1
CKADDD 2002 D0BYA1COAGCKADC3DAATB6AVAPA6ANA8
A5CJAQCXDGDBCTA9 2002BA10B6A7
1A0DEAQCMBXB9C4BTD3 aCECJAQ{a
n
}BJCXDGBPARAFD3C8AZAF
A51A7BRAZD8BKBTCAε>0A9?N ∈N
+
,BG n>NC7A9AUBKCB|a
n
? a| <εB1AIAD
A52A7?ε>0A9?N ∈N
+
,BG n>NC7A9AXD8BKBTCAa
n
A9C9AUBKCB|a
n
? a| <εB1AIAD
A53A7BRAZCBBPBJ10
?10
A9AUBKCB|a
n
? a| < 10
?10
CPB1AIA2
2A0CMB5DEAQAQCIBQABAPBTD3 a CECJAQ{a
n
}BJCXDGBPARA2
A51A7?ε>0A9?N ∈N
+
,BG n ≥ N C7A9AUBKCB|a
n
? a| <εB1AIAD
A52A7?ε>0A9?N ∈N
+
,BG n>NC7A9AUBKCB|a
n
? a|≤εB1AIAD
A53A7?ε>0A9?N ∈N
+
,BG n>NC7A9AUBKCB|a
n
? a| <kεB1AIA9BDBJ k CEAMCABDAYCJAD
A54A7?ε>0A9?n ∈N
+
,C9AUBKCB|a
n+p
? a| <εBRBTAQBJ p ∈ N
+
BQB1AIAD
A55A7C4BDCJAQ{ε
k
}
∞
k=1
AP0D3CXDGA9?ε
k
> 0A9?n
k
∈N
+
,BGn ≥ n
k
C7A9AUBKCB|a
n
?a| <ε
k
B1AIAA
3A0BW{a
n
}B0{b
n
}CEALCABWBZCJAQA9CQB1BJCLB0CWCEC4BWBZAFD3C8AZAFBWBDBJAMCABWBZA9CQB1
BJCLB0CWAYBVCMAF
4A0AUACBPB1BFAACIAC
A51A7CJAQ{x
n
}AUAP aD3CXDGAD
A52A7CJAQ{x
n
}AUCHAJAD
A53A7CJAQ{x
n
}D8DIA2
5A0AU ε ? N B1AGAHBEDEAQCXDGD3ASA2
(1) lim
n→∞
1
n
2
+ n
; (2) lim
n→∞
1
n
4
? n
;
(3) lim
n→∞
(
√
n +1?
√
n); (4) lim
n→∞
10
n
n!
;
(5) lim
n→∞
n!
n
n
; (6) lim
n→∞
1
n
sin
nπ
2
.
6A0DEAQDHAWCEC4BDBRAFBWBDBRA9BJCBB8BEB5ADBWAUBDBRA9BJA5B8BZAHA2
A51A7BW lim
n→∞
a
n
= A A9B9 lim
n→∞
|a
n
| = |A|;
A52A7BW lim
n→∞
|a
n
| = |A|A9B9 lim
n→∞
a
n
= A;
A53A7BW lim
n→∞
|a
n
| =0A9B9 lim
n→∞
a
n
=0;
A54A7BW lim
n→∞
a
n
= A A9B9 lim
n→∞
a
n+1
= A;
A55A7BW lim
n→∞
a
n
= A A9B9 lim
n→∞
a
n+1
a
n
=1;
A56A7BW?α>0, lim
n→∞
αa
n
= αA A9B9 lim
n→∞
a
n
= A.
7A0CGBEB5AC
2
A51A7BW x
n
> 0, lim
n→∞
a
n
= aA9B9 lim
n→∞
√
a
n
=
√
a.
A52A7BW lim
n→∞
a
n
= a A9B9 lim
n→∞
3
√
a
n
=
3
√
a.
