?
E
1c° ú=)
?
x1??????)))
?
?
?DDD°°° ú ú ú===)))
?
?
?
1£
ü
(1) sinxsin2x¢¢¢sinnx¢¢¢
^[0;…]
¥??"
(2) sinxsin3x¢¢¢sin(2n+1)x¢¢¢
^[0; …2]
¥??"
(3) 1cosxcos2x¢¢¢cosnx¢¢¢
^[0;…]
¥??"
(4) 1sinxsin2x¢¢¢sinnx¢¢¢?
^[0;…]
¥??"
2p/
?ù12…¥f
?¥° ú=)
?
(1)??[
TPn (x) =
nP
i=0
(ai cosix+bi sinix)
(2) f (x) = x3 (?… < x < …)
(3) f (x) = cos x2
(4) f (x) = eax (?… < x < …)
(5) f (x) = jsinxj (?… < x < …)
(6) f (x) = xcosx (?… < x < …)
(7) f (x) =
8
<
:
x; ?… < x < 0
0; 0 ? x < …
(8) f (x) = …2 ?x2 (?… < x < …)
(9) f (x) = sgncosx
(10) f (x) = …?x2 (0 < x < 2…).
1
3
!f(x)[2…1?ù[?…;…] ' V£
ü
(1)?Tf
?f(x)[?…;…]
?@f (x+…) = f (x)5
a2m?1 = b2m?1 = 0; m = 1;2;¢¢¢
(2)?Tf
?f(x)[?…;…]
?@f (x+…) = ?f (x)5
a2m = b2m = 0; m = 1;2;¢¢¢ :
x2°°° ú ú ú===)))
?
?
?¥¥¥
l
l
l ? ? ????
1|/
f
?Z?° ú=)
?i)
?
l ??
(1) f (x) = xsinx x 2 [?…;…]
(2) f (x) =
8
<
:
x2; x 2 [0;…]
1; x 2 [?…;0)
2?Z 7
T
x = 2
1X
n=1
(?1)n+1sinnxn (?… < x < …)
(1)¨?[sEpx2x3x4(?…;…)?¥° ú=Z 7
T
(2)p)
?1P
n=1
(?1)n+1
n4
1P
n=1
1
n4¥?.
3(1)(?…;…)=pf (x) = ex¥° ú=Z 7
T
(2)p)
?1P
n=1
1
1+n2¥?.
4
!f(x)[?…;…]
?
V±Of (?…) = f (…). anbn1f(x)¥°
ú="
?a0nb0n
^f(x)¥?f
?f0(x)¥° ú="
?£
ü
a00 = 0a0n = nbnb0n = ?nan ( n = 1;2;¢¢¢):
2
5£
ü???)
?
a0
2 +
1X
n=1
(an cosnx+bn sinnx)
?¥"
?anbn
?@1"
max'flfln3anflfl;flfln3bnflfl“? M
?M1è
?5
???)
?
l ?O?f
? μ ??¥?f
?.
6
!Tn (x) = a02 +
nP
k=1
(ak coskx+bk sinkx)p£
Tn (x) = 12…
Z …
?…
Tn (x+t) sin
?n+ 1
2
¢t
sin t2 dt:
7
!f(x)[2…1?ù(0;2…)
???hOμ?p£bn ?
0 (n > 0).
8
!f(x)[2…1?ù(0;2…)
?
?f0(x)??
6μ?.p
£an ? 0 (n > 0).
9£
ü?f(x)x0?
?@fi¨¥ ??GHq5f(x)x0? ??.
óB?V
ü?
?¥I5?? ?¥ è0.
10
!f(x)
^[2…1?ù¥f
?[?…;…] ' V?
!Sn (x)
^f(x)¥° ú=)
?¥-n[?s?
Sn (x) = a02 +
nX
k=1
(ak coskx+bk sinkx)
5Sn (x) = 4… R
…
20 f(x+2t)+f(x?2t)
2 Dn (2t)dt
?Dn (t)
^3 ? X ??.
11
!f(x)
^[2…1?ù(?1;1) ??
?¥° ú=)
?x0?
l ?.p£
Sn (x0) ! f (x0) (n ! +1):
3
12
!f(x)
^[2…1?ù