??? E E Eccc ? ? ?[[[))) ? ? ? x1))) ? ? ?ùùù555¥¥¥444 1.£ ü ?±sZ?xy"+y0 +xy = 0μ[ T3 y = a0 +a1x+a2x2 +¢¢¢+anxn; 5Aμai = 0(i = 1;2; ¢¢¢ ;n): 2 k ??" ?a0;a1;¢¢¢ ;an;¢¢¢ ; P1P n=0 anxn ?@ à ?£Z? (1?x2)y"?2xy0 +l(l +1)y = 0: x2 ? ? ?[[[))) ? ? ?¥¥¥ l l l ? ? ????###   '''???ééé 1 p/ ) ?¥? (1) 1P n=1 1 (5n?4)(5n+1); (2) 1P n=1 1 4n2?1; (3) 1P n=1 (?1)n?1 2n?1 ; (4) 1P n=1 2n?1 2n ; (5) 1P n=1 rn sinnx;jrj < 1; (6) 1P n=1 rn cosnx;jrj < 1: 2) ?/ ) ?¥ ? ?? (1) 1P n=1 n 2n?1; 1 (2) 1P n=1 ( 12n + 13n); (3) 1P n=1 cos …2n+1; (4) 1P n=1 1 (3n?2)(3n+1); (5) 1P n=1 1p n(n+1)(pn+pn+1): 3£ ü? ?10.2. 4 !) ?1P n=1 unò[ ^?¥ü) ?¥[üVF?7¤??) ?1P n=1 Un;' Un+1 = ukn+1 +ukn+2 +¢¢¢+ukn+1;n = 0;1;2;¢¢¢ ?k0 = 0;k0 < k1 < k2 < ¢¢¢ < kn < kn+1 < ¢¢¢ : ?1P n=1 Un l ?£ üe ? ¥) ?9 l ?. x3???[[[))) ? ? ? 1 ?Y/ ) ?¥ l ?? (1) 1P n=1 1p n2+n; (2) 1P n=1 1 (2n?1)22n?1; (3) 1P n=1 n?pn 2n?1 ; (4) 1P n=1 sin …2n; (5) 1P n=1 1 1+an (a > 1); 2 (6) 1P n=1 1 n npn; (7) 1P n=1 ( 12n+1)n; (8) 1P n=1 1 [ln(n+1)]n; (9) 1P n=1 2+(?1)n 2n ; (10) 1P n=1 2n sin …3n; (11) 1P n=1 nn n! ; (12) 1P n=1 nlnn 2n ; (13) 1P n=1 n!2n nn ; (14) 1P n=1 n!3n nn ; (15) 1P n=1 n2 (n+1n)n; (16) 1P n=1 xn (1+x)(1+x2)¢¢¢(1+xn) (x ? 0); (17) 31 + 3¢51¢4 + 3¢5¢71¢4¢7 + 3¢5¢7¢91¢4¢7¢10 +¢¢¢ ; (18) 1P n=1 1 nlnn; (19) 1P n=1 1 (lnn)lnn; (20) 1P n=1 1 2lnn; (21) 1P n=1 1 3lnn; 3 (22) 1P n=1 1 3pn; (23) 1P n=1 n 3pn: 2 ?¨ ü à T ?í kl ¥¨V7 ?Y/ ) ?¥ l ?? (1) 1P n=1 [e?(1+ 1n)n]p; (2) 1P n=3 lnp cos …n; (3) 1P n=1 (pn+1?pn)p ln n?1n+1; (4) 1P n=1 (pn+a? 4pn2 +n+b): 3X? ?[) ?1P n=1 un?1P n=1 vn? ? ù1P n=1 max(un;vn)1P n=1 min(un;vn) ) ?¥ l ?? ??$ 4 ??[) ?1P n=1 an l ?an+1 ? an(n = 1;2;¢¢¢) p£limn!1nan = 0. 5 ! 8 < : an = 1n2;n 6= k2;k = 1;2;¢¢¢ ; ak2 = 1k2;k = 1;2;¢¢¢ ; p£:(1) 1P n=1 an l ?; (2) limn!1nan 6= 0: 6) ?/ ) ?¥ l ??: (1) 1P n=2 1 n(lnn)p; (2) 1P n=2 1 n¢lnn¢lnlnn; 4 (3) 1P n=2 1 n(lnn)1+ lnlnn( > 0); (4) 1P n=2 1 n(lnn)p(lnlnn)q: 7 ?