1
B1BWBM 2002 CDALA1B3ADB1BWBOBLANAUAPD7A4B3A6
A3B3B0A0BHCAC0B0B8CEB6A7 2002A2 12CDA5
1 A0AQ 0 <b≤ a.CG
(a ?b)
2
8a
≤
a + b
2
?
√
ab ≤
(a ?b)
2
8b
.
2 A0CNDJA9C0B0 f(x)=ln(1+e
?x
),g(x)=
√
c
2
+ x
2
(c>0)BIBXBAC0B0A8
3 A0CNDJAOB8AVA9
(1) 1 >
sin x
x
≥
2
π
(0 <x≤
π
2
); (2)
sin x
x
>
3
√
cos x (0 <x≤
π
2
);
(3) (sin x)
?2
≤ x
?2
+1?
4
π
2
(0 <x≤
π
2
); (4)
2
2x +1
< ln(1 +
1
x
) <
1
√
x
2
+ x
(x>0);
(5)
ln x
1 ?x
≤
1
√
x
(x>0,xnegationslash= 1); (6)
4x
π(1 ?x
2
)
≤ tan(
πx
2
) ≤
πx
2(1?x
2
)
(0 ≤ x<1).
5 A0CNDJA9
(1 + x)
α
≥ 1+αx (x ≥?1, 0 <α<1);(1 + x)
α
≤ 1+αx (x ≥?1,α>1, or α<0).
6 A0CNDJA9AAD4BRB7 β C1D4B0B7α AUB6?n ∈ N
+
C5
(1 +
1
n
)
n+α
≤ e ≤ (1 +
1
n
)
n+β
.
7 A0CNDJA9 lim
n→∞
n
summationdisplay
k=1
(
√
k +2?2
√
k +1+
√
k) AZCFA2
8 A0CNDJB2BCCZ(Stolz) BDD0(CZAMBSB7DEAHB5AAC9BOBKCG).
A3 1 A5 (
0
0
BS) AQB0D8{a
n
}AXABC7DAB7A7B0D8{b
n
}AXBXBSBACIABC7DAB7A2AIBY lim
n→∞
a
n
?a
n+1
b
n
?b
n+1
AZCFC6BI +∞, CG lim
n→∞
a
n
b
n
C0AZCFC6BI +∞A7 lim
n→∞
a
n
b
n
= lim
n→∞
a
n
?a
n+1
b
n
?b
n+1
.
A3 2 A5 (
∞
∞
BS) AQB0D8 {b
n
} BXBSB1BCCHCFA7A7 lim
n→∞
b
n
=+∞. AIBY lim
n→∞
a
n
?a
n+1
b
n
?b
n+1
AZCFC6BI
+∞,CG lim
n→∞
a
n
b
n
C0AZCFC6BI +∞A7 lim
n→∞
a
n
b
n
= lim
n→∞
a
n
?a
n+1
b
n
?b
n+1
.
Hint of ProofA9Only prove that conclusions (1) and (2) hold for the cases with the finite limit, the
proof of the other cases are similar.
The proof of (1). Suppose that lim
n→∞
a
n
?a
n+1
b
n
?b
n+1
= l ∈ R. Then, ?ε>0, there exists N
1
∈ N
+
such
that
|
a
n
?a
n+1
b
n
?b
n+1
?l| <ε
hold for all n ≥ N
1
. Further, the fact that sequence {b
n
} is strictly decreasing implies that
?ε(b
m
?b
m+1
) <a
m
?a
m+1
?l(b
m
?b
m+1
) <ε(b
m
?b
m+1
),
2
for all m ≥ N
1
. When n>N
1
, by adding the above inequalities in order from m = n to n + p,itiseasy
to see that
?ε(b
n
?b
n+p
) <a
n
?a
n+p
?l(b
n
?b
n+p
) <ε(b
n
?b
n+p
),
and hence
?ε(1 ?
b
n+p
b
n
) <
a
n
b
n
?
a
n+p
b
n
?l(1?
b
n+p
b
n
) <ε(1 ?
b
n+p
b
n
). (i)
Since lim
n→∞
a
n
=0, and lim
n→∞
b
n
=0, then, by letting p →∞in (i), we get
?ε ≤
a
n
b
n
?l ≤ ε, (ii)
for any n>N
1
. The conclusion (1) follows (ii).