A53A7 lim
n→∞
a
n
= aBJB5C2AMAKCUDCCE lim
k→∞
a
2k
= aA9 lim
k→∞
a
2k+1
= a.
A54A7BW x
n
> 0, lim
n→∞
n
√
a
n
= q<1A9B9 lim
n→∞
a
n
=0.
A55A7BW x
n
> 0, lim
n→∞
n
√
a
n
= l>1A9B9 lim
n→∞
1
a
n
=0.
8A0BLDEAQCJAQBJCXDGAC
(1) lim
n→∞
(n +1)(n +2)(n +3)
5n
3
; (2) lim
n→∞
3
n
+(?2)
n
3
n+1
+(?2)
n+1
;
(3) lim
n→∞
parenleftbig
1+2+... + n
n +2
?
n
2
parenrightbig
; (4) lim
n→∞
√
n(
√
n +4?
√
n);
(5) lim
n→∞
√
2
4
√
2
8
√
2...
2
n
√
2; (6) lim
n→∞
n
radicalbig
2+sin
2
n;
(7) lim
n→∞
parenleftBig
1
n
3
+1
+
4
n
3
+2
+ ... +
n
2
n
3
+ n
parenrightBig
; (8) lim
n→∞
parenleftBig
1+
1
n +1
parenrightBig
n
;
(9) lim
n→∞
(1 ?
1
n
)
n
; (10) lim
n→∞
(1 +
1
n ? 4
)
n+4
;
(11) lim
n→∞
n
radicalbig
2sin
2
n +cos
2
n; (12) lim
n→∞
(
n +1
n +3
)
3n
;
(13) lim
n→∞
n
summationdisplay
k=1
1
k(k +1)...(k + m)
(m =1,2, ...); (14) lim
n→∞
(
n
3
? 1
n
3
? 2
)
4n
3
;
(15) x
n
=(1?
1
2
2
)(1 ?
1
3
2
)...(1 ?
1
n
2
); (16) lim
n→∞
n
summationdisplay
k=1
(?1)
k?1
3
k?1
;
(17) lim
n→∞
2n+1
summationdisplay
k=1
1
√
n
2
+ k
; (18) lim
n→∞
parenleftBig
1+
1
2
+ ... +
1
n
parenrightBig
1
n
;
(19) lim
n→∞
parenleftBig
1
1 · 2 ·3
+
1
2 · 3 ·4
+ ... +
1
n(n +1)(n +2)
parenrightBig
; (20) lim
n→∞
1 ·3 · 5···(2n ? 1)
2 · 4 ·6···(2n)
;
(21) lim
n→∞
parenleftBig
1 ?
1
1+2
parenrightBigparenleftBig
1 ?
1
1+2+3
parenrightBig
...
parenleftBig
1 ?
1
1+2+3+... + n
parenrightBig
.
9A0BBARDEAQCJAQBJCHAJA6AC
(1)x
n
=
1
3+1
+
1
3
2
+1
+ ... +
1
3
n
+1
;(2)x
n
=(1?
1
2
)(1 ?
1
4
)...(1 ?
1
2
n
);
(3)x
n
=1+
1
2!
+
1
3!
+ ... +
1
n!
4x
n
=
sin1
1
2
+
sin2
2
2
+ ... +
sinn
n
2
;
(5)x
n
= a
0
+ a
1
q + a
2
q
2
+ ... + a
n
q
n
(|q| < 1,|a
k
|≤M, k =1,2, ...).
10A0BEB5DEAQCJAQCHAJA9ASBLCXDGAC
(1) x
1
=
√
2,x
n+1
=
√
2+x
n
;(2)0<x
1
< 1,x
n+1
=1?
√
1 ? x
n
;
(3)0 <x
1
<
√
3,x
n+1
=
3(1 + x
n
)
3+x
n
;(4x
1
> 0,a>0,x
n+1
=
1
2
(x
n
+
a
x
n
);
3
(5) a
1
=1,a
n
=1+
1
1+a
n?1
;(6)x
1
=
√
2,x
n+1
=
√
2x
n
;
(7) A>0, 0 <x
1
<
1
A
,x
n+1
= x
n
(2 ? Ax
n
); (8) x
1
=sina, x
n+1
=sinx
n
.
