? E Bc ê? ?D ?±s x1 ê ê ê??? ? ? ?DDD ? ? ?±±±sss¥¥¥ààà Q Q Q 1 p/ f ?¥ ê? ? (1) u = x2 ln(x2 +y2) (2) u = (x+y)cos(xy) (3) u = arctan xy (4) u = xy + xy (5) u = xyesin(xy) (6) u = xy +yx. 2 ! f(x;y) = 8 < : ysin 1x2+y2; x2 +y2 6= 0; 0; x2 +y2 = 0: I3f ?(0,0)?¥ ê? ?. 3£ üf ?u = px2 +y2(0,0)? ??? ê? ??i. 4 p/ f ?¥ ?±s (1) u = px2 +y2 +z2 (2) u = xeyz +e?x +y. 5 p/ f ?ó??¥ ?±s (1) u = xpx2+y2?(1,0)?(0,1) (2 ) u = ln(x+y2)?(0,1)?(1,1) 1 (3) u = qx y?(1,1,1) (4) u = x+(y ?1)arcsin qx y? 01. 6 I3f ?f(x;y)(0,0)?¥ V±? ? f(x;y) = 8 < : xysin 1x2+y2; x2 +y2 6= 0; 0; x2 +y2 = 0: 7£ üf ? f(x;y) = 8 < : x2y x2+y2; x 2 +y2 6= 0; 0; x2 +y2 = 0: (0,0)? ?? O ê? ?i?N?? V±b 8£ üf ? f(x;y) = 8< : (x2 +y2)sin 1x2+y2; x2 +y2 6= 0; 0; x2 +y2 = 0: ¥ ê? ?i? ê? ?(0,0)?? ?? O(0,0)?¥ ?? #×?í ?7fe?(0,0) V±b 9 ! f(x;y) = 8 < : x2y2 x2+y2; x 2 +y2 6= 0; 0; x2 +y2 = 0: £ ü@f@x?@f@y(0,0)? ??. 10 ! f(x;y) = 8< : 1?ex(x2+y2) x2+y2 ; x 2 +y2 6= 0; 0; x2 +y2 = 0: £ üf(x;y)(0,0)? V±i pdf(0;0). 11 ! f(x;y) = 8 < : x3 x2+y2; x 2 +y2 6= 0; 0; x2 +y2 = 0: 2 (1) x = x(t);y = y(t) ^YVe?¥ ?i V± wL 'x2(0) + y2(0) = 0;t 6= 0 Hx2(t)+y2(t) 6= 0;x(t)ay(t) V±. p£f(x(t);y(t)) V±. (2) f(x;y)(0,0)? V±. 12 !jxj;jyj?l ?¨ ?±sw/ ò T¥í ? T (1) (1+x)m(1+y)n; (2) arctan x+y1+xy. 13 !u = f(x;y) ?a < x < b;c < y < d = V± O ?±sdu? 1 ,ùf(x;y)? ? = ^?? |è ?′$£ ü F¥2 ?. 14 !@f@x(x0;y0)i@f@y(x0;y0) ?? p£f(x;y)(x0;y0) V±. 15 p/ f ?¥ ?μ=¨ ê? ? (1) u = lnpx2 +y2 (2) u = xy + yx (3) u = xsin(x+y)+ycos(x+y) (3) u = exy. 16 p/ f ?·?¨¥ ê? ? (1) u = x3 siny +y3 sinx, p@6u@x3@y3 (2) u = arctan x+y1?xy p ?μ ?¨ ê? ? (3) u = sin(x2 +y2), p@3u@x3@3u@y3 (4) u = xyzex+y+z, p@p+q+ru@xp@yq@zr (5) u = x+yx?y (x 6= y) p@m+nu@xm@yn 3 (6) u = ln(ax+by), p@m+nu@xm@yn. 17£/ f ? ?@ @2u @x2 + @2u @y2 = 0: (1) u = ln(x2 +y2) (2) u = x2 ?y2 (3) u = ex cosy (4) u = arctan yx. 18 !f ?u = ’(x+?(y))£ ü @u @x @2u @x@y = @u @y @2u @x2: 19 !fx;fy?(x0;y0)¥  #× =i O?(x0;y0) V±5μ fxy(x0;y0) = fyx(x0;y0): x2ˉˉˉ???fff ? ? ?DDD???fff ? ? ?±±±sssEEE 1 p/ f ?¥ ?μ=¨ ê? ? (1) u = f(ax;by) (2) u = f(x+y;x?y) (3) u = f(xy2;x2y) (4) u = f(xy; yz) (5) u = f(x2 +y2 +z2) 4 (6) u = f(x+y;xy; xy). 