The proof of (2). Suppose that lim
n→∞
a
n
?a
n+1
b
n
?b
n+1
= l ∈ R. Then, ?ε>0, there exists N
1
∈ N
+
such
that
|
a
n
?a
n+1
b
n
?b
n+1
?l| <ε
hold for all n ≥ N
1
. Further, the fact that sequence {b
n
} is strictly increasing implies that
?ε(b
m+1
?b
m
) <a
m+1
?a
m
?l(b
m+1
?b
m
) <ε(b
m+1
?b
m
),
for all m ≥ N
1
. When n>N
1
, by adding the above inequalities in order from m = N
1
to n,itiseasyto
see that
?ε(b
n
?b
N
1
) <a
n
?a
N
1
?l(b
n
?b
N
1
) <ε(b
n
?b
N
1
),
and hence
?ε(1?
b
N
1
b
n
) <
a
n
b
n
?
a
N
1
b
n
?l(1?
b
N
1
b
n
) <ε(1 ?
b
N
1
b
n
). (iii)
Since lim
n→∞
b
n
=+∞, then, there exists N
2
∈ N
+
such that |
a
N
1
b
n
| <ε,and |
b
N
1
b
n
| <min{ε,1} hold for
any n ≥ N
2
. Further, from (iii), we get
?2(1 +|l|)ε ≤
a
n
b
n
?l ≤ 2(1 +|l|)ε, (iv)
for any n>max(N
1
,N
2
). The conclusion (2) follows (iv).
(3) DB x
1
∈ (0, 1)CB x
n+1
= x
n
(1 ?x
n
),n=1, 2, 3,···.CNDJA9 lim
n→∞
nx
n
=1
(4) AQC0B0D8 f
1
(x)=sinx, f
n+1
(x)=sinf
n
(x),n=1, 2,···. AJ sin x>0,
CNDJA9 lim
n→∞
radicalbigg
n
3
f
n
(x)=1.
9
?
A0(1) (
∞
∞
BSB2BCCZ(Stolz)BDD0B7BBBW)AQT BICMAQB0A8AJC0B0g(x),f(x),x∈ [a,+∞)DFD2A9
(i) g(x + T) >g(x),x∈ [a,+∞);
(ii) lim
x→+∞
g(x)=+∞,A7C0B0 f(x),g(x) CF [a,+∞)B7AHC2D0ACCHANC5COAA
(iii) lim
x→+∞
f(x + T)?f(x)
g(x + T)?g(x)
= l.
CG lim
x→+∞
f(x)
g(x)
= l.
(2) (
0
0
BSB2BCCZ(Stolz) BDD0B7BBBW) AQ T BICMAQB0A8AJC0B0 g(x),f(x),x∈ [a,+∞)DFD2A9
3
(i) g(x + T) >g(x) > 0,x∈ [a,+∞);
(ii) lim
x→+∞
g(x)=0,A7 lim
x→+∞
f(x)=0;
(iii) lim
x→+∞
f(x + T)?f(x)
g(x + T)?g(x)
= l.
CG lim
x→+∞
f(x)
g(x)
= l.
10A0AQC0B0f DFD2A9(i) ?∞ <a≤ f(x) ≤ b<+∞, (a ≤ x ≤ b); (ii) |f(x)?f(y)|≤k|x?y|, (0 <
k<1,x,y∈ [a,b]). AQ x
1
∈ [a,b]A7ALBDC3BUD8{x
n
}: x
n+1
= f(x
n
),n=1, 2,···.
AYCNDJA9 lim
n→+∞
x
n
= x AZCFA7A7 x = f(x).
11A0AQC0B0f DFD2A9(i) ?∞ <a≤ f(x) ≤ b<+∞, (a ≤ x ≤ b); (ii) |f(x)?f(y)|≤|x?y|, (x, y ∈
[a,b]). AQx
1
∈ [a,b]A7ALBDC3BUD8{x
n
}: x
n+1
=
1
2
parenleftbig
x
n
+ f(x
n
)
parenrightbig
,n=1, 2,···.
