?=
Ec×s
x1×s¥àQ
1£
ü?é
4?é
6
2£
üμ?>u×
¥ ??f
?A V
3
!?
^ V
¥ü
?m? bW ?8f;g?
??£
ü
(1)??
f(P) > 0,Of(P)·= 05R
?
f(P)d?
(2)??¥???su×?0 ‰ ?
μ
Z
?
f(P)d? =
Z
?
g(P)d?;
5?
μf(P) = g(P)
4
!f(x)[a,b] Vg(y)[c,d] V5f(x)g(y) ?u
×D[a;b]£[c;d]
VO
ZZ
D
f(x)g(y)dxdy =
Z b
a
f(x)dx
Z d
c
g(y)dy:
5?jf(x;y)jD
V*
1D
^? V$ I3f
?
f(x;y) =
8<
:
1;?x;y?
^μ ?
?;
?1;?x;yà
μB?
^í ?
?
[0,1]£[0,1]
¥s
6
!D = [0;1]£[0;1]
f(x;y) =
8
<
:
1;x
^μ ?
?
0;x
^í ?
?
£
üf(x;y)D
? V
x2×s? ?Qs
1
1.9
?/
=×s
(1) RR
D
(y ?2x)dxdy;D = [3;5]£[1;2]
(2) RR
D
cos(x+y)dxdy;D = [0; …2]£[0;…]
(3) RR
D
xyex2+y2dxdy;D = [a;b]£[c;d]
(4) RR
D
x
1+xydxdy;D = [0;1]£[0;1]
2.|=×sRR
D
f(x;y)dxdy?1?]
¨?¥ ?Qs
(1) D?xàDx2 +y2 = r2(y > 0)
???
(2) D?y = x;x = 2#y = 1x(x > 0)
???
(3) D?y = x2;y = 2x3;y = 1?y = 2??
(4) D = f(x;y)jjxj+jyj6 1g
3.?M/
?Qs¥Q?
(1) R20 dyR3yy2 f(x;y)dx
(2) R21 dxR2px f(x;y)dy
(3) R10 dxRx20 f(x;y)dy +R31 dxR
1
2(3?x)0 f(x;y)dy.
4.
!f(x;y)
?s¥u×D
??£
ü
Z b
a
dx
Z x
a
f(x;y)dy =
Z b
a
dy
Z b
y
f(x;y)dx:
5.9
?/
=×s
(1) RR
D
xmykdxdy(m;k > 0);D
^?y2 = 2px(p > 0);x = p2??¥u×
2
(2) RR
D
xdxdy;D
^?y = 0;y = sinx2;x = 0?x = p…??¥u×
(3) RR
D
pxdxdy;D : x2 +y2 6 x;
(4) RR
D
jxyjdxdy;D : x2 +y2 6 a2;
(5) RR
D
(x+y)dxdy;D?y = ex;y = 1;x = 0;x = 1
???
(6) RR
D
x2y2dxdy;D?x = y2;x = 0;x = 2;y = 2+x
???
(7) RR
D
(x+y)dxdy;D
^[(2;2);(2;3)?(3;1)1??¥???
(8) RR
D
sinnxdxdy;D?y = x2;y = 4x?y = 4
???
6.p/
=×s
(1) I = R10 dxR1x e?y2dy
(2) I = R10 dxR1x x2e?y2dy
(3) I = R
p…
2
0 dy
Rp…
2y y2 sinx2dx
7.
!yà|ü
?μ?u×Ds??¥
?sD1?D2£
ü
(1)?f(x;y)1?x1f
?'f(?x;y) = ?f(x;y)5
ZZ
D
f(x;y)dxdy = 0:
(2)?f(x;y)1?x1}f
?'f(?x;y) = f(x;y)5
ZZ
D
f(x;y)dxdy = 2
ZZ
D1
f(x;y)dxdy = 2
ZZ
D2
f(x;y)dxdy:
8.9
?/
?×s
(1) RRR
V
(x+y +z)dxdydz;V : x2 +y2 +z2 6 a2;
3
(2) RRR
V
zdxdydz;V?w
?z = x2 +y2;z = 1;z = 2
???
(3) RRR
V
(1+x4)dxdydz;V?w
?x2 = z2 +y2;x = 2;x = 4
???
(4) RRR
V
x3yzdxdydz;V
^?w
?x2 +y2 +z2 = 1;x = 0;y = 0;z = 0??
