?=
EBcwLsDw
?s
x1?B?wLsDw
?s
1v×s¥'?é?B?wLs??B?w
?s¥
?
??é
29
?/
?B?wLs
(1) RL (x2 +y2)ds?L
^[
00
20
011??
¥???
(2) RLpx2 +y2ds?L
^??x2 +y2 = ax
(3) RL xyzds?L1
?Lx = acost;y = asint;z = bt(0 < a < b);0 ?
t ? 2…
(4) RL (x2 +y2 +z2)ds?LD(3)M]
(5) RL (x43 +y43)ds?L1=?Lx23 +y23 = a23
(6) RL y2ds?L1?L¥B x = a(t?sint);y = a(1?cost);0 ? t ?
2…
(7) RL xyds?L1o
?x2 +y2 +z2 = a2Dü
?x+y+z = 0¥?L
(8) RL (xy +yz +zx)ds?L](7)
(9) RL xyzds?L
^wLx = t;y = 23p2t3;z = 12t2(0 ? t ? 1)
(10) RLp2y2 +z2ds?L
^x2 +y2 +z2 = a2Dx = yM?¥??
39
?/
?B?w
?s
(1) RR
S
(x2 +y2)dS?S
^ ?8px2 +y2 ? z ? 1¥H?w
?
1
(2) RR
S
dS
x2+y2?S1?
?x
2 + y2 = R2$ü
?z = 0?z = H
??|¥
?s
(3) RR
S
jx3y2zjdS?S1w
?z = x2 +y2$z = 1é/¥?s
(4) RR
S
z2dS?S1
?è
?¥B?s
x = ucosv;y = usinv;z = v (0 ? u ? a;0 ? v ? 2…)
(5) RR
S
(x2 +y2)dSS
^o
?x2 +y2 +z2 = R2
4
!wLL¥Z?1
x = et cost;y = et sint;z = et (0 ? t ? t0)
?
?B?¥
áD??¥
O?üZ?Q1O?(1,0,1))11p
?
¥é
5
!μBé
s?? (¥???x = rcos ;y = rsin (0 ? ? …)
L
በ= a (a1è
?)p
?e?(00))é
1m¥é?¥? ?
6p
?L¥B|Lx = acost;y = asint;z = h2…t(0 ? t ? 2…)xà¥
?8
I = RL (y2 +z2)ds
!N
?L¥L
á
^ (¥
7p?t
? Tz = 12(x2+y2)0 ? z ? 1¥é
!N T¥
በ= z
89
?o
????x2 + y2 + z2 = a2x > 0;y > 0;z > 0¥?L¥×?
US
!L
በ= 1
9p (o Tx2 +y2 +z2 = a2(z ? 0)z�8
10p (o
?z = pa2 ?x2 ?y2(x ? 0;y ? 0;x+y ? a)¥×?US
11?wL[USó‰ = ‰( )( 1 ? ? 2)
kó9
?RL f(x;y)ds¥
Ti¨N
T9
?/
wLs
2
(1) RL e
p
x2+y2ds?L
^wL‰ = a(0 ? ? …
4)
(2) RL xds?L
^
?
?L‰ = aek (k > 0)?r = a=¥?s
12p
በ= ‰0¥??
?x = rcos’;y = rsin’;z = r(0 ? ’ ?
2…;0 < b ? r ? a)ê?w
???(0,0,0)¥?êé?¥? ??b ! 0
H
2T??$
139
?F(t) = RR
S
f(x;y;z)dS?S
^Bü
?x+y +z = t7
f(x;y;z) =
8
<
:
1?x2 ?y2 ?z2; 2 +y2 +z2 ? 1;
0; 2 +y2 +z2 > 1:
:
x2?=?wLsDw
?s
19
?/
?=?wLs
(1) RL (2a?y)dx+dy?L1?Lx = a(t?sint);y = a(1?cost);(0 ?
t ? 2…)t9F¥Z_
(2) RL ?xdx+ydyx2+y2 ds?L1??x2 +y2 = a2GI
H?Z_
(3) RL xdx+ydy +zdz?L1V
1,1,1?
