跳转到第一页电工技术主编 李中发制作 李中发
2005年 1月跳转到第一页学习要点
掌握支路电流法、节点电压法、叠加定理、
等效电源定理等常用的电路分析方法,重点是叠加定理和戴维南定理
理解电路等效的概念,掌握用 电路等效概念分析计算电路的方法
了解受控源的概念以及含受控源电阻电路的分析计算
了解非线性电阻电路的图解分析方法,理解静态电阻和动态电阻的意义第 2章 电路的基本分析方法跳转到第一页第 2章 电路的基本分析方法
2.1 简单电阻电路分析
2.2 复杂电阻电路分析
2.3 电压源与电流源的等效变换
2.4 电路定理
2.5 含受源电阻电路的分析
2.6 非线性电阻电路的分析跳转到第一页
2.1 简单电阻电路分析电阻电路,只含电源和电阻的电路简单电阻电路,可以利用电阻串、并联方法进行分析的电路。应用这种方法对电路进行分析时,一般先利用电阻串、并联公式求出该电路的总电阻,然后根据欧姆定律求出总电流,最后利用分压公式或分流公式计算出各个电阻的电压或电流。
跳转到第一页
I
R
1
+
U

R
2
R
n
R
I
+
U

+
U
1

+
U
2

+
U
n

nRRRR21
n个电阻串联可等效为一个电阻
2.1.1 电阻的串联跳转到第一页分压公式
U
R
R
IRU kkk
两个电阻串联时
U
RR
R
U
21
1
1
U
RR
R
U
21
2
2
R
1
I
+
U

R
2
+
U
1

+
U
2

跳转到第一页
n个电阻并联可等效为一个电阻
nRRRR
1111
21

2.1.2 电阻的并联
I 1 I 2 I n
R 1
I
+
U

R 2 R n R
I
+
U

跳转到第一页分流公式两个电阻并联时
I
R
R
R
U
I
kk
k
I
RR
R
I
21
2
1
I
RR
R
I
21
1
2
I
1
I
2
R
1
I
+
U

R
2
跳转到第一页
2.2 复杂电阻电路分析复杂电阻电路,不能利用电阻串并联方法化简,然后应用欧姆定律进行分析的电路
。 解决复杂电路问题的方法,一种 是根据电路待求的未知量,直接应用基尔霍夫定律列出足够的独立方程式,然后联立求解出各未知量; 另一种 是应用等效变换的概念,将电路化简或进行等效变换后,再通过欧姆定律,基尔霍夫定律或分压,分流公式求解出结果 。
跳转到第一页支路电流法是以支路电流为未知量,
直接应用 KCL和 KVL,分别对节点和回路列出所需的方程式,然后联立求解出各未知电流。
2.2.1 支路电流法一个具有 b条支路,n个节点的电路,
根据 KCL可列出( n- 1) 个独立的节点电流方程式,根据 KVL可列出 b- (n- 1)个独立的回路电压方程式。
跳转到第一页图示电路
( 2)节点数 n=2,
可列出 2- 1=1个独立的 KCL方程。
( 1)支路数 b=3
,支路电流有 I1,
I2,I3三个。
( 3)独立的 KVL方程数为 3- (2- 1)=2个。
13311 sURIRI
回路 I
23322 sURIRI
回路 Ⅱ
0321 III
节点 a
+
U
S 1

