中,常出现退商和补商的问题,如不熟练,速度缓慢,这就要求熟练地掌握心算技术,并与口诀相结合,则简便可行,运用自如。
一、商除法的立商原则和定位方法
(一)商除法的立商原则
商除法的立商原则是:被除数与等位比较,够除时,隔位立商:不够除时,挨位立商,即:当除数是一位除法,如被除数头位数大于或等于除数头位也就是“够除”时,其商数应放在被除数头位的左边第二档上(即隔位立商);如被除数头位数小于除数头位数,也就是“不够除”时,商数应放在被除数的左边第一档上(即挨位立商)。当除数是两位的除法,“够除”与“不够除”就要看被除数的前两位;除数是三位的除法,“够除”与“不够除”就要看被除数的前三位。其它依次类推。
在运算过程中,首先试商,然后乘减。其乘减的顺序是:用试商与除数的首位、次位……直到末位依次相乘,并将相乘积数分别在被除数的相应档次减去。
(二)商除法的定位方法
除法的定位方法有多种,一般常用的有公式定位法、移档定位法、算前盘上定位法等。
1. 公式定位法(即通用定位法)
公式定位法是一种通过比较被除数和除数的数字大小,用定位公式来确定商的位数的方法。其具体方法是:首先看被除数的首位(也叫头)和除数的首位,可用两句话概括:被除数头小,被除数位数减除数位数;被除数头大,被除数位数减除数位数再加一位。所谓头小、头大,是以被除数首位与除数首位比较而言的。两者的首位如果相同(齐头),则比较第二位,如第二位相同,再比第三位,依次类推。如果两者数完全相同,则叫大齐,也属于头大的一种类型。
头小的公式为:商的位数:m-n
头大(齐)的公式为:商的位数;m-n+1
例如:84÷77 被除数头大
36÷49 被除数头大
18.73÷18.65 被除数头大
17÷17 被除数大齐
将上述公式定位法编成简略的口诀是:
头小两数相减:大齐减后加一(位)。
例1 3,875÷43;90。12
(4位—2位;2位)头大
例2 93.8÷653:0.14
(2位-3位+1位:0位)头大
例3 435÷432;1.01
(3位—2位+1位=1位)头大
2. 算前盘上定位法
在除法运算中,除不尽的算题占多数,为了达到一定的精确程度,要求在规定的小数位数以后,以四舍五入处理,这就便会产生一种情况,即运算时往往不知打到哪一档为止,常常出现不是多打几位,就是少打几位,浪费时间和精力。算前盘上定位法可以较好地解决这类问题,它可以使运算适可而止。因此,不论在实际工作中或在珠算通级中都很适用。
算前盘上定位法也称“固定个位定位法”,这种定位方法是:首先是在算盘上选定一个固定的小数点位置(或选定一个“个位”档),这个小数点位置一般在算盘中心区,使前面可以立商若于位,后面又有运算减积的余地。
在开始运算之前,看被除数是几位,先减去一位(每题都要先减一位,这是根据商除法定商位置的特点所决定的),再减去除数的位数,按照上述方法相减之后,差位是几位,就对照算盘上的标位点布上被除数,正位在小数前方布数,负位在小数后方布数,0位就紧挨小数点后档布数。
按照这种方法布数和运算所得出的商数,其小数点恰好落在盘上选定的固定小数点位置上,从而能够及时确立商数的数值,看盘抄写得数准确。
三、多位商除法
用商除法运算除数是二位或二位以上的除法,叫做多位商除法。多位商除法的运算方法和步骤基本上与一位商除法相同,但由于除数位数增多,容易出现估商不准。试商时,可把除数按照“四舍五入”的办法看作整十或整百的数字来试除,例952÷285,就可看作952÷300,试商3。试商的数字要“宁小勿大”,以免商数过大不够除时,难于还原。发现余数大于除数时,再进行补商,补商时商数加1,但要隔位减去除数。若遇试商偏大而不够除(即被除数不够减商数和乘数的乘积)时,就应退商。退商时,商数减1,但要隔位加上多减的那部分商数和除数的乘积。
试商的方法是:当被除数的首位数大于除数首位数时,就可立即用乘法九九口诀试商:当被除数的首位数小于除数首位数时,就要观察被除数的前两位数,用乘法九九口诀试商:当被除数的首位数与除数的首位数相同的情况下,要依次向下位观察,若被除数大于除数时,立商1,若被除数小于除数时,立商9。商除法试商一般多用心算和口诀相结合求商,商除法口诀附后。
多位数除法要防止在减商和除数乘积时错档。掌握的要领是:除数是第几位,它与商数乘积时的十位数,就从商数右面第几档减去。减积的规律是:上次减积的个位档,就是本次减积的十位档;本次减积的个位档,就是下次减积的十位档。所以应注意手指不离档,始终把手指停留在每次积的个位档上,依次递位迭减。这样运算,既快.且不容易减错档次。
四、补商和退商
用心算估商时,估计的试商可能偏小或偏大,在这种情况下,就要用补商和退商的办法,将试商进行调整。
(一)补商
在多位数除法运算过程中,有时试商过小,乘减后余数比除数大,这时不必重新计算,可用补商的办法来调整试商。商除法的补商方法是:将试商加1,同时隔位减一遍除数;试商补几,就隔位减几倍除数。这实际上与“数大够除隔位立商”相类似。
补商比较容易,一般初学珠算除法,试商宁小毋大,立商偏小可以补商;若立商过大,就需要退商,退商比较麻烦。
(二)退商
在多位数除法运算过程中,心算估商有时偏大,结果,当减试商与除数的乘积时,会遇到中途不够的情况或开始就不够减的情况。这时也没有必要重新计算,而以退商的方法来进行调整试商。商除法的退商方法是:将试商减去1,隔位加还已经除过的那几位除数,然后再用调整后的试商,去乘尚未乘减的那几位除数,并将其积从被除数的相应档位中减去。
