1
B5C0BP 2002 CIARA1B7AGB5C0BOBNAQAZATDBA7ARA9
A6B6AMCJC2B4CEBRA0B6AMCJD8BYC2B4BOBDAA 2002AA11CKA8
A2A2D7DBDFDIDDDJ
APAYBDA6C6A8
17(2) and (3).ProofAC Set
e
n
=1+1+
1
2!
+ ... +
1
n!
,n∈ N
+
.
For any given n ∈ N
+
, because
e
n+p
= e
n
+
1
(n +1)!
+
1
(n +2)!
+···+
1
(n + p)!
, (i)
where p ∈ N
+
,p≥ 3, and
n +2
(n + j)!
<
1
(n + j ?1)!
,j=3,···,p,wemayget
e
n+p
?e
n
=
1
(n +1)!
+
1
n +2
braceleftBig
1
(n +1)!
+
n +2
(n +3)!
···+
n +2
(n + p)!
bracerightBig
<
1
(n +1)!
+
1
n +2
braceleftBig
1
(n +1)!
+
1
(n +2)!
···+
1
(n + p?1)!
+
1
(n + p)!
bracerightBig
=
1
(n +1)!
+
1
n +2
(e
n+p
?e
n
).
Thus, there holds the following inequality
e
n+p
?e
n
<
1
(n +1)!
+
1
n +2
(e
n+p
?e
n
). (ii)
Furthermore, (ii) implies that
e
n+p
?e
n
<
n +2
(n +1)!(n +1)
. (iii)
Notice that e
n+p
→ e(as p →∞). Letting p →∞in (iii). Then, there holds the inequality
e?e
n
≤
n +2
(n +1)!(n +1)
<
1
n!n
, (v)
which is the second inequality in (2). The first inequality is easy.
Set θ
n
= n!n(e?e
n
). From (2), it is easy to see that (3) is true.
BOBD1.3BBBD3BD(CPA4COA3B4BZBNBMA5A8
Ideas of Proof:
(1). First, to give the formula for S
n
: S
n
=2
n
·3·sin
360
?
2
n
·3
;
(2). By using continuously the formula sin(2x)=2sinxcos x, to give the equality: sin 60
?
=
2
n?1
cos
60
?
2
·cos
60
?
2
2
···cos
60
?
2
n?1
sin
60
?
2
n?1
;
(3). Notice that the facts sin
360
?
2
n
·3
=sin
60
?
2
n?1
,and1> cos
60
?
2
j
≥ cos
60
?
2
=
√
3
2
,j=1,2, ..., n?1.
It may be obtained: sin
360
?
2
n
·3
<
√
3
2
·
1
2
n?1
·
parenleftbig
2
√
3
parenrightbig
n?1
=
√
3
2
·
parenleftbig
1
√
3
parenrightbig
n?1
.
2
(4). By (3), it is easy to see that
0 <S
n+1
?S
n
=2
n+1
·3·sin
360
?
2
n+1
·3
?2
n
·3·sin
360
?
2
n
·3
=2
n+1
·3·sin
360
?
2
n+1
·3
parenleftBig
1?cos
360
?
2
n+1
·3
parenrightBig
=2
n+1
·3·sin
360
?
2
n+1
·3
·2·sin
2
parenleftBig
360
?
2
n+2
·3
parenrightBig
<
9
4
·
parenleftbig
2
3
√
3
parenrightbig
n+1
(5). To prove that {S
n
} is a Cauchy sequence:
0 <S
n+p
?S
n
<
n+p
summationdisplay
k=n
|S
k+1
?S
k
| <
9
4
·
n+p
summationdisplay
k=n
parenleftbig
2
3
√
3
parenrightbig
k+1
.
(6). The conclusion is obvious from (5).
DAA2D5D8A0DI
1A0CUA3ACAMC5BECFBBA7BEAKBEAZCXCFA3
2A0AU lim
x→x
0
f(x)=a,?f(x)CMx
0
CCBGC9A3BJCMx → x
0
BBC1AXD1AAx CZBPAJB9x
0
?AZBPALCC
a = f(x
0
)?
