??cf
?
x1
ü à
T
1./
f
?x = 0¥{|ev?[¥
ü àZ 7
T
(1) e2x
(2) cosx2
(3) ln(1?x)
(4) 1(1+x)2
(5) x3+2x+1x?1
(6) sin3 x
(7) x2x2+x?1
(8) ln 1+x1?2x
2/
f
?x = 0¥
ü à
Tà
?ᴬ
?
(1) esinx;(x3)
(2) lncosx;(x6)
(3) xsinx;(x4)
(4) x2p1?x+x2;(x4)
3p/
f
?x = 1¥
ü àZ 7
T
(1) lnx
(2) ax
1
(3) P(x) = x3 ?2x2 +3x+5
4??è
?a;b
Px ! 0
H
(1) f(x) = (a+bcosx)sinx?x1x¥5¨íkl
(2) f(x) = ex ? 1+ax1+bx1x¥3¨íkl
5 ?¨
ü à
TpK
(1) limx!1?1x ? 1sinx¢
(2) limx!1
?
ex3?1?x3
sin6 2x
·
(3) limn!1?n+ 12¢ln?1+ 1n¢
(4) limx!1 1?cos(sinx)2ln(1+x2)
(5) limx!1( 3px3 +3x?px2 ?2x)
6
!f(x)e?¥
#×=Q V?O
limx!1
sin3x
x3 +
f(x)
x2
?
= 0
(1) f(0);f0(0);f00(0)
(2) limx!0
?
1
x2 +
f(x)
x2
·
7
!f(x)
Là
?iQ V?
7F(x) = f(x2)p£
F(2n+1)(0) = 0; F
(2n)(0)
(2n)! =
f(n)(0)
n! :
8
!P(x)1BnQ[
T
(1) P(a);P0(a);¢¢¢ ;P(n)(a)¥1?
?£
üP(x)(a;+1)
í?
(2) P(a);P0(a);¢¢¢ ;P(n)(a)?μ|MW£
üP(x)(?1;a)
í?
2
9p£
(1) e = 1+1+ 12! +¢¢¢ 1n! + e (n+1)!(0 < < 1)
(2) e
^í ?
?
10
!f(x)[a;b]
μ=¨?
?Of0(a) = f0(b) = 05ic 2
(a;b)
P
jf0(c)j> 4(b?a)2jf(b)?f(a)j:
11
!f(x)a??í=Q V?Of00(a) 6= 0?±s?′? ?
f(a+h)?f(a) = f0(a+ h)h;0 < < 1
p£lim
h!0
= 12
12£
ü?f
?f(x)uW[a;b]
?μf00(x) ? 05[a;b]=?i
?x1;x2?μ
f(x1)+f(x2)
2 ? f(
x1 +x2
2 ):
x2±s+?Dt ??¥?¨
1p/
òwL
???¥m?
?
(1) y2 = 4(x+1); y2 = 4(1?x);
(2) y = jlnxj; y = 0 (0:1 6 x 6 10);
(3) y = xy = x+sin2 x (0 6 x 6 …);
(4) y2 = 2x;x = 5;
(5) y = x2;y = x+5;
(6) x23 +y23 = a23.
3
2p/
¨USV
U¥wL
??m?¥
?
(1)
?gLr2 = a2 cos2’;
(2)?=
o>Lr2 = asin3’;
(3)Lr = acos +b.
3p/
¨?
?Z?V
U¥wL
??m?¥
?
(1) x = 2t?t2;y = 2t2 ?t3;
(2)?Lx = a(t?sint);y = a(1?cost)(0 6 x 6 2…)#xà
(3)?¥v 7Lx = a(cost + tsint);y = a(sint?tcost);(0 6 x 6 2…)#
?°Lx = a(y 6 0)?a > 0
4°Ly = xü??x2 + 3y2 = 6y¥
?s?
?sA(l¥B
v)?B(¥B v)pAB-′
5pr = 3cos ?r = 1+cos
??¥?s¥
?
6p/
è8¥8
??x2a2 + y2b2 = 1?xà
(2) y = sinx;y = 0(0 6 x 6 …)
(i)?xà(ii)?yà
(3)è
}Lx = a(t?sint);y = a(1?cost)(0 6 x 6 2…);y = 0
(i)?xà(ii)?yà(iii)?°Ly = 2a ;
(4)
?wLy2b2 ? x2a2 = 1D°Ly = §h
??¥m??xàè
7p?/
òw
?
???¥+?8¥8
4
(1)p?8¥8
/?¥1????¥àésY?
