??c±s?′? ?#?¨
x1±s?′? ?
1£
ü
1Z?x3 ?3x + c = 0
c
^è
?uW[0;1]=? V?
μ
??]¥
L?
2Z?xn +px+q = 0
n1??
?p;q1
L
??n1}
?
Hà
μ
?
L? ?n1
?
Hàμ??
L? b
2
!f(x) = xm(1?x)n;m;n1??
?x 2 [0;1]5i? 2 (0;1)
P
m
n =
?
1??
3?¨ ?ì μ°?′? ?£
ü/
??
T
1jsinx?sinyj6jx?yj;x;y 2 (?1;+1);
2jxj6jtanxj;x 2 (?…2; …2);?|? ??O??x = 0
3ex > 1+x;x 6= 0;
4y?xy < ln yx < y?xx ;) < x < y;
5x1+x2 < arctanx < x;x > 0.
4
!f
??a μ ??¥=¨?
?£
ü
lim
h!0
f(a+h)+f(a?h)?2f(h)
h2 = f
00(a):
5
!limx!+1f0(x) = ap£?iT > 0μ
limx!+1[f(x+T)?f(x)] = Ta
6.f
?f(x)[a;b] V??a > 0£
üi? 2 (a;b)
P¤
2?[f(b)?f(a)] = (b2 ?a2)f0(?):
1
7
!f(x)(a;+1)
V?Olim
x!a+
f(x) = limx!+1f(x) = A ,p£i
?(a;+1)
Pf0(?) = 0 b
8
!f(x) V?p£f(x)
,?-WB?μf(x)+f0(x)¥
,?.
9
!f
?f(x)x0?í ??"x0?? V?Olimx!x
0
f0(x) = A
p£f0(x)iOf0(x) = A .
10?f(x)(a;b) V?Of0(a) 6= f0(b)k1o?f0(a)?f0(b)-W
¥?B
L
?5à
iB?? 2 (a;b)
Pf0(?) = k .
11
!f
?f(x)(a;b)= V?Of0(x)??£
üf0(x)(a;b) ?
?.
12?f
?f(x);g(x)?h(x)[a;b] ??(a;b) V?£
üi? 2
(a;b)
P¤fl
flfl
flfl
flfl
flfl
f(a) g(a) h(a)
f(b) g(b) h(b)
f0(?) g0(?) h0(?)
flfl
flfl
flfl
flfl
fl
= 0
V??2T? ? μ°?′? ?? O?′? ? b
13
!f(x)(1;+1) ??Olimx!§1 = +1£
üf(x)(1;+1)
|?
?¥Kl′.
14
!f(x)[a;b) ??lim
x!b?
f(x) = B .
1?ix 2 [a;b)
Pf(x1) > B5f(x)[a;b)
r?Kv′
2?Tix 2 [a;b)
Pf(x1) = B??yf(x)[a;b)
r?
Kv′$
15
!f(x)[a;+1)μ?f0(x)iOlimx!+1f0(x) = b .p£b = 0 .
16p£arctanx+arccosx = …2(jxj6 1) .
2
x2±s?′? ?#?¨
1p/
???¥K
1limx!0 tanaxsinbx ;
2limx!0 1?cosx2x3 sinx ;
3limx!0 ln(1+x)?xcosx?1 ;
4limx!0 tanx?xx?sinx;
5limx!0(1x ? 1ex?1);
6limx!0 lncosaxlnsinbx;
7lim
x!…2
tanx?6
secx+5;
8limx!1( 1lnx ? 1x?1);
9limx!…(… ?x)tan x2;
10limx!1x 11?x;
11limx!+1 xbeax (a;b > 0);
12limx!+1 …2?arctanxsin 1
x
;
13limx!+1 lnc xxb (b;c > 0);
14lim
x!0+
lnc x
xb (b;c > 0);
15lim
x!…6
1?2sinx
cos3x ;
16lim
x!0+
lnx
cotx;
17limx!0 (1+x)
1x?e
x ;
3
18lim
x!0+
xsinx;
19lim
x!0+
(ln 1x)x;
20limx!0(tanxx ) 1x2 ;
21limx!0( 1x2 ? 1sin2 x);
22lim
x!0+
sinxlnx.
2f
?f(x)[0;x]
?¨ ?ì μ°?′? ?μ
f(x)?f(0) = f0( x)x; 2 (0;1):
k£/
f
?μlim
x!0+
= 12
1f(x) = ln(1+x);
2f(x) = ex.
3
!f(x)=¨ V?p£
lim
h!0
f(x+2h)?2f(x+h)+f(x)
h2 = f
00(x):
4/
f
???¨
?ArE5pK
1limx!0 x2 sin 1xsinx ;
2limx!1 x+sinxx?cosx;
3limx!1 2x+sin2x(2x+sinx)esinx;
4limx!1 (x2?1)sinxln(1+sin …
2x)
.
x3f
?¥
6? aj??f
?Tm
1?¨f
?¥???£
ü/
??