I
1
R
1
I
2
I
3
R
2
R
3
+
U
S 2

a
b
Ⅰ Ⅱ
跳转到第一页解得,I1=- 1A
I2=1A
I1<0说明其实际方向与图示方向相反。
对节点 a列 KCL方程:
I2=2+I1
例,如图所示电路,用支路电流法求各支路电流及各元件功率 。
2A
I
1
I
2
+
5V

a
b
10 Ω
5 Ω
解,2个电流变量 I1和 I2,
只需列 2个方程。
对图示回路列 KVL方程:
5I1+10I2=5
跳转到第一页各元件的功率:
5Ω电阻的功率,P1=5I12=5× (- 1)2=5W
10Ω电阻的功率,P2=10I22=5× 12=10W
5V电压源的功率,P3=- 5I1=- 5× (- 1)=5W
因为 2A电流源与 10Ω电阻并联,故其两端的电压为,U=10I2=10× 1=10V,功率为:
P4=- 2U=- 2× 10=- 20W
由以上的计算可知,2A电流源发出 20W功率
,其余 3个元件总共吸收的功率也是 20W,可见电路功率平衡 。
跳转到第一页
2.2.2 节点电压法对只有两个节点的电路,可用弥尔曼公式直接求出两节点间的电压。

R
I
R
U
U
s
s
1
弥尔曼公式,式中分母的各项总为正,
分子中各项的正负符号为:
电压源 us的参考方向与节点电压 U的参考方向相同时取正号,反之取负号;电流源 Is的参考方向与节点电压
U的参考方向相反时取正号,
反之取负号。
跳转到第一页
+
U s1

I 1
R 1
I 2
I s1
R 2
R 3

U s2
+
I 3
I s2
+
U

如图电路,由 KCL有
I1+I2-I3-Is1+Is2=0
设两节点间电压为 U,
则有:
3
3
2
2
2
1
1
1
R
U
I
R
UU
I
R
UU
I
s
s

321
21
2
2
1
1
111
RRR
II
R
U
R
U
U
ss
ss


因此可得:
跳转到第一页例:用节点电压法求图示电路各支路电流 。
解:
求出 U后,可用欧姆定律求各支路电流。
+
U
S 1

I
1
R
1
I
2
R
2

U
S 2
+
I
S
+
U

1 Ω 6 Ω
6V
8V
0,4 AI
3
R
3
10 Ω
V4
10
1
6
1
1
1
4.0
6
8
1
6
111
321
2
2
1
1




RRR
I
R
U
R
U
U
S
SS
跳转到第一页
A21 46
1
1
1?

R
UUI S
A26 48
2
2
2

R
UUI S
A4.0104
3
3 R
UI
+
U
S 1

I
1
R
1
I
2
R
2

U
S 2
+
I
S
+
U

1 Ω 6 Ω
6V
8V
0,4 AI
3
R
3
10 Ω
跳转到第一页
2.3 电压源与电流源的等效变换
2.3.1 电路等效变换的概念电路的等效变换,就是保持电路一部分电压,电流不变,而对其余部分进行适当的结构变化,用新电路结构代替原电路中被变换的部分电路 。
R
II
+
U

R 2
+
U

R 1
图示两电路,若,则两电路相互等效,可以进行等效变换。变换后,若两电路加相同的电压,则电流也相同。 21
21
RR
RRR

跳转到第一页
+
U s

I
R o
+
U

+
U

I
I s R
o
电压源与电流源对 外电路 等效的条件为:
oR
UI s
s?
oRIU ss?
或且两种电源模型的内阻相等。
2.3.2 电压源与电流源的等效变换跳转到第一页例:用电源模型等效变换的方法求图 ( a) 电路的电流 I1和 I2。
2A
I 1
I 2
+
5V

10 Ω
5 Ω
2A
I 2
10 Ω 5 Ω
1A
3A
I 2
10 Ω 5 Ω
( a) ( b ) ( c )
A13510 52I
A121221 II
解:将原电路变换为图( c) 电路,由此可得:
跳转到第一页
2.4 电路定理
2.4.1 叠加定理在任何由线性电阻、线性受控源及独立源组成的电路中,每一元件的电流或电压等于每一个独立源单独作用于电路时在该元件上所产生的电流或电压的代数和。这就是 叠加定理 。
说明,当某一独立源单独作用时,其他独立源置零 。
开路短路 0 0 SS IU
跳转到第一页例:
求 I
解:应用叠加定理
R1
2A
I?
R2+?
A122 4I A1
22
22?