3A0B0CBε ?δ CHC2D1BWB3B8 x → x
0
AV f(x)ARB1D9CF a.
4A0CBBNBMBGC9CUA3AC
(1) lim
x→1
x?3
x
2
?9
=
1
2
; (2) lim
x→3
x?3
x
2
?9
=
1
6
;
(3) lim
x→1
x?1
√
x?1
= 2; (4) lim
x→1
(x?2)(x?1)
x?3
=0;
(5) lim
t→1
t(t ?1)
t
2
?1
=
1
2
; (6) lim
x→∞
x?1
x +2
=1;
(7) lim
x→3
x
x
2
?9
= ∞; (8) lim
x→∞
x
2
+ x
x +1
= ∞.
5A0BQDCA4BDAZBPCTAL?APCTALAAAFBXB0CUA3ADAPARCTALAAAFCWB0BKD6A3
(1) lim
x→x
0
f(x)=aAYBNALC4BFCQAZ lim
x→x
0
|f(x)| = |a|;
(2) AP lim
x→x
0
f(x)=a,CN lim
x→x
0
[f(x)]
2
= a
2
;
(3) AP lim
n→∞
f(
1
n
)=a,CN lim
x→0
+
f(x)=a;
(4) AP lim
x→x
0
f(x)CG lim
x→x
0
(f(x)+g(x)) BHB3CMAACN lim
x→x
0
g(x)B3CMAD
(5) AP lim
x→x
0
f(x)CG lim
x→x
0
(f(x)g(x)) BHB3CMAACN lim
x→x
0
g(x) B3CMAD
(6) APCMx
0
BBA5DDCIA7f(x) > 0AAAO? lim
x→x
?
0
f(x)=a AAA6A0ALCC a>0.
3
6A0CUA3AC
(1) lim
x→∞
f(x)=a ?? lim
x→+∞
f(x) = lim
x→?∞
f(x)=a;
(2) lim
x→x
0
f(x)=a ?? lim
x→x
+
0
f(x) = lim
x→x
?
0
f(x)=a.
7A0CUA3ACC2B4CEBRBBBHC6BVA0CVASAJC3BVCGCVASAJBXBVA3
8A0BQDCCLB8CCBKB4BL?B4CMC5B1?
(1) lim
x→0
sin x
x
=
lim
x→0
sin x
lim
x→0
x
=
0
0
= 1; (2) lim
x→∞
sin x
x
=
lim
x→∞
sin x
lim
x→∞
x
=0;
(3) lim
x→0
xsin
1
x
= lim
x→0
x lim
x→0
sin
1
x
=0.
9A0AU m, n ∈ N
+
AAAHBQDCCEBRAC
(1) lim
x→0
(1 + mx)
n
?(1 + nx)
m
x
2
; (2) lim
x→1
parenleftBig
m
1?x
m
?
n
1?x
n
parenrightBig
;
(3) lim
t→0
(x + t)
n
?x
n
t
(x ∈ R); (4) lim
x→0
n
√
1+x?1
x
;
(5) lim
x→0
sin 2x?sin 3x
x
; (6) lim
h→0
cos(x + h)?cos x
h
;
(7) lim
x→0
(
√
1+x
2
+ x)
n
?(
√
1+x
2
?x)
n
x
; (8) lim
x→0
+
x
bracketleftBig
1
x
bracketrightBig
;
(9) lim
x→1
(1?x)tan
πx
2
; (10) lim
x→0
x
2
1?cos x
;
(11) lim
x→0
sin 5x?sin 3x
sin 2x
; (12) lim
x→0
cos x?cos 3x
x
.