2,3,4¥°L
(4) RL (x2 ?2xy)dx+(y2 ?2xy)dyL1y = x2V(1,1)?(-1,1)
(5) RL ydx?xdy +(x2 +y2)dzL1wLx = et;y = e?t;z =
atV(1,1,0)?(e;e?1;a)
(6) RL (x2 +y2)dx+(x2 ?y2)dyL1[A(1;0);B(2;0);C(2;1);D(1;1)1
??¥?Z?I
H?Z_
29
?wLs
Z
L
(y2 ?z2)dx+(z2 ?x2)dy +(x2 ?y2)dz
3
(1) L1o
????x2 +y2 +z2 = 1x ? 0;y ? 0;z ? 0¥H?LVo
¥?? A?L¥Z_1I
H?Z_
(2) L
^o
?x2+y2+z2 = a2??
?x2+y2 = ax(a > 0)¥?Lê?Oxyü
?
Z¥?sVxà
(b;0;0)(b > a)? A?L
^
¨
H?Z_
3p>wLL
¥?=?wLs
I
L
ydx?xdy
x2 +y2
(1) L1?x2 +y2 = a2I
H?Z_
(2) L1??x2a2 + y2b2 = 1
¨
H?Z_
(3) L1[(0,0)1??Hé1aHü??USà¥?Z?
¨
H
?Z_
(4) L
^[(?1;?1);(1;?1);(0;1)1??¥???
¨
H?Z_
4p ??F?¥?êé?
?T¥?Né?wLLVA??
?B?
(1) F = (x?2xy2;y ?2x2y)L1ü
?wLy = x2A(0;0);B(1;1)
(2) F = (x+y;xy)L1ü
?wLy = 1?j1?xjA(0;0);B(2;0)
(3) F = (x ? y;y ? z;z ? x)L¥
O
?
T1r(t) = ti + t2j +
t3kA(0;0;0);B(1;1;1)
(4) F = (y2;z2;x2)L¥?
?
T1x = ficost;y = flsint;z =
t
fi;fl; 1?
?A(fi;0;0);B(fi;0;2… )
5
!P;Q;RL
??L1;á?
?é1l£
ü
j
Z
L
Pdx+Qdy +Rdzj? Ml
4
?M = max
(x;y;z)2L
np
P2 +Q2 +R2
o
6
!;á>wLL;áw
?S
S¥Z?1z = f(x;y)w
LLOxyü
?
¥g?wL1lf
?P(x;y;z)L
??£
ü
I
L
P(x;y;z)dx =
I
l
P(x;y;f(x;y))dx
79
?I = RL xyzdz?Lx2 +y2 +z2 = 1Dy = zM?¥?Z
_?wLGQüV1,2,7,8?K
89
?/
?=?w
?s
(1) RR
S
y(x?z)dydz +x2dzdx+(y2 +xz)dxdy?S1x = y = z =
0x = y = z = a
B?ü
?
??¥? ?Z8¥??
(2) RR
S
(x+y)dydz +(y +z)dzdx+(z +x)dxdy?S
^[e?1?
?Hé12¥? ?Z8V
?¥??
(3) RR
S
yzdzdxS1x2a2 + y2b2 + z2c2 = 1¥
??s¥
?
(4)RR
S
zdxdy +xdydz +ydzdxS1?
?x2+y2 = 1$ü
?z = 0#z = 3
?
??s¥??
(5) RR
S
xydydz +yzdzdx+xzdxdyS
^?ü
?x = y = z = 0?x+y+z =
1
??¥
1
?8V
?¥??
(6) RR
S
x3dydz +y3dzdx+z3dxdyS1o
?x2 +y2 +z2 = a2¥??
(7) RR
S
x2dydz +y2dzdx+z2dxdyS
^o
?(x?a)2 +(y?b)2 +(z?c)2 =
R2¥??
9
!
@8¥
@
?1v = (k;y;0)p?ê
HW=Vo
?x2 +y2 +z2 =
4¥=?
@Vo
?¥
@
5
10
!
@8¥
@
?1v = (xy5;0;z5xx)p,V?
?x2 + y2 = a2(?h ?
z ? h)??¥
@
6