2 !z = yf(x2?y2) ?f ^ V±f ?£ 1 x @z @x + 1 y @z @y = z y2: 3 !v = 1rg(t ? rc)c1è ?f ?g=¨ V?r = px2 +y2 +z2b £ ü@2v@x2 + @2v@y2 + @2v@z2 = 1c2 @2v@t2 . 4 ?f ?f(x;y;z) ?i? L ?t ?@1" f(tx;ty;tz) = tnf(x;y;z) 5?f(x;y;z)1nQ Qf ?. !f(x;y;z) V± k£ üf(x;y;z)1nQ Q f ?¥ 1Hq ^ x@f@x +y@f@y +z@f@z = nf(x;y;z): 5£/ ò T (1) u = ’(x2 +y2),5y@u@x ?x@u@y = 0 (2) u = y’(x2 ?y2),5y@u@x +x@u@y = xuy (3) u = x’(x+y)+y?(x+y),5@2u@x2 ?2 @2u@x@y + @2u@y2 = 0 (4) u = x’(yx)+?(yx),5x2@2u@x2 +2xy @2u@x@y +y2@2u@y2 = 0. 6 !u = f(x;y) V±USMDx = rcos y = rsin /£ ü (@z@x)2 +(@z@y)2 = (@z@u)2 +(@z@v)2: ? H?(@z@x)2 +(@z@y)2 ^B?? T?M . 8 !f ?u = f(x;y) ?@ ? ? ? ?Z? @2u @x2 + @2u @y2 = 0 5 £ ü/ MD/? ??M' ˉμ@2u@s2 + @2u@t2 = 0. (1) x = ss2+t2,y = ts2+t2 (2) x = es cost;y = es sint (3) x = ’(s;t);y = ?(s;t) ?@@’@s = @?@t ; @’@t = ?@?@s.?FZ??1 O ó £Z?. 9T1M ¥MD |?;·;?1?1M  (1) ? = x;· = x2 +y2,MDZ?y@z@x ?x@z@y = 0 (2) ? = x;· = y ?x;? = z ?x,MDZ?@u@x + @u@y + @u@z = 0. 10T1M ?yM ¥MD |u;v1?¥1M w = w(u;v)1 ?¥yM  (1) !u = x+y;v = yx;w = zxMDZ? @2z @x2 ?2 @2z @x@y + @2z @y2 = 0 (2) !u = xy;v = x;w = xz ?yMDZ? y@ 2z @y2 +2 @z @y = 2 x: 11 p/ Z? ? ??¥f ?z = f(x;y)¥B¨?=¨ ê? ? (1) e?xy ?2z +ex = 0 (2) x+y +z = ex+y+z (3) xyz = x+y +z (4) x2 +y2 +z2 ?2x+2y ?4z ?5 = 0. 12 p?/ Z? ? ??¥f ?¥ ?±sdz 6 (1) z = f(xz;z ?y) (2) F(x?y;y ?z;z ?x) = 0 (3) f(x+y +z;x2 +y2 +z2) = 0 (4) f(x;y)+g(y;z) = 0. 13 !z = z(x;y)?Z?x2 + y2 + z2 = yf(zy) ? ??£ ü(x2 ? y2 ? z2)@z@x +2xy@z@y = 2xzb 14 !z = x2 + y2 ?y = f(x)1?Z?x2 ?xy + y2 = 1 ? ??¥? f ? pdzdx?d2zdx2. 15 !u = x2 +y2 +z2 ?z = f(x;y)1?Z?x3 +y3 +z3 = 3xyz ? ??¥?f ? p@u@x@2u@x2. 16 p/ Z?F ? ??¥f ?¥? ?? ê? ? (1 8 < : x2 +y2 +z = a2; x2 +y2 = ax; pdydx; dzdx (2) 8 < : x2 ?u2 ?yv = 0; y ?v2 ?xu = 0; p@u@x; @v@x; @u@y; @v@y (3) 8 < : u2 ?v = 3x+y; u?2v2 = x?2y; p@u@x; @u@y; @v@x; @v@y (4) 8 < : u = xyz; x2 +y2 +z2 = 1; p@2u@x2; @2u@y2; @2u@x@y. 17/ Z?F?lz1x;y¥f ? p@z@x@z@y. 7 (1) 8 >>> < >>> : x = cos cos’; y = cos sin’ z = sin ; ; (2) 8 >>> < >>> : x = u+v; y = u2 +v2 z = u3 +v3: ; x3+++??????¨¨¨ 1 p/  wL ? U?)¥ MLZ??E ü ?Z? (1) x = asin2 t;y = bsintcost;z = ccos2 t,?t = …4 (2) 2x2 +3y2 +z2 = 9;z2 = 3x2 +y2,?