1
D9ADA6 2002 BOCZA1DCABD9ADB8A3AIAOAKCBA4B5A6
A3D3D8BLADB1C7A5DFA72002CK10AOA5
1A0ARB1AIAPB6AXCGD0A0A7CVBYAVDIAGABA2
2A0D2β =supE,β /∈ E,D6AXC4ARAZACCTD8CC{x
n
}A7CNBMA8DJβ A9ALCYβ ∈ E A7AQCPAACXBJAA
3A0BZC8A8A31A5AKD0CVBYA1A7CVBYAVD8CCA9A32A5BHAKD0CVBYAUAJBHAKA7CVBYAVD8CCA9A33A5
BQBHAKD0CVBYALBHAKA7CVBYAVD8CCA9A34A5BQAJBHAKD0CVBYALAJBHAKA7CVBYAVD8CCA7CNAZD0A0A7CVBY
B2AKA8A2
4A0D6AXA8D7C9D8CCAFAKD0CVBYBIA7CVBYA9CRAM +∞AVD8CCAFAKA7CVBYA7CRAM ?∞AVD8CCAFAK
D0CVBYA2
5A0CQD8CCAVD0A0A7CVBYA8
(1) x
n
=1?
1
n
;(2)x
n
= ?n[2 + (?2)
n
];
(3) x
2k
= k,x
2k+1
=1+
1
k
,k=1,2,3, ...;(4
n
radicalbigg
|cos
nπ
3
|.
6A0AXCGA8ATB0AKBYD8CCAFAKBMA8A2
7 A0D6B7A2CSBTDDB1C7AVDGBVA8CYBW?CSBTCCBAANC2CSBTCCA7BXBFARAFAACYBWDGBV [a
1
,b
1
] ?
[a
2
,b
2
] ? [a
3
,b
3
] ? ... CUAZBKBWDGBVb
n
? a
n
→ 0(n →∞)CUAZA7BXBFARAFAAD6BZC8DACGA2
8 A0CY{x
n
}A1BYA7COAJAH∞DJBMA8A7AQAFASAPCABDB0CC x
g(n)
→∞,x
h(n)
→ a(a DJCHAKA8D8),
CNAZ{g(n)}BI{h(n)}D5CABD?BCATB0AVAWAVD8CCA2
9A0AKBYD8CC{x
n
}CYAJD7C9A7AQAFASAPCABDB0CC x
g(n)
→ b,x
h(n)
→ a(n →∞), CNAZ a negationslash= b.
10A0CYAPCSBT[a,b]CIAVCABDD8CC{x
n
}BN{y
n
}CEB2 lim
n→∞
(x
n
? y
n
)=0A7AQAPAQCAD8CCAZCJAT
APC1AKA9DHB2AG g(n)AVB0CCA7D4{x
g(n)
}BN{y
g(n)
}D7C9AMDHAGBMA8A2
11A0AXCGA8CYa
n
> 0(n =1,2,3, ...)CO lim
n→∞
a
n
· lim
n→∞
1
a
n
=1 A7AQD8CC{a
n
}D7C9A2
12A0AXCGA8CY{a
n
}DJATB0D8CCA7AQ lim
n→∞
a
n
= lim
n→∞
a
n
.
*13A0D6AXCGA8CVBYANC7A0ATB0AKBYB1C7A0?CSBTDDB1C7A0AKA8B9BBB1C7(BGCL -AHC6B4A7Heine-
Borel)A0C0AYB1C7A0AYCFABB1C7(WeierstrassA7A0B4DBDEC5DB)A0C3A4A3Cauchy)D7C9B1C7CACAAWBSA2
14A0BP a
n
=
braceleftBig
(1 +
1
n
)
n
bracerightBig
,b
n
=
braceleftBig
(1 +
1
n
)
n+1
bracerightBig
,n∈ N
+
. AXCGA8(1)D8CC{a
n
}ATB0ASBRAKBYA9(2)
D8CC{b
n
}ATB0BUD1AKBYA9A33A5 lim
n→∞
a
n
= lim
n→∞
b
n
= e. CNAZ e =2.71828···D5B1CWB3D8AVAXA2
15A0AJD0DFBXCDAXCGA7CCD8CCD7C9COAKBEDHBMA8A3AUBMA8ACAMDJCMC5ALD8γ =0.577215664901
53286060651···)A8
(1) D
n
=1+
1
2
+
1
3
+···+
1
n
?ln n;(2)E
n
=1+
1
2
+
1
3
+···+
1
n
?ln(n +1).
16A0D2 x
1
=sina, x
n+1
=sinx
n
,n=1,2, .... AXCGA8D8CC{x
n
}D7C9A2