AYCNDJA9 lim
n→+∞
x
n
= x AZCFA7A7 x = f(x).
12. AQ a
0
=0,BDC3 a
n+1
=1+sin(a
n
?1),n=0, 1, 2,···.AYAAA9 lim
n→+∞
n
summationdisplay
k=0
a
k
n
.
(Hint: Let b
n
= a
n
?1. Then, it is easy to prove that b
n
< 0andb
n
<b
n+1
for any n ∈ N
+
.)
13
?
. AQC0B0 f D3BVAOCIA7?BD x
0
A7C4AXBDC3 x
n
= f(x
n?1
),n=1, 2,···A2AJ x
0
= a ARA7{x
n
}
AZD4A7AYCNDJB2min(a,f(a)) ≤ x
0
≤ max(a,f(a)) ARA7{x
n
}C0AZD4A2
14
?
A0AJ ε
0
,ε
1
,ε
2
,···CUB7DHC1BTCU?D1?1, 0, 1AKB0COC1A7CNDJ
a
n
=: ε
0
radicalbigg
2+ε
1
radicalBig
2+···+ ε
n
√
2=2sin
bracketleftBigg
π
4
n
summationdisplay
k=0
ε
0
ε
1
···ε
k
2
k
bracketrightBigg
=: b
n
BGDHBTn ASD2A2
15
?
A0BDC3B0D8 x
n
= y
n
e
?
1
12n
,y
n
= n!n
?n?
1
2
e
n
,n =1, 2,···. AYCNACCH (x
k
,y
k
) AFBZD6ACCH
(x
k+1
,y
k+1
).
16
?
A0A3 1 A5B0D8
braceleftBig
a
n
=
parenleftBig
1+
1
n
parenrightBig
n
(1 +
x
n
)
bracerightBig
B1BCCIAOB7ATBNAHBZB8CJAX x ≥
1
2
.
A3 2 A5B0D8
braceleftBig
a
n
=
parenleftBig
1+
x
n
parenrightBig
1+n
bracerightBig
B1BCCIAOB7ATBNAHBZB8CJAX 0 <x≤ 2.
17A0AQ f(x) CF [a,b]ANBJCNCWB3A7f(a) < 0,f(b) > 0,BGC1A6x ∈ [a,b],f
prime
(x) ≥ δ>0,f
primeprime
(x) ≥ 0.
(1)DBx
1
= b?
f(b)
f
prime
(b)
,x
n+1
= x
n
?
f(x
n
)
f
prime
(x
n
)
,n=1, 2, 3,···.CNDJ{x
n
}AZD4C7f CF[a,b]ANB7DABB
ξ.
(2)DBy
1
= b?
(b?a)f(b)
f(b)?f(a)
,y
n+1
= y
n
?
(b?y
n
)f(y
n
)
f(b)?f(y
n
)
,n=1, 2, 3,···.CNDJ{y
n
}C0AZD4C7f CF
[a,b]ANB7DABBξ.
(3)CNDJC4(1)A0(2)AAf B7DABBB8CGC7AA g(x)=x?
f(x)
f
prime
(x)
A7h(x)=x?
(b ?x)f(x)
f(b) ?f(x)
B7AOBEBBA2
(Hint of (2): Let y = f(b)+
f(b)?f(a)
b?a
(x?b). Find out the point of intersection x
1
of the straight
line with x?axes. After that, find out the point of intersection x
2
of the new straight line with x?axes
by using x
1
replecing a, and repeat continuously the program. What is the signification of geometry?)
18A0AQf AXBDC3CF[a,b]ANB7ATCQC0B0A7C6AQf CFx
0
AWCWBGBNA7A4CUa<x
0
<bA7ALAQB0D8{a
n
},
4
{b
n
}DFD2B8CJA9a<a
n
<x
0
<b
n
<bA7 lim
n→+∞
a
n
= lim
n→+∞
b
n
= x
0
.AYCNDJA9 lim
n→+∞
f(b
n
) ?f(a
n
)
b
n
?a
n
=
f
prime
(x
0
).
