???
E
E
Eccc
?
?
?[[[)))
?
?
?
x1)))
?
?
?ùùù555¥¥¥444
1.£
ü?±sZ?xy"+y0 +xy = 0μ[
T3
y = a0 +a1x+a2x2 +¢¢¢+anxn;
5Aμai = 0(i = 1;2; ¢¢¢ ;n):
2
k??"
?a0;a1;¢¢¢ ;an;¢¢¢ ;
P1P
n=0
anxn
?@ à?£Z?
(1?x2)y"?2xy0 +l(l +1)y = 0:
x2
?
?
?[[[)))
?
?
?¥¥¥
l
l
l ? ? ????###'''???ééé
1p/
)
?¥?
(1)
1P
n=1
1
(5n?4)(5n+1);
(2)
1P
n=1
1
4n2?1;
(3)
1P
n=1
(?1)n?1
2n?1 ;
(4)
1P
n=1
2n?1
2n ;
(5)
1P
n=1
rn sinnx;jrj < 1;
(6)
1P
n=1
rn cosnx;jrj < 1:
2)
?/
)
?¥ ???
(1)
1P
n=1
n
2n?1;
1
(2)
1P
n=1
( 12n + 13n);
(3)
1P
n=1
cos …2n+1;
(4)
1P
n=1
1
(3n?2)(3n+1);
(5)
1P
n=1
1p
n(n+1)(pn+pn+1):
3£
ü? ?10.2.
4
!)
?1P
n=1
unò[
^?¥ü)
?¥[üVF?7¤??)
?1P
n=1
Un;'
Un+1 = ukn+1 +ukn+2 +¢¢¢+ukn+1;n = 0;1;2;¢¢¢
?k0 = 0;k0 < k1 < k2 < ¢¢¢ < kn < kn+1 < ¢¢¢ :?1P
n=1
Un
l ?£
üe ?
¥)
?9
l ?.
x3???[[[)))
?
?
?
1?Y/
)
?¥
l ??
(1)
1P
n=1
1p
n2+n;
(2)
1P
n=1
1
(2n?1)22n?1;
(3)
1P
n=1
n?pn
2n?1 ;
(4)
1P
n=1
sin …2n;
(5)
1P
n=1
1
1+an (a > 1);
2
(6)
1P
n=1
1
n npn;
(7)
1P
n=1
( 12n+1)n;
(8)
1P
n=1
1
[ln(n+1)]n;
(9)
1P
n=1
2+(?1)n
2n ;
(10)
1P
n=1
2n sin …3n;
(11)
1P
n=1
nn
n! ;
(12)
1P
n=1
nlnn
2n ;
(13)
1P
n=1
n!2n
nn ;
(14)
1P
n=1
n!3n
nn ;
(15)
1P
n=1
n2
(n+1n)n;
(16)
1P
n=1
xn
(1+x)(1+x2)¢¢¢(1+xn) (x ? 0);
(17) 31 + 3¢51¢4 + 3¢5¢71¢4¢7 + 3¢5¢7¢91¢4¢7¢10 +¢¢¢ ;
(18)
1P
n=1
1
nlnn;
(19)
1P
n=1
1
(lnn)lnn;
(20)
1P
n=1
1
2lnn;
(21)
1P
n=1
1
3lnn;
3
(22)
1P
n=1
1
3pn;
(23)
1P
n=1
n
3pn:
2 ?¨
ü à
T
?íkl
¥¨V7?Y/
)
?¥
l ??
(1)
1P
n=1
[e?(1+ 1n)n]p;
(2)
1P
n=3
lnp cos …n;
(3)
1P
n=1
(pn+1?pn)p ln n?1n+1;
(4)
1P
n=1
(pn+a? 4pn2 +n+b):
3X?
?[)
?1P
n=1
un?1P
n=1
vn??
ù1P
n=1
max(un;vn)1P
n=1
min(un;vn)
)
?¥
l ????$
4??[)
?1P
n=1
an
l ?an+1 ? an(n = 1;2;¢¢¢)p£limn!1nan = 0.
5
!