(13) lim
x→0
x
√
1?2x; (14) lim
x→∞
parenleftBig
1+
2
x
parenrightBig
?x
;
(15) lim
x→∞
parenleftBig
x
2
?1
x
2
+1
parenrightBig
x
2
; (16) lim
x→+∞
parenleftBig
cos
a
x
parenrightBig
x
2
(a negationslash=0);
(17) lim
x→0
cos(narccos x)
x
(nBIACB4); (18) lim
n→+∞
parenleftBig
cos
√
n +1?cos
√
n
parenrightBig
;
(19) lim
n→+∞
cos
x
2
·cos
x
2
2
···cos
x
2
n
; (20) lim
n→+∞
sin(π
radicalbig
n
2
+1);
(21) lim
x→
π
2
(sin x)
tan x
; (22) lim
x→∞
parenleftBig
sin
1
x
+cos
1
x
parenrightBig
x
;
(23) lim
n→+∞
parenleftBig
n + x
n?1
parenrightBig
n
; (24) lim
n→+∞
parenleftBig
n +lnn
n?ln n
parenrightBig
n
ln n
.
10A0AU [a,b] AZC6BVCCBRAKAICNAAAOC0 ?x
0
∈ [a,b], lim
x→x
0
f(x) B3CM?CCBRAACUA3AC f(x) CM [a,b]
ASCCCUA3
11A0AU f :(a,b) → R AZBKCUC2B4AACUA3ACB3CMB4DC{x
n
}?(a,b), AWBA lim
n→∞
f(x
n
)=∞.
12A0AU f :[a,+∞) → R,CUA3AC lim
x→+∞
f(x) B3CM?CCBR?? ?ε>0,?M>0 AWBA?x
1
,x
2
>M,
C7CC|f(x
1
)?f(x
2
)| <ε.
4
13A0AU f :[a,+∞) → R AZB6BFCOC2B4AACUA3BQA2AQBVA4BDAZBCCMBBAC
(1) lim
x→+∞
f(x
n
)B3CM?CCBRAD(2) {f(n)}AZB1D9B4DCAD(3)f CM[a,+∞)ASCCASCUA3
14A0D5CBBKAGBSBBBCCMB5CBAHBQDCCEBRAC
(1) lim
x→0
1?cos x
sin
2
x
; (2) lim
x→1
5x
2
?2(1?cos
2
x)
3x
2
+4tan
2
x
;
(3) lim
x→0
radicalbig
1+sin
2
x?1
xtan x
; (4) lim
x→0
tan(tan x)
sin(2x)
;
(5) lim
x→0
(
3
√
1+tanx?1)(
√
1+x
2
?1)
tan x?sin x
; (6) lim
x→0
?
(1?
n
√
cos x)tanx
(1 ?cos x)
3/2
.
15A0AU f,g : A ? R → R AZDABVC2B4AA??x ∈ A, f(x) > 0, CNAVBUAOf(x)
g(x)
BBC2B4BIDEA3DC
DHA3APlim f(x)=1,lim g(x)=∞,CNCEBRlim f(x)
g(x)
B2CF1
∞
A1D6D9DGA3BJCFCRD2ARBGAXAAC6AHD5
CBBCAX f(x)
g(x)
= e
g(x)lnf(x)
D2CABIBBDG0·∞BTARBGAX lim g(x)lnf(x)BBCEBRBJBDAB
A61A8AU g
1
(x) ~ g
2
(x). CUA3ACAP lim f(x)
g
1
(x)
B3CMAACN lim f(x)
g
1
(x)
= lim f(x)
g
2
(x)
;
A62A8CLBG lim
x→x
0
ln x =lnx
0
AACHBJB4C2B4y =lnxAZD8BYBBA6CPCCBZCPCTA8AACUA3ACAP lim
x→x
0
f(x)=
a>0, lim
x→x
0
g(x)=b,CNlim f(x)
g
1
(x)
= a
b
;
A63A8AHBQDCCEBRAC lim
x→0
(1 + sin x)
1
x
; lim
x→∞
(cos
1
x
)
x
2
.