¨ ?-1 ?YEù?/ ) ?¥ l ??: (1) 1P n=1 [(2n?1)!!(2n)!! ]p(p ^ L ?); (2) 1P n=1 fi(fi+1)¢¢¢(fi+n?1) n! 1 nfl(fi > 0;fl > 0): 8 !an > 0; Olimn!1 an+1an = l, p£limn!1 npan = l.Q- ^?? ?? 9 ?¨) ? l ?¥A1Hq£ ü: (1) limn!1 nn(n!)2 = 0; (2) limn!1 (2n)!an! = 0(a > 1): 10 !an ? 0, O ? fnangμ?,£ ü) ?1P n=1 a2n l ?. 11 !?[) ?1P n=1 an l ?,£ ü1P n=1 pa nan+19 l ?. 12 !limn!1an = l, p£: (1)?l > 1 H, +1P n=1 1 nan l ?; (2)?l < 1 H, 1P n=1 1 nan? ?. ùl = 1 H?μ I 12 ?? x4BBB???[[[))) ? ? ? 1) ?/ ) ?¥ l ??: 5 (1) 1P n=1 (?1)n pn n+100; (2) 1P n=1 lnn n sin n… 2 ; (3) 1P n=1 (?1)n1+12+¢¢¢+1nn ; (4) 1P n=2 (?1)np n+(?1)n; (5) 1P n=1 sin(…pn2 +1); (6) 1P n=1 (?1)n(n?1)2 3n ; (7) 1P n=1 (?1)n np (p > 0); (8) 1P n=1 1 3n sin n… 2 ; (9) 1P n=1 (?1)ncos2nn ; (10) 1P n=1 (?1)nsin2 nn ; (11) 1P n=1 (?1)n sin xn(x 6= 0); (12) 1P n=1 (?1)nn (n+1)2; (13) 1p2?1 ? 1p2+1 + 1p3?1 ? 1p3+1 +¢¢¢+ 1pn?1 ? 1pn+1 +¢¢¢ ; (14) 1P n=1 (?1)n+1 n a 1+an(a > 0); (15) 1P n=1 sin(n+1n) n ; (16) 1P n=1 sinnsinn2 n : 6 2) ?/ ) ? ^? ' l ?Hq l ?: (1) 1P n=1 (?1)n n+x ; (2) 1P n=1 sin(2nx) n! ; (3) 1P n=1 sinnx n (0 < x < …); (4) 1P n=1 cosnx np (0 < x < …); (5) 1P n=1 (?1)n np+1n (p > 0); (6) 1P n=2 (?1)n [n+(?1)n]p(p > 0); (7) 1P n=1 (?1)n np+ 1n ; (8) 1P n=1 (?1)n?12n sin2n xn ; (9) 1P n=1 ( xan)n; limn!1an = a > 0; (10) 1P n=1 (?1)nrn+ pn (r > 0); (11) 1P n=1 n!(xn)n; (12) 1P n=1 ln(1+ (?1)nnp ); (13) 1P n=1 (?1)n [pn+(?1)n?1]p; (14) 1P n=1 sin n4… np+sin n4…: 3 ?¨ O l ?e ? ?Y/ ) ?¥ ? ??: 7 (1) a0 +a1q +a2q2 +¢¢¢+anqn +¢¢¢ ;jqj < 1;janj? A (n = 0;1;2;¢¢¢); (2) 1+ 12 ? 13 + 14 + 15 ? 16 +¢¢¢ : 4 p£: ?) ?1P n=1 an(an ? 0) l ?,5) ?1P n=1 a2n l ?.?Q-?? ?, h  è0. 5 ?) ?1P n=1 an l ?, Olimn!1 bnan = 1,ù ^? ??1P n=1 bn9 l ??ù? è 0 an = (?1) n pn ;bn = an + 1n: 6£ ü: ?) ?1P n=1 an(A)#1P n=1 bn(B)? l ?, O an ? cn ? bn(n = 1;2;¢¢¢) 5) ?1P n=1 cn(C)9 l ?, ?) ?(A)D(B)?? ?,ù) ?