?AB?ab7ú1h
(2)??
?
/?sY
^??1a ab¥?7W¥ ?1h
8X?o??1R
kpú1h¥o38(h ? R)
9.p/
wL¥?é
(1) y = x2; 0 6 x 6 1;
(2) y = ex; 1 6 x 6 2;
(3) px+py = 1;
(4)??Lx = a(1+cos ); 0 6 6 2…;a > 0;
(5)?¥v 7Lx = a(cost+tsint);y = a(sint?tcost);a > 0;0 6 t 6 2…;
(6) r = asin3 3 (a > 0);
(7)?#Lr = a(1+cos ); 0 6 6 2…;a > 0.
10p/
òwL·??¥w
q?w
q??
(1) xy = 4?(22)
(2) y = lnx?(10)
11p/
wL¥w
qDw
q??
(1)?tLy2 = 2px;
(2)
?wLy2b2 ? x2a2 = 1;
(3)??Lx23 +y23 = a23.
5
12p/
?
?Z?ó¥wL¥w
q?w
q??
(1)è
}Lx = a(t?sint);y = a(1?cost)a > 0;
(2)??x = acost;y = bsint(a;b > 0);
(3)?¥v 7Lx = a(cost+tsint);y = a(sint?tcost):
13p/
[USV
U¥wL¥w
q??
(1)?#Lr = a(1+cos )(a > 0) ;
(2)
?gLr = 2a2 cos2 (a > 0) ;
(3)
?
?Lr = ae? (? > 0) .
14
!wL
^¨USZ?r = r( )óO=¨ V?£
ü
??
)w
q1
K = jr
2 +2r02 ?rr00j
(r2 +r02)32 :
15£
ü?tLy = ax2 +bx+c??)¥w
q??1Kl
16pwLy = 2(x?1)2¥Klw
q??
17pwLy = ex
w
qKv¥?
18p/
ü
?wL?àè
?¤èw
?¥
?
(1) y = sinx; 0 6 x 6 …?xà
(2) x = a(t?sint);y = a(1?cost)a > 0; 0 6 x 6 2…?°Ly = 2a;
(3) x2a2 + y2b2 = 1(a > b)?xà
(4) x = acos3 t;y = asin3 t?xà
(5) r2 = 2a2 cos2 ?à
6
19p/
wL
¥é?
(1)??1r?é112…fi(fi 6 …)¥ (??
(2)
?
?Lr = aek (a > 0;k > 0)
??(0;a)??( ;r)¥ (?
(3)[A(00)B(01)C(21)D(20)1??¥ ???wL
?B?¥
á?????e? ?¥2
(4) x = a(t?sint);y = a(1?cost);0 6 t 6 2…;a > 0
á1è
?
20X?B?tL
y = x2(?1 6 x 6 1)wL
?B?)¥
á
D???yॠ???1x = 1)
á15pNwL
¥é
21àé10m
ás?1‰(x) = (6 + 0:3x)kg/m?x1 à¥B
?
?¥ ?pà¥é
22p?o0 6 z 6pR2 ?x2 ?y2¥é?
23 bp8px2 +y2 6 z 6 h¥é???zà¥?8
24p?t8x2 +y2 6 z 6 h¥é???zà¥?8
x3±sZ??
1p/
±sZ?¥Y3
(1) xy0 ?ylny = 0;
(2)y0 =
q
1?y2
1?x2;
(3) 3x2 +5x?5y0 = 0;
(4) xydx+(x2 +1)dy = 0;
7
(5) y ?xy0 = a(y2 +y0);
(6) (y +3)dx+cotxdy = 0;
(7) dydx = 10x+y;
(8) xsecydx+(x+1)dy = 0;
(9) (ex+y ?ex)dx+(ex+y +ey)dy = 0;
(10) ylnxdx+xlnydy = 0.
2pXó±sZ?
?@
SHq¥+3
(1) dydx sinx = ylny;yjx=…2 = e;
(2) y0 = e2x?y;yjx=0 = 0;
(3) x1+ydy ? y1+xdy = 0;yjx=0 = 1.
3é
11g¥é?
s ?T¨T°L?? ??
HW??1?é
??¥
??Q1t = 10s
H
???50cms ?14£10?5N
ùV? 7
SüV
Bsòa¥
?
^
?
4 ?¥
?Mμ?/¥?
p ?¥
?M
?D ?
?Ci¥
R??
1?ü?
? ?üV1600Mao?e
S
R b¥B?
kp ?
¥
RD
HWt¥f
?1"
8