T
4
12…x < sinx < x;x 2 (0; …2);
2x < sinx < x? x36 ;x < 0;
3x? x22 < ln(1+x) < x;x > 0;
4tanx > x+ x33 ;x 2 (0; …2);
52px > 3? 1x;x < 0:
2??/
f
?¥??uW
1y = x3 ?6x;
2y = p2x?x2;
3y = 2x2 ?lnx;
4y = x2?1x ;
5y = 2x2 ?sinx;
6y = xne?x;
3p/
f
?¥′
1y = x?ln(1+x);
2y =;x+ 1x;
3y = 1+3xp4+5x2;
4y = (lnx)2x ;
5y = 2x3 ?x4;
6y = arctanx? 12 ln(1+xx);
5
4
!f(x) =
8
<
:
x4 sin2 1x; x 6= 0;
0; x = 0:
1£
üx = 0
^f
?¥l′?
2
a
üf¥l′?x = 0)
^?
?@′¥?B sHq?
= sHq.
5£
ü?f
?f(x)?x0)μf0+(x0) < 0;f0?(x0) > 05x01f
¥v′?.
6
!f(x) = alnx + bx2 + xx1 = 1;x2 = 2)?|¥′
k?a
?b¥′ iù?
Hfx1?x2
^|¤v′?
^l′
7.(1)pf
?f(x) = ax?lnxx > 0
¥′
(2)pZ?ax = lnxμ
??
L?¥Hq.
8.
!f(x)g(x)
Là
?? V±O
flfl
flfl
flfl
f(x) g(x)
f0(x) g0(x)
flfl
flfl
flfl > 0
p£f(x)¥
L?-WB?μg(x) = 0¥?.
9.??/
f
?¥j?uWD.?
1y = 3x2 ?x3;
2y = x2 + 1x;
3y = ln(1+x2);
4y = p1+x2;
10.£
üwLy = x+1x2+1μê?]B°L
¥??.?.
6
11.ùa;b1?′
H?(1;3)1wLy = ax3 +bx2¥.?$
12.£
ü
(1)?f(x)1/jf
??1dμ
L
?5?f(x)1/jf
?
(2)?f(x) ag(x) (1/jf
?5f(x)+g(x)1/jf
?
(3)?f(x)1uWI
¥/jf
?g(x)1J
¥/j?9f
?f(I) ‰ J5g –f(x)1I
¥/jf
?.
13.
!f(x)1uWI
?ì
jf
?£
ü?x0 2 I1f(x)¥l′
?5x01f(x)I
·B¥l′?.
14.?¨/jf
?àQ£
ü?/??
T
(1)?i
L
?a;b;μ
ea+b2 612(ea+eb):
(2)??dμf
?a;b;μ
2arctan a+b2 > arctana+arctanb:
15.??ê4?
?h > 0Z?
PwL
y = hp…e?h2x2
x = § ( > 0)1ó?¥è
?)μ.?.
16.py = x2x2+1¥′#.?ip.?)¥MLZ?.
17.T/
f
?¥m?
1y = x3 ?6x;
2y = e?(x?1)2;
7
3y = 1x2?1;
4y = ln 1+x1?x;
5y = x?2arctanx;
6y = xe?x;
7y = x2?2x?3x2+1 ;
8y = (x?1)3(x+1)3;
9y = x4(1+x)3.
x4f
?¥Kv′Kl′ù5
1p/
f
?·?uW
¥Kv′DKl′
1y = x5 ?5x4 +5x3 +1;
2y = 2tanx?tan2 x;x 2 (0; …2);
3y = pxlnx;
4y = jx2 ?3x+2j;
5y = ejx?3j;[?5;5];
2ó?é1l¥L
kü
?s?
P[?
1H
???¥
?
?1Kv.
3.
!¨Né??
H ¤nQ
L
? 1a1;a2;¢¢¢ ;an,ù[8
"¥
?′xVr
?1?
¥?′??
P
?D?n?
?-μ¥üZ?1K
l.
4.p=¤???x2a2 + y2b2 = 17Hü??USà¥
?Kv¥ ?.
8
5.?M(p;q)??tLy2 = 2pxK ?.
6.SB????Q
VX??1V
??
¥
??ê
?N
ì1aí.§?
¥
??ê
?Nì1bíùQ
V¥°?Dú¥1??
H/NK
8$
7.h9??yBH
?
?14m2¥0?{?§
?¥á134
'?HD|úWC?theta
?@tan = 34?HbD|úl1é
H
A
?Kl.
? ü
A?Kl
H{?V
£? ?Kv.
8.
!? g¥?1fi??¥
?1v0m=s? g|Te???
H
W|Tt = 0?9 bE ?
H??¥?Z?1
8
<
:
x = tv0 cosfi
y = tv0 sinfi? 12gt2
?
?v0?Mù????? g¥?fi
P??
?Kù.
9