I
A211I

-4V
R1
R2 2A
2?
2?
I


R1
R2
I?
4V
跳转到第一页
+
U
0 C

R
L
a
b
有源二端网络
I
R
L
a
b
I
R
0
+
U

+
U

2.4.2 戴维南定理对外电路来说,任何一个线性有源二端网络,都可以用一个电压源即恒压源和电阻串联的支路来代替,其恒压源电压等于线性有源二端网络的开路电压 UOC,电阻等于线性有源二端网络除源后两端间的等效电阻 Ro。 这就是 戴维南定理 。
跳转到第一页
( a ) 电路 ( b ) 求开路电压的电路
3 Ω
+
24V

6 Ω
6 Ω
3 Ω
I
3 Ω
+
24V

6 Ω
6 Ω
2A
+
U OC

2A
例:用戴维南定理求图示电路的电流 I。
解,(1)断开待求支路,得有源二端网络如图 (b)所示。由图可求得开路电压 UOC为:
V1812624
66
632
OCU
跳转到第一页
6 Ω
3 Ω
6 Ω
R o
(c ) 求串联电阻的电路
(2)将图 (b)中的电压源短路,电流源开路,得除源后的无源二端网络如图 (c)所示,由图可求得等效电阻 Ro为:
Ω633
66
66
3o
R
跳转到第一页
I
18V
6 Ω
3 Ω
(d ) 图 (a ) 的等效电路
+
U
OC

R
o
(3)根据 UOC和 Ro画出戴维南等效电路并接上待求支路,得图 (a)的等效电路,如图 (d)
所示,由图可求得 I为:
A2
36
18?
I
跳转到第一页
I
SCR L
a
b
有源二端网络
I
R
L
a
b
I
R
0
+
U

+
U

2.4.3 诺顿定理对外电路来说,任何一个线性有源二端网络,都可以用一个电流源即恒流源和电阻并联的电路来代替,其恒流源电流等于线性有源二端网络的短路电流 ISC,电阻等于线性有源二端网络除源后两端间的等效电阻 Ro。 这就是 诺顿定理 。
跳转到第一页例:用诺顿定理求图示电路的电流 I。
解,(1) 将待求支路短路,如图 (b)所示。
由图可求得短路电流 ISC为:
+
U
S1

I
S C
R
1
R
2
+
U
S2

( b)
+
U
S1

I
R
1
R
2
+
U
S2

( a)
140V 140V90V 90V
20 Ω 5 Ω 20 Ω 5 Ω
6 ΩR
3
A2559020140
2
2S
1
1S
SC R
U
R
UI
跳转到第一页
(2)将图 (b)中的恒压源短路,得无源二端网络如图 (c)所示,由图可求得等效电阻 Ro为:
( c)
R
1
R
2
R
0
20 Ω 5 Ω


4
520
520
21
21
0 RR
RRR
(3)根据 ISC和 Ro画出诺顿等效电路并接上待求支路,
得图 (a)的等效电路,如图
(d)所示,由图可求得 I为:
I SC R 3
I
R 0
( d)
4 Ω 6 Ω
25A
A102564 4S
30
0
IRR
RI
跳转到第一页
2.5 含受控源电路的分析
2.5.1 受控源
( 1)概念受控源的电压或电流受电路中另一部分的电压或电流控制。
( 2)分类及表示方法
VCVS 电压控制电压源
VCCS 电压控制电流源
CCVS 电流控制电压源
CCCS 电流控制电流源跳转到第一页
+
U 1

