??c±s?′? ?#?¨ x1±s?′? ? 1£ ü 1Z?x3 ?3x + c = 0 c ^è ? uW[0;1] =? V ? μ ??]¥ L?  2Z?xn +px+q = 0 n1?? ?p;q1 L ??n1 } ? Hà μ ? L? ?n1  ? Hàμ ?? L?b 2 !f(x) = xm(1?x)n;m;n1?? ?x 2 [0;1]5i? 2 (0;1) P m n = ? 1?? 3?¨ ?ì μ °?′? ?£ ü/ ?? T  1jsinx?sinyj6jx?yj;x;y 2 (?1;+1);  2jxj6jtanxj;x 2 (?…2; …2);?|? ?? O??x = 0  3ex > 1+x;x 6= 0;  4y?xy < ln yx < y?xx ;) < x < y;  5x1+x2 < arctanx < x;x > 0. 4 !f ??a μ ??¥=¨? ?£ ü lim h!0 f(a+h)+f(a?h)?2f(h) h2 = f 00(a): 5 !limx!+1f0(x) = a p£ ?iT > 0μ limx!+1[f(x+T)?f(x)] = Ta 6.f ?f(x)[a;b] V? ?a > 0£ üi? 2 (a;b) P¤ 2?[f(b)?f(a)] = (b2 ?a2)f0(?): 1 7 !f(x)(a;+1)  V? Olim x!a+ f(x) = limx!+1f(x) = A , p£i ?(a;+1) Pf0(?) = 0b 8 !f(x) V? p£f(x)  ,?-WB?μf(x)+f0(x)¥ ,?. 9 !f ?f(x)x0?í ??"x0?? V? Olimx!x 0 f0(x) = A p£f0(x)i Of0(x) = A . 10 ?f(x)(a;b) V? Of0(a) 6= f0(b)k1o?f0(a)?f0(b)-W ¥ ?B L ?5à iB?? 2 (a;b) Pf0(?) = k . 11 !f ?f(x)(a;b) = V? Of0(x)??£ üf0(x)(a;b) ? ?. 12 ?f ?f(x);g(x)?h(x)[a;b] ??(a;b) V?£ üi? 2 (a;b) P¤fl flfl flfl flfl flfl f(a) g(a) h(a) f(b) g(b) h(b) f0(?) g0(?) h0(?) flfl flfl flfl flfl fl = 0 V??2T? ? μ °?′? ?? O?′? ?b 13 !f(x)(1;+1) ?? Olimx!§1 = +1£ üf(x)(1;+1)  |? ?¥Kl′. 14 !f(x)[a;b) ??lim x!b? f(x) = B .  1 ?ix 2 [a;b) Pf(x1) > B5f(x)[a;b) r?Kv′  2 ?Tix 2 [a;b) Pf(x1) = B ??yf(x)[a;b) r? Kv′$ 15 !f(x)[a;+1)μ?f0(x)i Olimx!+1f0(x) = b . p£b = 0 . 16 p£arctanx+arccosx = …2(jxj6 1) . 2 x2±s?′? ?# ?¨ 1 p/ ???¥K  1limx!0 tanaxsinbx ;  2limx!0 1?cosx2x3 sinx ;  3limx!0 ln(1+x)?xcosx?1 ;  4limx!0 tanx?xx?sinx;  5limx!0(1x ? 1ex?1);  6limx!0 lncosaxlnsinbx;  7lim x!…2 tanx?6 secx+5;  8limx!1( 1lnx ? 1x?1);  9limx!…(… ?x)tan x2;  10limx!1x 11?x;  11limx!+1 xbeax (a;b > 0);  12limx!+1 …2?arctanxsin 1 x ;  13limx!+1 lnc xxb (b;c > 0);  14lim x!0+ lnc x xb (b;c > 0);  15lim x!…6 1?2sinx cos3x ;  16lim x!0+ lnx cotx;  17limx!0 (1+x) 1x?e x ; 3  18lim x!0+ xsinx;  19lim x!0+ (ln 1x)x;  20limx!0(tanxx ) 1x2 ;  21limx!0( 1x2 ? 1sin2 x);  22lim x!0+ sinxlnx. 2f ?f(x)[0;x] ?¨ ?ì μ °?′? ?μ f(x)?f(0) = f0( x)x; 2 (0;1): k£/ f ?μlim x!0+ = 12  1f(x) = ln(1+x);  2f(x) = ex. 3 !f(x)=¨ V? p£ lim h!0 f(x+2h)?2f(x+h)+f(x) h2 = f 00(x): 4/ f ?? ?¨ ?ArE5 pK  1limx!0 x2 sin 1xsinx ;  2limx!1 x+sinxx?cosx;  3limx!1 2x+sin2x(2x+sinx)esinx;  4limx!1 (x2?1)sinxln(1+sin … 2x) . x3f ?