19A0AQC0B0f CFC5A8C6BKA8B7ACCH(a,b)CUB7AHC2C1BBxAWC5C5BOB7B3B0f
prime
(x)A7A7 lim
x→a
+
f(x)=
lim
x→b
?
f(x). AYCNDJCF (a,b)CUAZCFBB c A7AUB6 f
prime
(c)=0.
20A0AQf(x)=a
1
sin x + a
2
sin 2x +···+ a
n
sin nx,ALA7|f(x)|≤|sin x|,?x ∈ R, a
1
,a
2
,···,a
n
BI
ATAQB0A2AACNA9 |a
1
+2a
2
+···+ na
n
|≤1.
21A0AAB0D8
braceleftBig
n
parenleftbig
e?
parenleftbig
1+
1
n
parenrightbig
n
parenrightbig
bracerightBig
B7C9BOA2
22A0CNDJB0D8{
3
√
n
2
(2n?5)}(n ≥ 3)AXBACHB0D8A2
23A0AAB0D8
braceleftBig
n
2
parenleftBig
1
2
n+1
parenrightBigbracerightBig
CU?D4B0CQB7BQA2
24A0CF?CPBI a(a>0)B7A9B7A0CMCCCXCUA7AAB7C7D4B0B7CCCXA2
25A0CNDJA9AJ f CFCLBTBDC3C9ANAXBXBAA3C6BXACA5B7A7CG f CFA4BDC3C9A0CSBHC5C1BTC9CQA2
26A0AA f(x)=x
2
ln(ax)(a>0)B7BVBBA7B2a AIBEARBVBBB7BXC8AXASDGAB
27A0CNDJC4B8AVA9 arctan x =arcsin
x
√
1+x
2
,?∞ <x+∞.
28A0AQf CF[a,+∞)A0CWBGA7A7 lim
x→+∞
f(x)
x
=0A7CNDJAHC5BBD8{ξ
n
},ξ
n
→ +∞(n →∞),AUB6
lim
n→∞
f
prime
(ξ
n
)=0.
29A0AAC0B0 y =
x
3
√
1+x
B7 nCNB3B0A2
CYA9CF R
n
CUCVACC9C1AGACC9B7BDC3A7AIBYC1BTCAC3AXB5DCD3B9A3CCA7A4CUAHC2D5BBA7BFC5BFAF
DDCFBRCAC3B7D3BVADBPCKCID5BBD3CMA5CXA5B7CVCACLCVACC9A7CVACC9B7AGAFCLAGACC9A2CFR
n
CUBACA
C3B7BDC3A7AIBYC1BTCAC3E ? R
n
CUB7AHC2D5BBx
1
,x
2
A7BFC5 x = tx
1
+(1?t)x
2
∈ E,?t ∈ [0, 1]A7CQ
ARCAC3E AXBACAA2
30A0AQ G
1
,G
2
AX R
n
AHC2CVCAA7A7 G
1
∩ G
2
= ?, AYCNDJA9 G
1
∩ G
2
= ?.
31A0AQE ? R
n
BIAHC2CAC3A7E
prime
AJAWE B7AFB7CSBBD3ASB7CAC3A7ARBIE B7B3CAA7AYCNE
prime
BIAG
CAA2
32A0AQ A, B ? R
n
BICVCAA7A∩ B = ?.AYCNA9 ?(A ∪ B)=?A∪ ?B.
33 A0AQ A, B ? R
n
BIC5COAGCAA7 A ∩ B = ? A2AYCNA9 ? CVCA W, V AUB6 A ? W, B ? V , A7
W ∩ V = ?
34A0AGBDBND8C0B0B7BDC3C9A2
(1) u =
√
1 ?x
2
+
radicalbig
1 ?y
2
;(2)u =
radicalBigg
2x?x
2
?y
2
x
2
+ y
2
?x
;
(3) u =arcsin
y
x
4u =ln(?1 ?x
2
?y
2
+ z
2
).