16A0CUA3ACC2B4 f CMx
0
BED8BY?? CMx
0
CJD4D8BYCECDD8BYA3
17A0DABVCM x
0
B1ARD8BYC2B4CVC4CM x
0
AZBPC6BGARD8BY?APABD1C6BVCM x
0
B1D8BYAAC6BVCM x
0
B1ARD8BYAACNBAA1BBC4CM x
0
B1AZBPC6BGARD8BY?
18A0CUA3ACAP f D8BYAACN|f|C5D8BYA3A9A4BDAWD7DH?
19A0CUA3ACAPD8BYC2B4CMCCD4BEASC2B4CWBIDEAACNB2C2B4C7BIDEA3
20A0APC2B4 f CM[a,b]D8BYAAC7CTAAAFCQBGC9CUA3
1
f
CM[a,b]D8BYA3
21A0APf C4g BHCM[a,b]D8BYA3B0CUA3ACmax{f(x),g(x)}C7CGmin{f(x),g(x)}BHCM[a,b]D8BYA3
22A0AP f AZD8BYBBA3CUA3ACBJCFAMC5 c>0AAC2B4
F(x)=
?
?
?
?
?
?
?
?
?
?
?
?c, AP f(x) < ?c
f(x), AP|f(x)|≤c
c, AP f(x) >c
AZD8BYBBA3
23A0AP f CM[a,b]D8BYAA a<x
1
<x
2
< ···<x
n
<b,CNCM[x
1
,x
n
]D1ALCC ξ AW
f(ξ)=
f(x
1
)+f(x
2
)+···+ f(x
n
)
n
.
24 A0AUC2B4 f CM (?∞,+∞) DID3 Lipschitz BFCQAC ?M>0, AWBA ?x, y ∈ (?∞,+∞) C7CC
|f(x)?f(y)|≤M|x?y|. CUA3AC f CM(?∞,+∞)ASC6CZD8BYA3
5
25A0CUA3ACC2B4f : I → RCMx
0
∈ I B1D8BY?? ?x
n
∈ I,x
n
→ x
0
(n →∞),CC lim
n→∞
f(x
n
)=f(x
0
).
26A0AUC2B4 f : I → R CM x
0
∈ I D8BYAA? f(x
0
) > 0 A3CUA3ACB3CM x
0
BBC6BVDDCIAACMBSDDCIA7
f(x) ≥ q>0A3
27A0BBDGBQDCC2B4BBD8BYBVAAAOC9B0BGBUA3
(1) f(x)=
?
?
?
?
?
?
x
2
?4
x?2
,xnegationslash=2,
4,x=2;
(2) f(x)=
?
?
?
?
?
|
sin x
x
|,xnegationslash=0,
1,x=0;
(3) f(x)=
?
?
?
?
?
?
?
sin x
|x|
,xnegationslash=0,
1,x=0;
(4) f(x)=[x].
28A0BBDGBQDCC2B4CMCXBGBEB1BBD8BYBVA3APAZCNBIBEAAB6A3BABBD2BTAC
(1) f(x)=
?
?
?
?
?
xsin
1
x
,x<0,
1,x≥ 0,
x =0; (2) f(x)=
?
?
?
?
?
?
?
2
?
1
x?3
,xnegationslash=0,
2,x=0,
x =3;
29A0BBDGBQDCC2B4BBD8BYBVA3APCCCNBIBEAAB6A3CNBIBEBBD2BTAC
(1) f(x)=
?
?
?
?
?
sin x
x
,x<0,
x
2
?1,x≥ 0;
(2) f(x)=
?
?
?
?
?
?
?
e
?
1
x
2
,xnegationslash=0,
2,x=0;
(3) f(x)=
?
?
?
?
?
?
?
1
q
,x=
p
q
(q>0,q,pBIC8D0BBCSB4),
0,xBIBKD4B4;
(4) f(x)=
?
?
?
?
?
cos
πx
2
,x≤ 1,
|x?1|,x>1;
(5) f(x)=
?
?
?
?