(1,-1,2) (3) x2 +y2 +z2 = 6;x+y +z = 0,?(1,-2,1) (4) x = t?cost;y = 3+sin2 t;z = 1+cos3t,?t = …2. 2 p/  w ? ? U?)¥ M ü ?Z??ELZ? (1) y ?e2x?z = 0? 1,1,2 (2) x2a2 + y2b2 + z2c2 = 1?( ap3; bp3; cp3) (3) z = 2x2 +4y2?(2,1,12) (4) x = ucosv;y = usinv;z = av?P0(u0;v0). 3£ ü wLx = aet cost;y = aet sint;z = aet ?x2 + y2 = z2¥ L M??]B?. 4 p ü ? wLx2=3 + y2=3 = a2=3(a > 0)  ?B?¥ MLZ?i£ ü ?t ML$USà ?? |¥L ?é. 5 p w ?x2+2y2+3z2 = 21¥ M ü ? P ? ü?? ü ?x+4y+6z = 0. 6£ ü w ?F(x?az;y ?bz) = 0¥ M ü ?D B?°L ü?  ?a;b1è ?. 8 7£ ü w ?z = xexy¥ ?B M ü ??YVe?. 8 p  w ? F(x;y;z) = 0;G(x;y;z) = 0 ¥?LOxy ü ? ¥g? wL¥ MLZ?. x4ZZZ___??? ? ? ? 1 !f(x;y;z) = x+y2 +z3 pf?P0(1;1;1)??l = (2;?2;1)¥Z _? ?. 2 pf ?u = xyz?A(5;1;2))??B(9;4;14)¥Z_?!AB ¥Z_ ? ?. 3 p@u@lflfl (x0;y0) ; (1) u = ln(x2 +y2)(x0;y0) = (1;1)lDxà?_¥C?160–; (2) u = xexy,(x0;y0) = (1;1), lD_ (1;1)]_. 4 !f ?f(x;y)(x0;y0) V±?ê_ l1 = ( 1p2; 1p2)l2 = (? 1p2; 1p2)@f(x0;y0)@l1 = 1@f(x0;y0)@l2 = 0 ??l P¤ @f(x0;y0) @l = 7 5p2: 5 !fP0(2;0) V±f(x;y)P0·_P1 = (2;?2)¥Z_? ? ^1 ·_e?¥Z_? ? ^3 kís (1)·_P2 = (2;1)¥Z_? ? ^ $ (2)·_P3 = (3;2)¥Z_? ? ^ $ x5 ü ü ü à à à T T T 9 1/ f ?·??¥ ü à T (1)f(x;y) = 2x2 ?xy ?y2 ?6x?3y +5(1,-2)?. (2) f(x;y) = x2 +xy +y2 +3x?2y +4(-1,1)?. 2 pf ?f(x;y) = xy(1,1)? #×¥n¨{ ?ì μ °?[¥ ü à T. 3 pf ?f(x;y) = y2x2(1,-1)? #×¥=¨ ü à Ti ?ì μ °?[. 4 p/ f ?(0;0)? #×¥ 1¨ ü à T (1) f(x;y) = sin(x2 +y2) (2) f(x;y) = ex ln(1+y) (3) f(x;y) = p1+x2 +y2; (4) f(x;y) = ex cosyb 5£ ü ü à T¥·B? ?nP i+j=0 Aijxiyi +o(‰n) = 0 (‰ ! 0)  ?‰ = px2 +y2. p£Aij = 0 i;j1dμ? ?i+j = 0;1;...;ni ?¨ ·B? pf(x;y) = ln(1+x+y){ ?ì μ °?[¥n¨ ü àZ 7 T. 6YVf(x;y) = sinxcosy¨?′? ?£ üi 2 (0;1) P 3 4 = … 3 cos … 3 cos … 6 ? … 6 sin … 3 sin … 6 : 7 !f(x;y) u×D =μ ê? ?i Ofx(x;y) = fy(x;y) · 0.£ üf(x;y)D1è ?. 8 ?jxj;jyj ^?l¥ ?/ f ? ??=Q[¥í ? T (1) cosxcosy (2) arctan 1+x+y1?xy . 10 9 !f ?f(x;y)μ°?n¨ ?? ê? ? k£u(t) = f(a + ht;b + kt)¥n¨? ? u(n)(t) = (h @@x +k @@y)nf(a+kt;b+kt): 10 !f(x;y)1nQ Qf ?£ ü (x @@x +k @@y)mf = n(n?1):::(n?m+1)f: 11 !f(x;y) = ?(ax + by) ?a;b1è ?ce?¥  #× =?μq¨ ??? ?. p£(0,0)? #×¥ ü à T ^ f(x;y) = q?1X k=0 ?(k)(0) k! kX j=0 Cjk(ax)j(by)k?j +Rq(x;y): 11