x
y
z
O
§ 3.2 几种常见力的功一,重力的功重力 mg 在曲线路径 M1M2 上的功为
2
1 1
dMM z zFA 2
1 1
dZZ zmg )(
)( 21 zzmg
重力所作的功等于重力的大小乘以质点起始位置与末了位置的高度差。
(1)重力的功只与始、末位置有关,而与质点所行经的路径无关。
(2)质点上升时,重力作负功;质点下降时,重力作正功。
1M
2M
m
G
结论
②
①
b La zyx zFyFxFA )( ddd
二,弹性力的功
21 dxx xkxA
(1) 弹性力的功只与始、末位置有关,而与质点所行经的路径无关。
(2) 弹簧的形变减小时,弹性力作正功;弹簧的形变增大时,
弹性力作负功。
2
2
2
1 2
1
2
1 kxkx
1x 2x
F?
ikxF
弹簧弹性力由 x1 到 x2 路程上弹性力的功为弹性力的功等于弹簧劲度系数乘以质点始末位置弹簧形变量平方之差的一半。
结论
xO
三,万有引力的功上的元功为
rFA?dc o sd
c o sd)c o s (dd rrr
rrmMGA dd 2
万有引力 F在全部路程中的功为?
2
1
)( 2 d
r
Lr rr
mMGA )11(
12 rr
GmM
(1) 万有引力的功,也是只与始、末位置有关,而与质点所行经的路径无关。
M a
b
1r?
2r?
mF
r?d?
结论在位移元F? r?d
2r
mMGF?
rd
四,摩擦力的功在这个过程中所作的功为
2
1
dc o sM LM sFA?
m g sA
摩擦力的功,不仅与始、末位置有关,而且与质点所行经的路径有关 。
1M 2M
v?
F?
mgF
摩擦力方向始终与质点速度方向相反
(2) 质点移近质点时,万有引力作正功;质点 A远离质点 O
时,万有引力作负功。
结论摩擦力 F?
y
z
O
§ 3.2 几种常见力的功一,重力的功重力 mg 在曲线路径 M1M2 上的功为
2
1 1
dMM z zFA 2
1 1
dZZ zmg )(
)( 21 zzmg
重力所作的功等于重力的大小乘以质点起始位置与末了位置的高度差。
(1)重力的功只与始、末位置有关,而与质点所行经的路径无关。
(2)质点上升时,重力作负功;质点下降时,重力作正功。
1M
2M
m
G
结论
②
①
b La zyx zFyFxFA )( ddd
二,弹性力的功
21 dxx xkxA
(1) 弹性力的功只与始、末位置有关,而与质点所行经的路径无关。
(2) 弹簧的形变减小时,弹性力作正功;弹簧的形变增大时,
弹性力作负功。
2
2
2
1 2
1
2
1 kxkx
1x 2x
F?
ikxF
弹簧弹性力由 x1 到 x2 路程上弹性力的功为弹性力的功等于弹簧劲度系数乘以质点始末位置弹簧形变量平方之差的一半。
结论
xO
三,万有引力的功上的元功为
rFA?dc o sd
c o sd)c o s (dd rrr
rrmMGA dd 2
万有引力 F在全部路程中的功为?
2
1
)( 2 d
r
Lr rr
mMGA )11(
12 rr
GmM
(1) 万有引力的功,也是只与始、末位置有关,而与质点所行经的路径无关。
M a
b
1r?
2r?
mF
r?d?
结论在位移元F? r?d
2r
mMGF?
rd
四,摩擦力的功在这个过程中所作的功为
2
1
dc o sM LM sFA?
m g sA
摩擦力的功,不仅与始、末位置有关,而且与质点所行经的路径有关 。
1M 2M
v?
F?
mgF
摩擦力方向始终与质点速度方向相反
(2) 质点移近质点时,万有引力作正功;质点 A远离质点 O
时,万有引力作负功。
结论摩擦力 F?