?
sin πx, xBICCD4B4,
0,xBIBKD4B4;
(6) f(x)=
?
?
?
?
?
x, |x|≤1,
1, |x|≥1.
ABD1A63A8B9ANAYBBC2B4CSD3DJA6RiemannA8C2B4AB
30A0B0ALBGAUB4AAAWBQDCC2B4CMx =0B1D8BYAC
(1) f(x)=
?
?
?
?
?
a + x, x ≤ 0,
sin x, x > 0;
(2) f(x)=
?
?
?
?
?
arctan
1
x
,x<0,
a +
√
x, x ≥ 0;
(3) f(x)=
?
?
?
?
?
?
?
√
1+x?1
3
√
1+x?1
,xnegationslash=0,
c, x =0;
(4) f(x)=
?
?
?
?
?
sin x·sin
1
x
,xnegationslash=0,
c, x =0;
(5) f(x)=
?
?
?
?
?
?
?
(1 + x)
1
x
,xnegationslash=0,
c, x =0;
(6) f(x)=
?
?
?
?
?
tan x
x
,xnegationslash=0,
c, x =0.
6
31A0CUA3BQDCBWBDAC
A61A8BLAX x2
x
=1CM(0,1)A7CYATCCC6BVBYAD
A62A8BLAX x
5
?3x?1=0CM(1, 2.7)A7CYATCCC6BVBYAD
A63A8AU f ∈ C[a,b]AAAP f CM[a,b]ASC7ARBIDEAACN f CM[a,b]ASC7BICTA6CCBRA8AD
A64A8BLAXsin x + x +1=0CM[?
π
2
,
π
2
]A7CYATCCC6BVBYAD
A65A8BLAXa
n
x
n
+ a
n?1
x
n?1
+···+ a
1
x + a
0
=0CMCYATCCC6BVBYAAABD1nAZACB4A0a
j
∈ R(j =
0,1,2, ..., n)BIAUB4AA? a
n
negationslash=0A3
A66A8BLAXa
n
cos nx+ a
n?1
cos(n?1)x+···+a
1
cos x +a
0
=0CM (0,2π)A7CYATCC2nBVBYAAAB
D1 a
0
,a
1
,···,a
n?1
,a
n
DID3|a
n
| > |a
0
|+|a
1
|+···+|a
n?1
|A3A6BCAYACCYDFBEx
nk
=
kπ
n
,k=0, ...,2n).
32A0AUC2B4f : R → RDID3CZCKBVAACHBJAMC5x
1
,x
2
∈ R,f(x
1
+ x
2
)=f(x
1
)+f(x
2
)AAAO?f CM
x =0B1D8BYAACUA3AC f CM R ASD8BYA3
33A0AU f ∈ C[a,+∞)AAAO? lim
x→+∞
f(x) B3CM?CCBRAACUA3AC f CM[a,+∞)ASCCCUA3
34A0AU f ∈ C(a,b)AAAO? f(a +0)CGf(b?0)B3CMA6AID0CCBKAGCEBRA8?CAC3AACUA3ACCM(a,b)
A7CYATB3CMC6BE ξ,AW f(ξ)=0.
35A0AUf ∈ C[a,b]AO??x ∈ [a,b],?y ∈ [a,b],AWf(y)=
1
2
|f(x)|A3CUA3ACB3CMξ ∈ [a,b]AWf(ξ)=0.