(C)¥ l ?? ??? 7£ ü: ?1P n=1 an nx0 l ?,5?x > x0 H, 1P n=1 an nx9 l ?. ? 1P n=1 an nx0? ?,5 ?x < x0 H, 1P n=1 an nx9? ?. 8 p£: ? ? fnangμK, 1P n=1 n(an ?an?1) l ?,51P n=1 an9 l ?. 9 p£: ?1P n=1 (an ?an?1) ' l ?, 1P n=1 bn l ?,51P n=1 anbn l ?. 10 p£: ?) ?1P n=1 a2n?1P n=1 b2n? l ?,5) ? 1X n=1 janbnj; 1X n=1 ]n +bn)2; 1X n=1 janj n 9 l ?. 11 !?[ ? fxng??  6 Oμ?, p£: 1X n=1 (1? xnx n+1 ) 8 l ?. 12 ? fang;fbng,?lSn = nP k=1 ak;¢bk = bk+1 ?bk, p£: (1) ?TfSngμ?, 1P n=1 j¢bnj l ?, Obn ! 0(n !1),51P n=1 anbn l ?, Oμ 1X n=1 anbn = ? 1X n=1 Sn ¢¢bn; (2) ?T1P n=1 anD1P n=1 j¢bnj? l ?,51P n=1 anbn l ?. 13 !1P n=1 an l ?, Olimn!1nan = 0, p£: 1X n=1 n(an ?an+1) l ?,i O 1X n=1 n(an ?an+1) = 1X n=1 an 14/  ^d5,¥ hóí£ ü,p¥ h Q è: (1) ?an > 0,5a1 ?a1 +a2 ?a2 +a3 ?a3 +¢¢¢ l ?; (2) ?an ! 0,5a1 ?a1 +a2 ?a2 +a3 ?a3 +¢¢¢ l ?; (3) ?1P n=1 an l ?,51P n=1 (?1)nan l ?; (4) ?1P n=1 a2n l ?,51P n=1 a3n ' l ?; (5) ?1P n=1 an? ?,5an? t?0; (6) ?1P n=1 an l ?,bn ! 151P n=1 anbn l ?; (7) ?1P n=1 janj l ?, bn ! 151P n=1 anbn l ?; 9 (8) ?1P n=1 an l ?,51P n=1 a2n l ?; (9) ?1P n=1 an l ?,an > 05limn!1nan = 0. 15 p/ K( ?p > 1) (1) limn!1( 1(n+1)p + 1(n+2)p +¢¢¢+ 1(2n)p); (2) limn!1( 1pn+1 + 1pn+2 +¢¢¢+ 1p2n): x5ííí k k k))) ? ? ?DDD}}} ? ? ? ? ? ? 1?¨ O5, p£: ?T1P n=1 janj,51P n=1 an9 l ?. 2 !1P n=1 an l ?, p£:|M #  }[?Da ??¥) ? l ?, O μM ]¥? ?. 3 p£:?) ?1P n=1 (?1)n?1p n× ? ?¤¥) ? 1+ 1p3 ? 1p2 + 1p5 + 1p7 ? 1p4 +¢¢¢ ? ?. 4£ ü: ?1P n=1 anHq l ?,5 Vü) ?× ?, P?) ??s? ? μB 0 ?  t_?+1,μB0 ?  t_?1. 5X?Hn = 1 + 12 +¢¢¢+ 1n = c + lnn +rn,c ^ x ?è ?, limn!1rn = 0, p £: (1) 12 + 14 +¢¢¢+ 12m = 12 lnm+ 12c+ 12rm; (2) ?ü) ?1? 12 + 13 ? 14 +¢¢¢¥ò[× ?,7 PGQp??[¥BFD GQq?μ[¥BFM?9,5?) ?¥?1ln2+ 12 ln pq. 10 6 p£:) ?1P n=1 (?1)n+1 n¥ üZ( Oe) ^ l ?¥. 7 7ex = 1P n=0 xn n!, p£e x+y = ex ¢ey. 8£ ü: ?) ?¥[F ?|a ??¥) ? l ?,i O]B? ?| = [¥?|M], * 1 ?? ?|a,N) ?g l ?;i?N I3) ? 1X n=1 (?1)[ pn] n ¥ l ??. 11