?
Etc?f
?i? ?
x1??????ZZZ???¥¥¥fff???
1.
!f
?F(x;y)
?@
(1)u×D : x0 ?a ? x ? x0 +ay0 ?b ? y ? y0 +b
??
(2) F(x0;y0) = 0
(3)?x%?
Hf
?F(x;y)
^y¥?ì??f
?
5 V¤?
I
12
?$
k£
ü-.
2Z?x2 + y + sin(xy) = 0e??í??¨??y = f(x)¥Z?V
U$???¨??x = g(y)¥Z?V
U$
3Z?F(x;y) = y2 ?x2(1?x2) = 0't?¥?í V·B1???
′ a ?? aOμ ???
?¥f
?y = f(x).
4£
üμ·B V?¥f
?y = y(x)
?@Z?sin+sinhy = xip
?
?y0(x)?sinhy = ey?e?y2 .
5Z?xy + zlny + exz = 1?P0(0;1;1)¥
#×=????B
?M
^
6?
?M
¥f
?.
6
!f
^Bíf
?
kùf?
?@
I
1HqZ?
2f(xy) = f(x)+f(y)
?(1,1)¥
#×=???·B¥y1x¥f
?.
7
!μZ?x = y + ’(y)?’(0) = 0O??a < y <
a
Hj’0(y)j ? k < 1.£
üi– > 0??– < x < –
Hi·B¥
V±f
?y = y(x)
?@Z?x = y +’(y)Oy(0) = 0.
1
x2ZZZ???FFF¥¥¥fff???
1
k)
?Z?F8
<
:
x2 +y2 = 12z2;
x+y +z = 2
?P0(1;?1;2)¥?í??????x = f(z)y = g(z)¥?f
?F.
2p/
f
?F¥Qf
?F¥ê?
?
(1)
!u = xcos yx;v = xsin yxp@x@u; @x@v; @y@u; @y@v
(2)
!u = ex +xsiny;v = ex ?xcosyp@x@u; @x@v; @y@u; @y@v.
3
!u = xr2v = yr2w = zr2?r = px2 +y2 +z2.
(1)
kp[u;v;w11M
¥Qf
?F
(2)9
?@(u;v;w)@(x;y;z).
4
!fi;’i ?? V±
OFi(x1;¢¢¢xn) = fi(’1(x1);’2(x2);¢¢¢’n(xn))(i = 1;2;...n).p@(F1;F2;¢¢¢Fn)@(x
1;x2;¢¢¢xn)
.
5 ?
a
ü?(0,1)?í
^?i ?? V±f
?f(x;y)?g(x;y)
?
@f(0;1) = 1;g(0;1) = ?1O
[f(x;y)]3 +xg(x;y)?y = 0;
[g(x;y)]3 +yf(x;y)?x = 0:
6
!8
>>>
<
>>>:
u = f(x;y;z;t);
g(y;z;t) = 0;
h(z;t) = 0:
I
1Hq/u
^x;y¥f
?$p@u@x; @u@y.
2
7
!f
?u = u(x)?Z?F
8>
>><
>>>:
u = f(x;y;z);
g(x;y;z) = 0;
h(x;y;z) = 0
???pdudx; d2udx2.
8
!z = z(x;y)
?@Z?F
8<
:
f(x;y;z;t) = 0;
g(x;y;z;t) = 0:
pdz.
9
!8
<
:
u = f(x?ut;y ?ut;z ?ut);
g(x;y;z) = 0:
p@u@x; @u@y.?
Ht
^1M
?
^yM
$
10
!(x0;y0;z0;u0)
?@Z?F
8
>>>
<
>>>
:
f(x)+f(y)+f(z) = F(u);
g(x;)+g(y)+g(z) = G(u);
h(x;)+h(y)+h(z) = H(u):
? ú
?μ¥f
?L?μ ??¥?
?.
(1)
aB????¥
#×=??x;y;zT1u¥f
?¥ sHq
(2)f(x) = x;g(x) = x2;h(x) = x3¥f?/
?HqM??
I
1$
11
!x = u;y = u1+uv;z = u1+uw|u;v1?¥1M
w1?¥yM
MDZ?
x2@z@x +y2@z@y = z2:
3