?
E?cc?M
¥s
x1c?M
¥?ès
1.p/
K
(1) lima!0R1?1px2 +a2dx
(2) lima!0R20 x2 cosax dx
(3) lima!0R1+aa dx1+x2+a2.
2pF0(x)?
(1) F(x) = Rx2x e?xy2dy
(2) F(x) = Rcosxsinx ex
p
1?y2dy
(3) F(x) = Rb+xa+x sin(xy)y dy
(4) Rx0
hRx2
t2 f(t;s)ds
i
dt.
3
!f(x)1 ??f
?
F(x) = 1h2
Z x
0
?Z x
0
f(x+? +·)d·
?
d?
pF00(x).
4ù?f
?
F(y) =
Z 1
0
yf(x)
x2 +y2dx
¥ ????f(x)
^[01]
??O1?¥f
?.
5?¨s|/p?Ep/
s
(1) R
…
20 ln(a2 ?sin2 x)dx (a > 1);
1
(2) R…0 ln(1?2acosx+a2)dx(jaj < 1)
(3) R
…
20 ln(a2 sin2 x+b2 cos2 x)dx (a;b 6= 0)
(4) R
…
20 arctan(atanx)
tanx dx(jaj < 1).
6?¨s?DQ?p/
s
(1) R10 xb?xalnx dx (a > 0;b > 0)
(2) R10 sin?ln 1x¢ xb?xalnx dx (a > 0;b > 0).
7
!f1 V±f
?
kp/
f
?¥=¨?
?
(1) F(x) = Rx0 (x+y)f(y)dy
(2) F(x) = Rba f(y)jx?yjdy (a < b)
8£
üR10 dxR10 x2?y2(x2+y2)2dy 6= R10 dyR10 x2?y2(x2+y2)2dx.
9
!F(y) = R10 lnpx2 +y2dxù
^?? ?
F0(0) =
Z 1
0
@
@y ln
p
x2 +y2jy=0dx:
10
!
F(x) =
Z 2…
0
excos cos(xsin )d
p£F(x) · 2….
11
!f(x)1
Q V±f
?’(x)1 V±f
?£
üf
?
u(x;t) = 12[f(x?at)+f(x+at)]+ 12a
Z x+at
x?at
’(z)dz
?@???Z?
@2u
@t2 = a
2@2u
@x2
#
SHq
u(x;0) = f(x);ut(x;0) = ’(x):
2
x2ccc???MMM
¥¥¥<<<lllsss
1£
ü/
s·?¥uW=Bá
l ?
(1) R+10 cos(xy)x2+y2 dy (x ? a > 0)
(2) R+10 cos(xy)1+y2 dy (?1 < x < +1)
(3) R+11 yxe?ydy (a ? x ? b)
(4) R+11 e?xycosyyp dy (p > 0;x ? 0)
(5) R+10 sinx21+xpdx (p ? 0).
2)
?/
s·?uW
¥Bá
l ??
(1) R+10 pfie?fix2dx (0 < fi < +1)
(2) R+10 xe?xydy
ix 2 [a;b] (a > 0)
iix 2 [0;b]
(3) R+1?1 e?(x?fi)2dx
ia < fi < b
ii?1 < fi < +1
(4) R+10 e?x2(1+y2) sinxdy (0 < x < +1).
3
!f(t)t > 0 ??R+10 t?f(t)dt?? = a;? = b¥
l ?Oa < b b
p£R+10 t?f(t)dt1??[a;b]Bá
l ?.
4)
?/
f
?·?uW
¥ ???
(1) F(x) = R+10 xx2+y2dyx 2 (?1;+1)
3
(2) F(x) = R+10 y21+yxdyx > 3
(3) F(x) = R…0 sinyyx(…?y)2?xdyx 2 (0;2).
5?f(x;y)[a;b]£[c;+1)
??c?M
<ls
I(x) =
Z +1
c
f(x;y)dy
[a;b)
l ?x = b
H??£
üI(x)[a;b)?Bá
l ?.
6c?M
¥<lsI(x) = R+1c f(x;y)dy[a;b]Bá
l ?¥ 1H
q
^?Bt?+1¥?9
?
fAng
?A1 = cf
?[)
?
1X
n=1
Z An+1
An
f(x;y)dy =
1X
n=1
un(x)
[a;b]
Bá
l ?.
7¨
5¥2
?£
üc?M
<lsI(x) = R+1c f(x;y)dy[a;b]¥
s?DQ?? ?
? ?19.12?s|/p?
?? ?
? ?19.13.
8 ?¨±s?DQ?9
?/
s
(1) In(a) = R+10 dx(x2+a)n+1
n1??
?a > 0
(2) R+10 e?ax?e?bxx sinmxdx
a > 0;b > 0
(3) R+10 xe?fix2 sinbxdx (fi > 0).
9¨?
?¥sE9
?/
s
(1) R+10 e?ax
2?e?bx2
x dx
a > 0;b > 0
(2) R+10 e?ax?e?bxx sinmxdx
a > 0;b > 0.
10 ?¨11+x2 = R+10 e?y(1+x2)dy9
? ?? ?
?s
L =
Z +1
0
cosfix
1+x2dx
4
?
L1 =
Z +1
0
xsinfix
1+x2 dx:
11 ?¨1px = 2p… R+10 e?xy2dy(x > 0)9
?°
~\:s
F =
Z +1
0
sinx2dx = 12
Z +1
0
sinxp
x dx
?
F1 =
Z +1
0
cosx2dx = 12
Z +1
0
cosxp
x dx:
12 ?¨X?s
Z +1
0
sinx
x dx =
…
2
Z +1
0
e?x2dx =
p…
2
9
?/
s
(1) R+10 sin4 xx2 dx
(2) 2… R+10 sinycosyxy dy
(3) R+10 x2e?fix2dx (a > 0)
(4) R+10 e?(ax2+bx+c)dx (a > 0)
(5) R+1?1 e?(x2+a
2
x2)dx (a > 0).
13p/
s
(1) R+10 1?ett costdt
(2) R+10 ln(1+x2)1+x2 dx.
14£
ü
(1) R10 ln(xy)dy[1b;b] (b > 1)
Bá
l ?
(2) R10 dxxy(?1;b] (b < 1)
Bá
l ?.
5
x3xxx ? ? ?sss
1 ?¨x ?s9
?/
s
(1) R10 dxp
1?x14
(2) R10 px?x2dx
(3) R10 px3(1?px)dx;
(4) Ra0 x2pa2 ?x2)dx (a > 0)
(5) R
…
20 sin6 xcos4 xdx
(6) R+10 dx1+x4
(7) R+10 x2ne?x2dx
n1??
?
(8) R…0 dxp3?cosx
(9) R
…
20 sin2n xdx
n1??
?
(10) R10 xm?ln 1x¢n?1 dx (n1??
?).
2|/
s¨x ?sV
Uips¥i×
(1) R+10 xm?12+xndx
(2) R10 dxnp1?xm
(3) R
…
20 tann xdx
(4) R10 ?ln 1x¢p dx
(5) R+10 xpe?fix lnxdx (fi > 0).
3£
ü
6
(1) R+1?1 e?xndx = 1n?(1n) (n > 0)
(2) limn!+1R+1?1 e?xndx = 1.
4£
ü
B(a;b) =
Z 1
0
xfi?1 +xb?1
(1+x)a+b dx
?(fi) = sfi
Z +1
0
xfi?1e?sxdx (s > 0):
7