5
35A0AABND8C0B0B7C9BO
(1) lim
(x,y)→(0,0)
e
x
+ e
y
cos x +siny
; (2) lim
(x,y)→(0,0)
x
2
y
3
2
x
4
+ y
4
;
(3) lim
(x,y)→(+∞,+∞)
(x
2
+ y
2
)e
x+y
; (4) lim
(x,y)→(0,0)
sin(x
3
+ y
3
)
x
2
+ y
2
.
35A0BGBND8C0B0 f(x, y), CNDJ lim
(x,y)→(0,0)
f(x, y) AOAZCFA8
(1) f(x, y)=
x
2
x
2
+ y
2
;(2)f(x, y)=
x
2
y
2
x
3
+ y
3
.
36A0BJBND8C0B0AXBPCFAFA3DID3BVA7BIASDGAB
(1) f(x, y)=
?
?
?
?
?
?
?
x
2
?y
2
x
2
+ y
2
,x
2
+ y
2
negationslash=0,
0,x
2
+ y
2
=0;
(2) f(x, y)=
?
?
?
?
?
|
sin(xy)
x
|,xnegationslash=0,
y, x =0;
(3) f(x, y)=
?
?
?
?
?
?
?
?
x
2
y
2
e
?
x
4
y
2
,ynegationslash=0,
0,y=0;
(4) f(x, y)=
?
?
?
?
?
y
2
ln(x
2
+ y
2
),x
2
+ y
2
negationslash=0,
0,x
2
+ y
2
=0.
37A0AQC0B0f(x, y)CFCV?A3DIx>0AND3BVA7A7BG?y
0
,C9BO lim
(x,y)→(0
+
,y
0
)
f(x, y)=φ(y
0
)AZCFA2
B2C0B0 f CF y CWANAMATBDC3 φ(y) C5A7CNDJC0B0 f CFAG?A3DI x ≥ 0 AND3BVA2
38A0AQC0B0f(x, y)CFCV?A3DIx>0ANC1CTD3BVA2CNDJA9(1) ?y
0
,C9BO lim
(x,y)→(0
+
,y
0
)
f(x, y)=φ(y
0
)
AZCFAA
(2) C0B0 f CF y CWANAMATBDC3 φ(y) C5B4B6C0B0CFx ≥ 0 ANC1CTD3BVA2
39 A0AQ u = f(x) CFBB x
0
∈ R
n
D3BVA7A7 f(x
0
) > 0, CNDJA9AZCF x
0
B7C1BTD9C9 U(x
0
,δ)(δ>0)
AUB6 f CF U(x
0
,δ) AN?CMCQA2
40A0AQ E AX R
n
CUAHC2BBCAA2AACNA9 d(x, E)(x B4CAC3E B7CTCZ) CFR
n
ANC1CTD3BVA2
41 A0AQC0B0 f CF R
n
AND3BVA7BGAHC2ATB0α A7D5CAC3G = {x
vextendsingle
vextendsingle
f(x) >α},F= {x
vextendsingle
vextendsingle
f(x) ≥ α}AA
CNA9 G AX R
n
CUB7CVCAA7F AXR
n
CUB7AGCAA2
41A0AQ x ∈ R
n
, x =(x
1
,x
2
,···,x
n
) A2AACNA9
(1) ?a>0,b>0,AUB6 a|x|≤
n
summationdisplay
j=1
|x
j
|≤b|x|;
(2) ?a>0,b>0,AUB6 a|x|≤ max
1≤j≤n
|x
j
|≤b|x|.
42A0AQ ? ? R
n
BIC5COAGACC9A7 f AX ?B4 R
n
A0B7B1APA7D3BVA2AACNA9 f
?1
CF f(?) AND3BVA2
43A0AQ f(x, y) AVCPBPx = aC8 y = bBEC5BDC3A2DFD2
(1) lim
y→b
f(x, y)=φ(x) AZCFAA
(2) lim
x→a
f(x, y)=ψ(y) C1CTAZCF (CCA7 ?ε>0,?δ(ε) > 0, B2 0 < |x ? a| <δARA7 ?y negationslash= b, C5
|f(x, y) ?ψ(y)| <ε);
6
(3) lim
y→b
ψ(y)=cAZCFA8
CNDJA9
(i) CYAYC9BO lim
x→a
lim
y→b
f(x, y) = lim
x→a
φ(x)=c AZCFAA
(ii) CYAYC9BO lim
y→b
lim
x→a
f(x, y) = lim
y→b
ψ(y)=cAZCFAA
(iii) BJCVC9BO lim
(x,y)→(a,b)
f(x, y)=c.