[例如] 26,644.08÷5,843=4.56
运算顺序:
(1)试第一商:被除数2小于除数首位5,(看被除数前两位26),挨立商5,5同除数5相乘之积25,从被除数中减去。试商5同除数8相乘之积40,余数只有1,不够减要退商1,隔档加过的除数5。最后将退商后的新商4同除数的g43相乘之积,从余数中减去。
(2)试第二商:余数首位3小于除数首位5,挨位立商6,6同除数5相乘之积30,从余数中减去。然后再将试商6同除数8相乘之积48,需从余数中减去,但余数只有2不够减,需要退商1,隔位加除过的除数5。最后将退商后的新商5同除数843相乘之积,从余数中减去。
(3)试第三商:余数首位3小于隔数首位5,挨位立商立商6,6同除数5,843相乘之积从余数中减去,除尽。商为4.56。
如果乘减到最后几位才发现要退商,这时可用虚珠减去,然后再退商。
第二节 除法的注意事项及检误方法
一、除法的注意事项
在除法运算过程中,为了达到准确、快速之目的,就必须注意以下几点:
(一)商除法求商要准确判断两因数
首先注意被除数首位(或头两位)数与除数首位(或头两位)数的比较。通过两因数的比较,准确判断出该题是属于“头小类”、“头大类”、“头同下小类”,并根据各类不同的求商口诀求商。由于补商容易退商难,所以在试商时可结合心算,适当注意“宁小勿大”。
其次是立商时,特别要注意“头大隔位立商,头小挨位立商” 的原则,以防止商数串档。
再次是补商时,切记“余数大时隔加1”,在这种情况下,最容易出现差错的是“挨加1”,在运算过程中是必须注意的地方。
(二)正确区分商数和余数
在运算过程中,要随时注意区分商数和余数,切忌两者相混淆。如果将商数当成余数,再进行试商,或者将余数当作商数,都会造成错误。在归除法试商时,有时可能出现试商右一档的余数超过10,例如:170÷66,按照六归口诀“六一下加4”,被除数第二位就得利用顶珠,即11,这时绝不能“逢十进1”(如同加法那样),而应按归除口诀,“逢六进1”,否则造成试商错误。
(三)运算时手指不离档
多位数除法在乘减时档位较多,因此,在乘减时手指不能离开档位,记住这一次的个位档,就是下一次的十位档,每乘一次,手指往后(右)退一位;除数中间遇零时,有几个零,手指就往后退几档。减积时,要默记试商,眼看除数,一边用九九口诀,一边作乘减,注意把试商读在前,除数读在后,这样做,既不易出现错误,而且运算速度快。
二、除数的检误方法
多位数除法的运算过程比较复杂,如果在某一个档次或某一环节出现问题,其计算结果必然是错误的。运算结果是否准确无误,可用以下简单方法进行检查:
(一)乘法还原检查法
因为乘法和除法是互为逆运算,所以,用乘法还原的方法进行检查商数准确与否比较简便、可靠。除法用乘法还原,有以下两种关系:
1. 能除尽的除法:被除数=除数×商数
2. 除不尽的除法:被除数=除数×商数+余数
验算方法是:
能除尽的除法还原,将除数与商数相乘,如果得出的积同被除数完全一致,证明原求出的商是正确的。如果得出的积与被除数不一致,则有两种可能:一是验算过程中乘法运算发生错误;二是原求出的商是错误的。此外,也不能排除原商数计算准确而发生的笔误。在这种情况下,应重新计算一次,以确定运算正确与否。
除不尽的除法还原,首先将除数与商数相乘,然后加上余数。运算完毕,算盘上显示的积数应同被除数完全一致,即证明原求的商数是正确的。值得注意的地方是:采用上述方法对归除计算出来的商进行验算时,只能使用不隔位乘法,这是由于两者的加减乘积的档次相同所决定的。
例1 1,062,532÷436 = 2,437
验算:436× 2,437=1,062,532。
乘法还原结果,乘积为1,062,532与被除数完全相一致,说明原除法运算正确(包括商的定位)。
例2 3,303.44÷694=4.26
验算:694×4.26=2,956.44
乘法还原结果,乘积为2,956.44,与被除数3,303.44不一致,说明计算肯定有错误,其错误有两种可能:一是乘算(验算)时有误;二是除算时有误。当然,也不能排除原商数计算正确而发生的笔误。在这种情况下,应重新计算,结果商为4.76。
验算 694×4.76 = 3,303.44
证明第二次运算正确。在实际工作中,有时由于疏忽大意,抄得数时将上珠看掉。因此,当运算结束之后,特别要注意有无上珠。
实 作 十五 商数定位和商除法练习
一、商数定位练习
1.根据2,688÷56=48的结果,确定下列各除法算式商的位数和商数。
0.2688÷0.056 2,688,000÷0.0056 258,800÷0.56 0.02688÷0.056 2,688÷56,000 0.2688÷56 0.2688÷5,600 26.88÷0.56 0.002688÷0.0056 268.8÷560
2.根据256÷12=13的结果,确定下列各式的商的位数和商数。
25.6÷0.12 2,560÷0.12 2.56÷0.012 25,600÷12 0.256÷1,200 256,000÷1,200
3.根据224÷16=14的结果,写出商为1,400时的算式,并说明为什么这样的算式不是唯一的。
二、商除法练习
注:练习内容见练习纸