11A0C4{a
n
}BFBOBAA9{b
n
}BFBODBA9 lim
n→∞
(b
n
? a
n
)=0A2BEB5AC {a
n
}B0 {b
n
}BQCHAJA9ASBHAX
DICVCXDGA2
12A0C40 <a
1
<b
1
,AUa
n+1
=
√
a
n
b
n
,b
n+1
=
a
n
+ b
n
2
,n=1,2,3, ...BLBEAC{a
n
}B0 {b
n
}CXDGBD
B7BHDIBKA2
13A0C40 <a
1
<b
1
<c
1
,AUa
n+1
=
3
1
a
n
+
1
b
n
+
1
c
n
,b
n+1
=
3
√
a
n
b
n
c
n
,c
n+1
=
a
n
+ b
n
+ c
n
3
,n=
1,2,3, ...A2BLBEAC {a
n
}A0{b
n
}A0{c
n
}CXDGBDB7BHDIBKA2
14A0C4x
1
= a,x
2
= b,x
n
=
x
n?1
+ x
n?2
2
(n ≥ 3),AGAUALBNDACRBP?BEB5{x
n
}CHAJASBLBDCXDGA2
15A0BEB5AC
A51A7BWCJAQ{x
n
}CHAJBHx
n
> 0(n =1,2, ...)A9B9 lim
n→∞
n
√
x
1
x
2
...x
n
= lim
n→∞
n
√
x
n
.
A52A7BW x
n
> 0(n =1,2, ...)CHAJBH lim
n→∞
x
n+1
x
n
BDB7A9B9 lim
n→∞
n
√
x
n
= lim
n→∞
x
n+1
x
n
.
A53A7 lim
n→∞
n
n
√
n!
= e.
16A0BW lim
n→∞
a
n
= a, lim
n→∞
b
n
= b A2BEB5
A51A7 lim
n→∞
a
1
+ a
2
+ ... + a
n
n
= a;
A52A7 lim
n→∞
a
1
b
n
+ a
2
b
n?1
+ ... + a
n
b
1
n
= ab.
17A0D4 a
n
=
braceleftBig
(1 +
1
n
)
n
bracerightBig
,b
n
=
braceleftBig
(1 +
1
n
)
n+1
bracerightBig
,n∈ N
+
. BEB5AC
(1)CJAQ{a
n
}BFBOBAD7AXDIAD
(2)CJAQ{b
n
}BODBC2AXDIAD
(3A7CJAQ{a
n
}CECVAKAQAD
(4)D4 lim
n→∞
(1 +
1
n
)
n
= e. BLBEAC lim
n→∞
(1 + 1 +
1
2!
+ ... +
1
n!
)=e;
(5)
1
(n +1)!
<e? (1 + 1 +
1
2!
+ ... +
1
n!
) <
1
n!n
;
(6) e =1+1+
1
2!
+ ... +
1
n!