36 A0AU f ∈ [a,b],{x
n
}?C[a,b] AZAMC6B4DCA3AP lim
n→∞
f(x
n
)=A ∈ R AACUA3BLAXf(x)=A CM
[a,b]A7ALCCC6BVBYA3
37A0AU f ∈ C(?∞,+∞)AAAO? f AZACC2B4AACUA3BLAXf(x)=0CYATCCC6BVBYA3APAZf C1BUB6
BFBBAACN x =0AZBABBBHC6BYA3
38A0CBC6CZD8BYBGC9C3CUAC
(1) f(x)=
3
√
x CM[0,1]ASAZC6CZD8BYBBAD
(2) f(x)=sinx CM(?∞,+∞)ASAZC6CZD8BYBBAD
(3) f(x)=sinx
2
CM(?∞,+∞)ASAZARC6CZD8BYBBA3
39A0CWB0BQC6BQDCC4AHBB f:
(1) f(+0) = 0,f(?0) = 1;
(2) f(+0)ARB3CMAA C5BM∞,f(?0) = 0;
(3) lim
x→+∞
f(x) = 0, lim
x→?∞
f(x)ARB3CMAD
(4) lim
x→+∞
f(x) = lim
x→?∞
f(x)=AA6AUB4A8AD
(5) f(x
0
+0)C4 f(x
0
?0)BHARB3CMAD
(6) f(x
0
+0)=+∞, f(x
0
?0) = ?∞;
(7) f(x
0
+0)=1,f(x
0
?0) = +∞;
(8) lim
x→+∞
f(x) ARB3CMAAC5BM∞, lim
x→?∞
f(x)=?∞.
40A0A61A8CUA3ACB6BFCCCUC2B4B3CMD4CDCEBRAD
A62A8CUA3ACB6BFCCCUC2B4BBC6ADARD8BYBEBHBIBDC6D2ARD8BYBEA3
7
41 A0CUA3AC lim
x→+∞
f(x) B3CM?CCBRBBAYBNALC4BFCQAZACBJAMC8BXBG ε>0 AAB3CM X>0, B8
x
prime
,x
primeprime
>XAVAAC7CC|f(x
prime
)?f(x
primeprime
)| <εA3
42 A0CUA3AC lim
x→x
0
f(x) B3CM?CCBRBBAYBNALC4BFCQAZACBJAMC8BXBG ε>0 AAB3CM δ>0, B8
0 < |x
prime
?x
0
| <δ, 0 < |x
primeprime
?x
0
| <δ,AVAAC7CC|f(x
prime
)?f(x
primeprime
)| <εA3
43 A0CUA3AC f CM x
0
BED8BYBBAYBNALC4BFCQAZACBJAMC8BXBG ε>0 AAB3CM δ>0, B8|x
prime
? x
0
| <
δ, |x”?x
0
| <δ,AVAAC7CC|f(x
prime
)?f(x”)| <εA3
44A0CUA3ACAPB6BFCCCUC2B4 f CZAJB9 f(a), f(b)CVCNBBC6ADCWAACN f CM[a,b]D8BYA3
45A0CUA3ACC2B4f CM(a,b)D8BYAAAO?f(a +0),f(b?0)B3CMAACNf CZAJB9 f(a +0)C4f(b?0)
CVCNA6B7CZA8ARBCCF f(a +0),f(b?0))C6ADCWA3
46A0CUA3AC (a,b)ASBBD8BYC2B4 f BIC6CZD8BYBBAYBNALC4BFCQAZAC f(a +0),f(b?0)B3CMA3
47A0APC2B4f CM(?∞,+∞)ASBBAMC6CCBRAKAICNASD8BYAACNBACM(?∞,+∞)ASBBAMC6CCBRCXAI
CNASC5C6CZD8BYA3
48A0C2B4 f(x)=x
2
CM(?∞,+∞)CG(?l,l)AS(l ∈ R,l > 0)AZBPC6CZD8BY?
49A0AP f CM(a,b)A7CCBGC9AAAO?BJ(a,b)A7AMC5 xAAB3CM xBBA5BVDDCI O
x
AAAWBA f CMO
x
A7
CCCUA3BJ f CM(a,b)AZBPCCCU?CEAPCR (a,b)BTBI[a,b]AAAOC5?
50A0CUA3AC (a,b)ASBBC6CZD8BYC2B4ALCCCUA3
51A0AFCQBGC9CUA3ACDABVC6CZD8BYC2B4BBC4ANC6CZD8BYA3CEBJACDABVC6CZD8BYC2B4BBCDAOC5?