8
<
:
an = 1n2;n 6= k2;k = 1;2;¢¢¢ ;
ak2 = 1k2;k = 1;2;¢¢¢ ;
p£:(1)
1P
n=1
an
l ?;
(2) limn!1nan 6= 0:
6)
?/
)
?¥
l ??:
(1)
1P
n=2
1
n(lnn)p;
(2)
1P
n=2
1
n¢lnn¢lnlnn;
4
(3)
1P
n=2
1
n(lnn)1+ lnlnn( > 0);
(4)
1P
n=2
1
n(lnn)p(lnlnn)q:
7 ?¨ ?-1?YEù?/
)
?¥
l ??:
(1)
1P
n=1
[(2n?1)!!(2n)!! ]p(p
^
L
?);
(2)
1P
n=1
fi(fi+1)¢¢¢(fi+n?1)
n!
1
nfl(fi > 0;fl > 0):
8
!an > 0;Olimn!1 an+1an = l,p£limn!1 npan = l.Q-
^?? ??
9 ?¨)
?
l ?¥A1Hq£
ü:
(1) limn!1 nn(n!)2 = 0;
(2) limn!1 (2n)!an! = 0(a > 1):
10
!an ? 0,O
?
fnangμ?,£
ü)
?1P
n=1
a2n
l ?.
11
!?[)
?1P
n=1
an
l ?,£
ü1P
n=1
pa
nan+19
l ?.
12
!limn!1an = l,p£:
(1)?l > 1
H,
+1P
n=1
1
nan
l ?;
(2)?l < 1
H,
1P
n=1
1
nan??.
ùl = 1
H?μ
I
12
??
x4BBB???[[[)))
?
?
?
1)
?/
)
?¥
l ??:
5
(1)
1P
n=1
(?1)n
pn
n+100;
(2)
1P
n=1
lnn
n sin
n…
2 ;
(3)
1P
n=1
(?1)n1+12+¢¢¢+1nn ;
(4)
1P
n=2
(?1)np
n+(?1)n;
(5)
1P
n=1
sin(…pn2 +1);
(6)
1P
n=1
(?1)n(n?1)2
3n ;
(7)
1P
n=1
(?1)n
np (p > 0);
(8)
1P
n=1
1
3n sin
n…
2 ;
(9)
1P
n=1
(?1)ncos2nn ;
(10)
1P
n=1
(?1)nsin2 nn ;
(11)
1P
n=1
(?1)n sin xn(x 6= 0);
(12)
1P
n=1
(?1)nn
(n+1)2;
(13) 1p2?1 ? 1p2+1 + 1p3?1 ? 1p3+1 +¢¢¢+ 1pn?1 ? 1pn+1 +¢¢¢ ;
(14)
1P
n=1
(?1)n+1
n
a
1+an(a > 0);
(15)
1P
n=1
sin(n+1n)
n ;
(16)
1P
n=1
sinnsinn2
n :
6
2)
?/
)
?
^? '
l ?Hq
l ?:
(1)
1P
n=1
(?1)n
n+x ;
(2)
1P
n=1
sin(2nx)
n! ;
(3)
1P
n=1
sinnx
n (0 < x < …);
(4)
1P
n=1
cosnx
np (0 < x < …);
(5)
1P
n=1
(?1)n
np+1n (p > 0);
(6)
1P
n=2
(?1)n
[n+(?1)n]p(p > 0);
(7)
1P
n=1
(?1)n
np+ 1n ;
(8)
1P
n=1
(?1)n?12n sin2n xn ;
(9)
1P
n=1
( xan)n; limn!1an = a > 0;
(10)
1P
n=1
(?1)nrn+
pn
(r > 0);
(11)
1P
n=1
n!(xn)n;
(12)
1P
n=1
ln(1+ (?1)nnp );
(13)
1P
n=1
(?1)n
[pn+(?1)n?1]p;
(14)
1P
n=1
sin n4…
np+sin n4…:
3 ?¨ O
l ?e ??Y/
)
?¥ ???:
7
(1) a0 +a1q +a2q2 +¢¢¢+anqn +¢¢¢ ;jqj < 1;janj? A (n = 0;1;2;¢¢¢);
(2) 1+ 12 ? 13 + 14 + 15 ? 16 +¢¢¢ :
4p£:?)
?1P
n=1
an(an ? 0)
l ?,5)
?1P
n=1
a2n
l ?.?Q-?? ?,h
è0.
5?)
?1P
n=1
an
l ?,Olimn!1 bnan = 1,ù
^???1P
n=1
bn9
l ??ù? è
0
an = (?1)
n
pn ;bn = an + 1n:
6£
ü:?)
?1P
n=1
an(A)#1P
n=1
bn(B)?
l ?,O
an ? cn ? bn(n = 1;2;¢¢¢)
5)
?1P
n=1
cn(C)9
l ?,?)