+
U 2

I 1 = 0 I 2
gU 1
+
U 1

+
U 2

I 1 = 0 I 2
+
μ U 1

VCVS I1=0U
2=?U1
CCVS U1=0U
2=rI1
VCCS I1=0I
2=gU1
CCCS U1=0I
2=βI1
I 1 I 2
+
U 2

+
U
1
=0

+
rI 1

I 1 I 2
+
U 2

+
U 1 =0

β I 1
跳转到第一页如采用关联方向:
P=U1I1 +U2I2=U2I2
( 3)受控源的功率跳转到第一页
2.5.2 含受控源电阻电路的分析
1,支路电流法用支路电流法写方程时,应先把受控源暂时作为独立源去列写支路电流方程 。 但因受控源输出的电压或电流是电路中某一支路电压或电流 ( 即控制量 ) 的函数,所以,一般情况下还要用支路电流来表示受控源的控制量,使未知量的数目与独立方程式数目相等,这样才能将所需求解的未知量解出来 。

U 2
+
+
4 V

2 Ω
3 Ω
1 Ω
I 2
I 1
2 U 2
- +
I 3
Ⅰ Ⅱ
223
21
321
23
432
0
UII
II
III



支路电流方程:
辅助方程:
22 3 IU? A12A,4A,8
321 III
解之得:
跳转到第一页
2,叠加定理应用叠加定理时,独立源的作用可分别单独考虑,但受控源不能单独作用,且独立源作用时受控源必须保留。
5A
I 1
I 2
+
10 V

1 Ω
5 Ω
+
4 I 1

+
U

I' 1
I' 2
+
10 V

1 Ω
5 Ω
+
4 I' 1

5A
I" 1
I" 2
1 Ω
5 Ω
+
4 I" 1

+
U"

+
U'

121
21
4105 III
II


5A电流源单独作用:
A12I
解得:
10V电压源单独作用:
解得:
121
21
45
05
III
II


A5.42I
叠加,得:
A5.5
5.41
222

III
跳转到第一页
3,戴维南定理应用等效电源定理分析含受控源的电路时,不能将受控源和它的控制量分割在两个网络中,二者必须在同一个网络中。至于求等效电源的内阻 R0时,有源二端网络中的独立电源均应为零,
但受控源是否为零则取决于控制量是否为零。因此 R0不能用电阻串并联的方法计算。一般采用以下两种方法计算 R0。
( 1)开路短路法。即求出有源二端网络的开路电压 U0C和短路电流 ISC,则:
SC
0C
0 I
UR?
( 2)外加电压法。即在不含独立源的二端网络(内含受控源)
两端之间加一个电压 U,求出在这个电压作用下输入到网络的电流 I,则:
I
UR?
0
跳转到第一页
+ 1 0 I 1 -
+
20V

6 Ω
4 Ω 10A
+
U

I 2
I 1 + 1 0 I'
1 -
+
20V

6 Ω
10A
I' 1
+
U 0 C

+ 10 I" 1 -
+
20V

6 Ω
I SC
I" 1
10A
V80)10(620620 10C IU
A34010620101SC II
6
3
40
80
SC
0C
0 I
UR
A864 802I
R 0
4 Ω
I 2
+
U 0 C

例 应用戴维南定理求电流 I2。
跳转到第一页
2.6 非线性电阻电路的分析
2.6.1 非线性电阻非线性电阻的阻值不是一个常数,而是随着电压或电流变动。
计算非线性电阻的阻值时,必须指明工作电流或工作电压,称为非线性元件的工作点,如图所示伏安特性曲线上的 Q点。
0
I
U
Δ U
Δ I
I
U
Q
αβ
工作点处电压与电流的比值称为静态电阻或直流电阻 R
t a n
1
I
UR
工作点附近电压变化量 ΔU和电流变化量 ΔI的比值的极限称为动态电阻或微变电阻 r
t a n
1lim
0

dI
dU
I
Ur
I
跳转到第一页非线性电阻 R的伏安特性曲线①与负载线②的交点 Q确定的电压 U与电流 I。
2.6.2 非线性电阻电路分析
R 1
I
+
U S

R
+
U

+ U 1 -
0
I
U
U S
R 1
U SIR
1
U
I

Q

负载线由方程 确定。
1S1S IRUUUU