¥ 6?aj??f ?Tm 1?¨f ?¥???£ ü/ ?? T 4  12…x < sinx < x;x 2 (0; …2);  2x < sinx < x? x36 ;x < 0;  3x? x22 < ln(1+x) < x;x > 0;  4tanx > x+ x33 ;x 2 (0; …2);  52px > 3? 1x;x < 0: 2 ??/ f ?¥?? uW  1y = x3 ?6x;  2y = p2x?x2;  3y = 2x2 ?lnx;  4y = x2?1x ;  5y = 2x2 ?sinx;  6y = xne?x; 3 p/ f ?¥′  1y = x?ln(1+x);  2y =;x+ 1x;  3y = 1+3xp4+5x2;  4y = (lnx)2x ;  5y = 2x3 ?x4;  6y = arctanx? 12 ln(1+xx); 5 4 !f(x) = 8 < : x4 sin2 1x; x 6= 0; 0; x = 0:  1£ üx = 0 ^f ?¥l′?  2 a üf¥l′?x = 0) ^? ?@′¥?B sHq? = sHq. 5£ ü ?f ?f(x)?x0)μf0+(x0) < 0;f0?(x0) > 05x01f ¥v′?. 6 !f(x) = alnx + bx2 + xx1 = 1;x2 = 2)? |¥′ k?a ?b¥′ iù? Hfx1?x2 ^ |¤v′? ^l′ 7.(1) pf ?f(x) = ax?lnxx > 0 ¥′ (2) pZ?ax = lnxμ ?? L?¥Hq. 8. !f(x)g(x) Là  ?? V± O flfl flfl flfl f(x) g(x) f0(x) g0(x) flfl flfl flfl > 0 p£f(x)¥  L?-WB?μg(x) = 0¥?. 9. ??/ f ?¥j? uWD.?  1y = 3x2 ?x3;  2y = x2 + 1x;  3y = ln(1+x2);  4y = p1+x2; 10.£ ü wLy = x+1x2+1μê?]B°L ¥ ??.?. 6 11.ùa;b1?′ H?(1;3)1 wLy = ax3 +bx2¥.?$ 12.£ ü (1) ?f(x)1/jf ??1dμ L ?5?f(x)1/jf ? (2) ?f(x)ag(x) (1/jf ?5f(x)+g(x)1/jf ? (3) ?f(x)1 uWI ¥/jf ?g(x)1J ¥/j?9f ?f(I) ‰ J5g –f(x)1I ¥/jf ?. 13. !f(x)1 uWI ?ì jf ?£ ü ?x0 2 I1f(x)¥l′ ?5x01f(x)I ·B¥l′?. 14.?¨/jf ?à Q£ ü ?/?? T (1) ?i L ?a;b;μ ea+b2 612(ea+eb): (2) ??dμf ?a;b;μ 2arctan a+b2 > arctana+arctanb: 15. ??ê4? ?h > 0Z ? P wL y = hp…e?h2x2 x = § ( > 0)1ó?¥è ?)μ.?. 16. py = x2x2+1¥′#.?i p.?)¥ MLZ?. 17.T/ f ?¥m?  1y = x3 ?6x;  2y = e?(x?1)2; 7  3y = 1x2?1;  4y = ln 1+x1?x;  5y = x?2arctanx;  6y = xe?x;  7y = x2?2x?3x2+1 ;  8y = (x?1)3(x+1)3;  9y = x4(1+x)3. x4f ?¥Kv′Kl′ù5 1 p/ f ?·? uW ¥Kv′DKl′  1y = x5 ?5x4 +5x3 +1;  2y = 2tanx?tan2 x;x 2 (0; …2);  3y = pxlnx;  4y = jx2 ?3x+2j;  5y = ejx?3j;[?5;5]; 2ó?é1l¥L  kü ?s?   P[?  1H ???¥ ? ?1Kv. 3. !¨ N é??  H¤nQ L ? 1a1;a2;¢¢¢ ;an,ù[8 "¥ ?′xVr ?1? ¥?′? ? P ?D?n? ?-μ¥ üZ?1K l. 4. p =¤???x2a2 + y2b2 = 17H ü??USॠ?Kv¥ ?. 8 5.?M(p;q)? ?tLy2 = 2pxK  ?. 6.SB????Q VX?  ?1V  ?? ¥ ??ê ?N ì1aí.§? ¥ ??ê ?Nì1bíùQ V¥°?Dú¥1??  H/NK 8$ 7. h9??yBH ? ?14m2¥0? {?§ ?¥ á134  '?HD|úWC?theta ?@tan = 34?HbD|úl1é H A ?Kl. ? ü A?Kl H {?V £ ? ?Kv. 8. ! ? g¥?1fi ??¥ ?1v0m=s ? g |Te?? ? H W |Tt = 0?9 b E ? H ??¥?Z?1 8 < : x = tv0 cosfi y = tv0 sinfi? 12gt2 ? ?v0?Mù ???? ? g¥?fi P ?? ?Kù. 9