1
D2A3DH 2002 BPCRA0D4ACA3D2A3B9DEA5
BBDG – CFD8BVDE
A72003CH6ALA8
A9A1A7BLB0CUAOA4D3A4BADFA6CSAJAW336A815D9A8
A72A8CTf DD[a,∞)CSATC4A2C0DCBKD3A9CJAQx → +∞CVAXBSCK
AIC8A2AN
integraltext
+∞
a
f(x)dxD1C5ATALBAADA6DABUD0
integraltext
+∞
a
xf
prime
(x)dxA7D1C5A2
D7CYABAMALBAA0 (?=)ATAQCDAUA9CT
integraltext
+∞
a
xf
prime
(x)dxD1C5A9DIAQ
lim
x→+∞
xf(x)=0.
CZCWCSA9AGAIf AXBSCKAIC8A9BF?f
prime
(x) ≥ 0,x∈ [a,∞),?AMA9B2CN
ACALBAAOATx, A ∈ [a,∞),AFB7CODDA>x>0A9AH
|
integraldisplay
A
x
xf
prime
(x)dx| =
integraldisplay
A
x
x(?f
prime
(x))dx ≥ x
integraldisplay
A
x
(?f
prime
(x))dx = x(f(x)?f(A)) ≥ 0.
AVACAR lim
x→+∞
f(x)=0.CECB
|
integraldisplay
+∞
x
xf
prime
(x)dx| = lim
A→+∞
integraldisplay
A
x
x(?f
prime
(x))dx ≥ lim
A→+∞
x(f(x)?f(A)) = xf(x) ≥ 0.
BXA9AGA9AG
integraltext
+∞
a
xf
prime
(x)dxD1C5A9AH
0 = lim
x→+∞
|
integraldisplay
+∞
x
xf
prime
(x)dx|≥ lim
x→+∞
xf(x) ≥ 0.
BOA9
lim
x→+∞
xf(x)=0.
B4A1A7BLB0CUAOA4D3A4BADFA6DIAJAW351A87D9A8
7. CTf DD[a, b]×[c,+∞)CSATC4A2B8BCBKD3A9
I(x)=
integraldisplay
+∞
c
f(x, y)dy
2
AM[a, b]CSC4A2A9AQCD I(x)AM[a, b]CSA9ATD1C5A2
DJAQCD
B4B9B6B0B1B8(Dini)B2B5AACTC4A2BKD3C7{φ
n
(x)}B2CCBDx ∈ [a, b]
DDAFAOATD3C7A2CQBI lim
n→∞
φ
n
(x)=0,x∈ [a, b]A9CECBA9BKD3C7{φ
n
(x)}
AM[a, b]CSA9ATAVD1C5AI 0A2
AQCDABAGDABU
φ
1
(x) ≥ φ
2
(x) ≥ φ
n
(x) ≥···,x∈ [a, b].
ASA1AQCDABB2AICNBEATε>0A9ANAMAXCLD3N A9CXAS
0 ≤ φ
N
(x) ≤ ε, x ∈ [a, b].
AHAFB6AQB5ABCQBIANAM ε
0
> 0 A9CXASCNACAXCLD3 n A9B1ANAM x
n
∈
[a, b]A9C9AY
φ
n
(x
n
) ≥ ε
0
,n=1,2,···.
BRCLA9{x
n
}AHBWA9ANANAMAWC7{x
n
k
}D1C5A9BQ lim
k→∞
x
n
k
= x
0
A2APA5A9
B2CCBDn,ASA6n
k
>n,BYAH
φ
n
(x
n
k
) ≥ φ
n
k
(x
n
k
) ≥ ε
0
AKC3A2D6AAA9CM k → +∞A9AH
φ
n
(x
0
) = lim
k→∞
φ
n
(x
n
k
) ≥ ε
0
.
APAJDABU lim
n→∞
φ
n
(x
0
)=0CAB3A2
C0C1D5AQCD
BBB3B0B1B8 (Dini) B2B5 1. CTB8BCATB4AKBKD3 φ(x, y) AZADAM
[a, b]×[c, y
0
)CSA2CQBIφ(x, y)C9AYA71A8B2AICCBDy ∈ [c, y
0
),AZDDxAT
3
BKD3AM[a, b]CSD0C4A2ATA9A72A8B2CCBDx ∈ [a, b]A9AZDDy ATBKD3AM
[c, y
0
)CSAPAYAFAOA9CJ lim
y→y
?
0
φ(x, y)=0,x∈ [a, b]A9CECBA9BKD3φ(x, y)
AQy → y
?
0
CVBGAI xAM[a, b]CSA9ATAVD1C5AI 0A2
BBB3B0B1B8 (Dini) B2B5 2. CTB8BCATB4AKBKD3 φ(x, y) AZADAM
[a, b] × [c,+∞) CSA2CQBI φ(x, y) C9AYA7 1 A8B2AICCBD y ∈ [c,+∞),
AZDDxATBKD3AM[a, b]CSD0C4A2ATA9A7 2A8B2CCBDx ∈ [a, b]A9AZDDy
ATBKD3AM[c,+∞)CSAPAYAFAOA9CJ lim
y→+∞
φ(x, y)=0,x∈ [a, b]A9CECBA9
BKD3φ(x, y)AQy → +∞CVBGAI xAM[a, b]CSA9ATAVD1C5AI 0A2
BBB3B0B1B8(Dini)B2B52B0BCB7AABQφ
n
(x)=φ(x, n),n=1,2,3···.
AGD9CTDABUC0ARA9C4A2BKD3C7{φ
n
(x)}C9AYBKD3C7ATAUCGAZC2DABUA9
BF{φ
n
(x)}AM[a, b]CSA9ATAVD1C5AIC8A2?AMA9B2CNBEATε>0,ANAM
AXCLD3N, CXASAQn ≥ N CVA9AH 0 ≤ φ
n
(x) ≤ ε, B2A9CI x ∈ [a, b] AK
C3A2
BTAIDABUA71 A8A9AQ y ≥ N CVA9AH 0 ≤ φ(x, y) ≤ φ(x, N) ≤ ε A9B2
A9CIx ∈ [a, b]AKC3AAD6AAA9BKD3φ(x, y)AQy → +∞CVBGAIxAM[a, b]
CSA9ATAVD1C5AI 0A2
7 BAB0BCB7ABBQ ψ(x, y)=
integraltext
y
c
f(x, t)dt, y ∈ [c,+∞), AABN φ(x, y)=
I(x)?
integraltext
y
c
f(x, t)dt, y ∈ [c,+∞).CPABBZARA9BKD3ψ(x, y),y∈ [c,+∞),C9
AYDBBHATAUCG(Dini)AZC22A9?AMA9B4AKBKD3φ(x, y)AQy → +∞CVBG
AIxAM[a, b]CSA9ATAVD1C5AI0A9BOBJAI?C6BHADBMBA
integraltext
+∞
c
f(x, t)dt
AM[a,b]CSA9ATAVD1C5AI I(x)A2