+
θ
n
n!n
(
n
n +1
<θ
n
< 1);
(7) eD3D8?CJA2
BRCNAKDBCT
18A0C4AXAMBRA4B8C5BJCYBPA9ALCAB6BGCQB1BAA2BCBMBXCAB6A9CAA9B0CAB6AWAMBRA3CYA9BHA4C5BJ
B0BRA3CYALB7B8C5ALCAB6BGCQB1BAA9BMBXCAB6A9CAB0B6C5AMBRA3CYA2D8BPB8C5BJCYBPA8D8CND1A9A5 1A7
D7AMBACQCEAXD1BRCYBPAFA52A7D7nCAB6CQAXBTC2BRCYBPAFA53A7BWnCAB6BGCQAXF
n
BRCYBPA9CGBL
lim
n→∞
F
n
F
n+1
A5CTBJCPDDBJAMBRCYBPA8CEBAA7ASA6BJA7A2
4
CMB5ACC5D7CTCEAQBEAGCJACD6 Fibonacci AZC6BXCDD5B7(1202BA) AFA3CYBPBYBICJB3BJBJCJAMAO
CRCIAVC7CSB8ADBJA9BDBJBJCJAQF
n
AJCQBSAZD3FibonacciCJAQAAAXBPBJCEA9CXDG?0.618BDCE”CTDJ
C2C8”CJA9B7AVABBXCZA9BTATB2BIBHCOBTA4BJATAUA2
19AACPD5BLD2B6A5CEB7AFA3CFAXA2D2BJAMBK?CSDFA0BJCSB8ADBJA9DFAPBMBUBJAWAMB0D9C9BGDABJ
CHDCD3AHADCMB5AABWBQBABMBUBJAWAMCDCJAZBLA9CQBJD9C9A4CUDEBLADD9C9DEBLCUC9A0BAAJBMBBDBC2A9C9
BMBUBJAWAMCDAUATBLA9AZCEBUD9C1AIADD9C9C1AIAYC9B5BABMBUAWAMBAD7A9B8B1A4BJCDCJAZBLA9BVBB?CS
DEBQA2C4x
n
D3BMnBABJBMBUAWAMA9y
n
D3BDD9C9A9AWAZBGBABJAWAMBRBPB5BAD9C9A9CPAP y
n
= f(x
n
)A9
AZD3A8BLCKCJA9BVBMnBABJD9C9AYA7BPBMn +1BABJAWAMA9CGx
n+1
= g(y
n
)A9AZD3CDATCKCJAAAWA1CH
DCB2DFB8BVDECJB3AC
x
1
→ y
1
→ x
2
→ y
2
→ x
3
→ y
3
→ x
4
→ ....
B7BCB3BHDFBUAPDCBJB4B8DEB3BJBNAQAC
P
1
(x
1
,y
1
),P
2
(x
2
,y
1
),P
3
(x
2
,y
2
),P
4
(x
3
,y
2
), ......, P
2k?1
(x
k
,y
k
),P
2k
(x
k+1
,y
k
)(k =1,2,3, ...),
BDBJCPAXBJP
2k
BQAYBSx = g(y),P
2k?1
AYBSy = f(x)A9BVCXCPCCAAAWAZBCBKCHDCCODJAMCABLD2A9CPAP
AZD3BLD2B6A5A2
A6CWD3A9B7B0CF 1991BABMBUAWAMD330CZBSA9BUD9D3 6B4 /kgAD 1992BABMBUAWAMD325 CZBSA9
BUD9D3D38B4ABkgAAAOBF1993BABJBMBUAWAMD328CZBSAABWD4B4B8BGBJA2C1CLBCCLC5AWB6CBA9ASD8
BPBMBUBGBABJD9C9B0BGBABJAWAMBGDAA0ADBABJAWAMB0BGBABJD9C9BGDABQCEDHA6CHDCAA
(1)CGBRBPA8BLCKCJ y
n
= f(x
n
)CLCDATCKCJ x
n+1
= g(y
n
);
(2)BL lim
n→∞
x
n+1
B0 lim
n→∞
y
n+1
;
(3)D7BWC6BACQBMBUBJAWAMB0D9C9CEC4CUBMAZD6BPAFBWB9CFD6BPA9BLB8D6BPBJAWAMCLD9C9A2
CMB5ACAKBOAODBCTABBQD0B2C0A0AXBFBUBNANA3CCAACJACC2D9CVB9A4A5C7BKDGB3B8AHC3A91998BAA7A9
APCZAIA1BEACCJACDCA3CJACC2D9DBCTCYA4A5ARB5BOA0C0BEBIA0AFBDB4A0ANABBSANA9C7BKDGB3B8AHC3A9
1986BAA7AA