?(A)D(B)???,ù)
?(C)¥
l ?????
7£
ü:?1P
n=1
an
nx0
l ?,5?x > x0
H,
1P
n=1
an
nx9
l ?.?
1P
n=1
an
nx0??,5
?x < x0
H,
1P
n=1
an
nx9??.
8p£:?
?
fnangμK,
1P
n=1
n(an ?an?1)
l ?,51P
n=1
an9
l ?.
9p£:?1P
n=1
(an ?an?1) '
l ?,
1P
n=1
bn
l ?,51P
n=1
anbn
l ?.
10p£:?)
?1P
n=1
a2n?1P
n=1
b2n?
l ?,5)
?
1X
n=1
janbnj;
1X
n=1
]n +bn)2;
1X
n=1
janj
n
9
l ?.
11
!?[
?
fxng??
6Oμ?,p£:
1X
n=1
(1? xnx
n+1
)
8
l ?.
12
?
fang;fbng,?lSn =
nP
k=1
ak;¢bk = bk+1 ?bk,p£:
(1)?TfSngμ?,
1P
n=1
j¢bnj
l ?,Obn ! 0(n !1),51P
n=1
anbn
l ?,Oμ
1X
n=1
anbn = ?
1X
n=1
Sn ¢¢bn;
(2)?T1P
n=1
anD1P
n=1
j¢bnj?
l ?,51P
n=1
anbn
l ?.
13
!1P
n=1
an
l ?,Olimn!1nan = 0,p£:
1X
n=1
n(an ?an+1)
l ?,iO
1X
n=1
n(an ?an+1) =
1X
n=1
an
14/
^d5,¥hóí£
ü,p¥h Q è:
(1)?an > 0,5a1 ?a1 +a2 ?a2 +a3 ?a3 +¢¢¢
l ?;
(2)?an ! 0,5a1 ?a1 +a2 ?a2 +a3 ?a3 +¢¢¢
l ?;
(3)?1P
n=1
an
l ?,51P
n=1
(?1)nan
l ?;
(4)?1P
n=1
a2n
l ?,51P
n=1
a3n '
l ?;
(5)?1P
n=1
an??,5an?t?0;
(6)?1P
n=1
an
l ?,bn ! 151P
n=1
anbn
l ?;
(7)?1P
n=1
janj
l ?, bn ! 151P
n=1
anbn
l ?;
9
(8)?1P
n=1
an
l ?,51P
n=1
a2n
l ?;
(9)?1P
n=1
an
l ?,an > 05limn!1nan = 0.
15p/
K(?p > 1)
(1) limn!1( 1(n+1)p + 1(n+2)p +¢¢¢+ 1(2n)p);
(2) limn!1( 1pn+1 + 1pn+2 +¢¢¢+ 1p2n):
x5íííkkk)))
?
?
?DDD}}}
?
?
?
?
?
?
1?¨ O5,p£:?T1P
n=1
janj,51P
n=1
an9
l ?.
2
!1P
n=1
an
l ?,p£:|M
#}[?Da
??¥)
?
l ?,O μM
]¥?
?.
3p£:?)
?1P
n=1
(?1)n?1p
n×?
?¤¥)
?
1+ 1p3 ? 1p2 + 1p5 + 1p7 ? 1p4 +¢¢¢
??.
4£
ü:?1P
n=1
anHq
l ?,5 Vü)
?×?,
P?)
??s?
?
μB
0
?
t_?+1,μB0
?
t_?1.
5X?Hn = 1 + 12 +¢¢¢+ 1n = c + lnn +rn,c
^x ?è
?, limn!1rn = 0,p
£:
(1) 12 + 14 +¢¢¢+ 12m = 12 lnm+ 12c+ 12rm;
(2)?ü)
?1? 12 + 13 ? 14 +¢¢¢¥ò[×?,7
PGQp??[¥BFD
GQq?μ[¥BFM?9,5?)
?¥?1ln2+ 12 ln pq.
10
6p£:)
?1P
n=1
(?1)n+1
n¥üZ( Oe)
^
l ?¥.
7
7ex =
1P
n=0
xn
n!,p£e
x+y = ex ¢ey.
8£
ü:?)
?¥[F ?|a
??¥)
?
l ?,iO]B? ?|=
[¥?|M],*
1?? ?|a,N)
?g
l ?;i?N I3)
?
1X
n=1
(?1)[
pn]
n
¥
l ??.
11