第九节
周期为 的周期函数的傅时叶级数 l2
一、以 2L为周期 的傅氏级数
,2 lT ??,2 lT ??????
定理
式为则它的傅里叶级数展开定理的条件
满足收敛的周期函数设周期为
,
)(2 xfl
),s i nc o s(2)(
1
0
l
xnb
l
xnaaxf
n
n
n
????? ??
?
)s i nc o s(2
1
0 xnbxnaa
n
n
n ???? ?
?
?
代入傅氏级数中
为其中系数 nn ba,
),2,1,0(,c o s)(1 ???? ?? ndxl xnxfla l ln
),2,1(,s i n)(1 ???? ?? ndxl xnxflb l ln
,)()1( 为奇函数如果 xf则有
,s i n)(
1
??
?
??
n
n l
xnbxf
,s i n)(2 0 dxl xnxflbb lnn ? ??为其中系数 ),2,1( ??n
,)()2( 为偶函数如果 xf则有
,c o s2)(
1
0 ?
?
?
???
n
n l
xnaaxf
dxl xnxflaa lnn ? ?? 0 co s)(2为其中系数
),2,1,0( ??n
证明,lxz ??令 lxl ???,?????? z
),()()( zFlzfxf ???设,2)( 为周期以 ?zF
),s i nc o s(2)(
1
0 nzbnzaazF
n
n
n ??? ?
?
?
)s i nc o s(2)(
1
0 x
l
nbx
l
naaxf
n
n
n
????? ??
?
.s i n)(
1
,c o s)(
1
?
?
?
??
?
??
?
?
?
?
n z d zzFb
n z d zzFa
n
n其中
.s i n)(
1
,c o s)(
1
?
?
?
?
?
?
?
?
l
l
n
l
l
n
x d x
l
n
xf
l
b
x d x
l
n
xf
l
a其中
)()( xfzFlxz ????
二、典型例题
k
2? x
y
20 44?
例 1 设 )( xf 是周期为 4 的周期函数,它在 )2,2[ ?
上的表达式为
?
?
?
??
???
?
20
020
)(
xk
x
xf,将其展
成傅氏级数,
解,,2 满足狄氏充分条件?l?
?? ?? ? 200 20 21021 k d xdxa,k?
? ??20 2co s21 x d xnk,0?
? ??? 20 2s i n21 x d xnkb n )co s1( ???? nnk
,
,6,4,20
,5,3,1
2
??
?
?
?
?
?
??
?
?
n
n
n
k


)25s i n5123s i n312( s i n22)( ??????????? xxxkkxf
),4,2,0;( ?????????? xx
?na ),2,1( ??n
例 2 将函数 ? ?15510)( ???? xxxf 展开成傅
氏级数,
解,10?? xz作变量代换
155 ?? x,55 ???? z
)10()( ?? zfxf ),( zFz ???
,)55()( 的定义补充函数 ????? zzzF
,5)5( ??F令 )10()( ?TzF 作周期延拓然后将
,收敛定理的条件这拓广的周期函数满足
).()5,5( zF内收敛于且展开式在 ?
x
)(zFy
5? 50 1510
),2,1,0(,0 ??? na n
? ??? 50 2s i n)(52 dzznzb n
,10)1( ??? nn ),2,1( ??n
,5s in)1(10)(
1
?
?
?
??
?? n
n zn
nzF )55( ??? z
?
?
?
???????
1
)]10(5s in [)1(1010
n
n
xnnx
.5s in)1(10
1
?
?
?
??
?? n
n
xnn )155( ?? x
小结 求傅氏级数的步骤,
1。画图形,判断函数是否满足狄氏条件;
2。求出傅氏糸数;
3。写出傅氏级数,并注明它在何处收敛于 f(x);
1,对于周期函数,奇函数的傅氏级数为正弦级数;偶函数
的傅氏级数为余弦级数。
2。对于定义在 上的函数,展开前必须以 为周期拓
广函数的定义域;
),( ll? l2
3。对于定义在 上的函数,其拓广形式及傅里叶级数
的展开形式都不是唯一的。可以根据实际需要,将其展开成
正弦级数或余弦级数。
),0( l
值得注意的几点,