44 A0AQC0B0 u = f(x, y, z) CFAGD2BLB7 a ≤ x ≤ b,a ≤ y ≤ b,a ≤ z ≤ b AND3BVA7DB φ(x)=
max
a≤y≤b
{ min
a≤z≤b
f(x, y, z)}. AYCNDJA9 φ CF[a,b] AND3BVA2
45 A0AJC0B0 f(x, y) CFCRBT D : ?a ≤ x ≤ a,?b ≤ y ≤ b (a>0,b>0) ANBNAKBI x C1 y B7D3BVC0
B0A7BIA7f(0, 0) = 0A2B2xBUBDARA7f(x, y)AXy B7BXBSBACIC0B0A7CGC5δ>0A7AUBGDHBTx ∈ (?δ, δ)
C5 y ∈ (?b,b)DFD2 f(x, y)=0.
Hint: Because the function f(0,y) is strictly decreasing on the interval [?b,b], and f(0, 0) = 0, then
f(0,b) < 0, f(0,?b) > 0. Further, consider to use the continuity of the function f.
46A0AJ f(x, y) C0B0CFxy A3DIANAWAWD3BVA7AYCNA3DIBBCAE = {(x, y)|f(x, y)=0}BIAGCAA2
47A0AQf CFR
n
AND3BVA7x negationslash= O(R
n
CUB7CBBB)ARA7f(x) > 0,A7?x ∈ R
n
,CBc>0C5f(cx)=cf(x).
AYCNDJA9?a,b > 0,AUB6 a|x|≤f(x) ≤ b|x|, (?x ∈ R
n
).
48A0AQAAXn×nCRCKA7detA negationslash=0.AYCNDJA9?α>0,β>0AUB6?x ∈ R
n
C5β|x|≤|Ax|≤α|x|.
49
?
A0AQ f : R
n
→ R,DFD2AIBNAKB8CJA9
(1)?x ∈ R
n
,f(x) ≥ 0,A7 x = O ?? f(x)=0;
(2)?λ ∈ R,C5 f(λx)=|λ|f(x);
(3)?x, y ∈ R
n
,f(x + y) ≤ f(x)+f(y).
AYCNDJA9 (i)?M>0, AUB6?x ∈ R
n
, C5 f(x) ≤ M|x|;
(ii) f DFD2 LipschitzB8CJA9CC?L>0,AUB6|f(x) ?f(y)|≤L|x?y|(?x, y ∈ R
n
);
(iii)?AQB0 α>0 AUB6?x ∈ R
n
C5 α|x|≤f(x).
50 A0AQ f CF R
n
CUBB x
0
B7D9C9D1C5COA7CE M
f
(x
0
,δ)=sup{f(x)
vextendsingle
vextendsingle
x ∈ R
n
, |x ? x
0
| <δ},
m
f
(x
0
,δ)=inf{f(x)
vextendsingle
vextendsingle
x ∈ R
n
, |x?x
0
| <δ}A2CGA31 A5C9BOω
f
(x
0
) =: lim
δ→0
+
bracketleftbig
M
f
(x
0
,δ)?m
f
(x
0
,δ)
bracketrightbig
AZ
CFA7ALARCOBIf CF x
0
AWB7CJBQAAA32 A5 f(x) CF x
0
D3BVB7ATBNAHBZB8CJAX ω
f
(x
0
)=0.
51A0AQCAC3E ? R
n
AXBMAGB7A7C0B0f CFE ANC1CTD3BVA2AYCNDJA9f CRA1BHC1B9D3BVBYBDB4E
ANA7CCBHC1B9AZCF E ANB7C0B0 F DFD2 F(x)=f(x),x∈ E, AUB6 F CF E ANC1CTD3BVA2
52A0AQ f CF R
n
AND3BVA7 lim
|x|→+∞
f(x) AZCFA2AYCNDJ f CF R
n
ANC1CTD3BVA2