¥ê??B?K¥μ?u×
(5) RRR
V
xy2z3dxdydz;V?w
?z = xy;y = x;z = 0;x = 1
???
(6) RRR
V
ycos(x + z)dxdydz;V
^?y = px;y = 0;z = 0#x + z = …2
??
?¥u×
9.?M/
?Qs¥Q?
(1) R10 dxR1?x0 dyRx+y0 f(x;y;z)dz
(2) R10 dxR10 dyRx2+y20 f(x;y;z)dz
(3) R10 dxR10 dyR01?x?y f(x;y;z)dz
(4) R1?1 dxR
p1?x2
?p1?x2 dy
R1p
x2+y2 f(x;y;z)dz
10p/
?8-8
(1) V?x2 +y2 +z2 6 r2;x2 +y2 +z2 6 2rz
???
(2) V?z 6 x2 +y2;y 6 x2;zV2
???
(3) V
^?USü
?#x = 2;y = 3;x+y +z = 4
???¥??8
x3×s¥M
}D
1.¨USMD|RR
D
f(x;y)dxdy?1 ?Qs
(1) D??x2 +y2 6 a2;y > 0
4
(2) D?ìa2 6 x2 +y2 6 b2;x > 0
(3) D?x2 +y2 6 ay(a > 0)
(4) D?Z?0 6 x 6 a;0 6 y 6 a
2.¨USMD9
?/
=×s
(1) RR
D
sinpx2 +y2dxdy;D : …2 6 x2 +y2 6 4…2
(2) RR
D
(x+y)dxdy;D
^?x2 +y2 6 x+y¥=?
(3) RR
D
(x2 +y2)dxdy;D?
?gL(x2 +y2)2 = a2(x2 ?y2)??
(4) RR
D
xdxdy;D?-
ü£
?Lr = ??
L = …??
(5) RR
D
xydxdy;D?
?
?Lr = e ??
L = …??
3./
s????M
u;v|
?
ì?1 ?Qs
(1) R20 dxR2?x1?x f(x;y)dy;?u = x+y;v = x?y
(2) Rba dxRflxfix f(x;y)dy(0 < a < b;0 < fi < fl);?u = x;v = yx
(3) RR
D
f(x;y)dxdy?D = f(x;y)jpx + py 6 pa;x > 0;y > 0g
?x = ucos4 v;y = usin4 v
(4) RR
D
f(x;y)dxdy?D = f(x;y)jx + y 6 a;x > 0;y > 0g(a > 0)
?x+y = u;y = uv
4.T
a?¥M
}Dp/
s
(1) RR
D
(x2 +y2)dxdy;D
^?x4 +y4 = 1??¥u×
(2) RR
D
(x+y)dxdy;D?y = 4x2;y = 9x2;x = 4y2;x = 9y2??
5
(3) RR
D
(x2 +y2)dxdy;D?xy = 2;xy = 4;y = x;y = 2x??
5. ?¨=×sp?/
w
???¥ ?8¥8
(1) z = xy;x2 +y2 = a2;z = 0
(2) z = hRpx2 +y2;z = 0;x2 +y2 = R2
(3)o
?x2 +y2 +z2 = a2D??
?x2 +y2 = ax(a > 0)¥?s
(4) x2a2 + y2b2 + z2c2 = 1; x2a2 + y2b2 = z2c2(z > 0)
(5) z2 = x24 + y29 ;2z = x24 + y29
(6) z = x2 +y2;z = x+y
6.pwL(x2a2 + y2b2)2 = xyc2
???¥
?
7.¨?USMD9
?/
?×s
(1) RRR
V
(x2 +y2)dxdydz;V?w
?z = x2 +y2;z = 4;z = 16??
(2) RRR
V
(px2 +y2)3dxdydz;V?w
?x2 + y2 = 9;x2 + y2 = 16;z2 = x2 +
y2;z > 0??
8.¨oUSMD9
?/
?×s
(1) RRR
V
(x+y +z)dxdydz;V : x2 +y2 +z2 6 R2
(2) RRR
V
(px2 +y2 +z2)5dxdydz;V?x2 +y2 +z2 = 2z??
(3) RRR
V
x2dxdydz;V?x2 +y2 = z2;x2 +y2 +z2 = 8??
9.T
a?¥M
}Dp/
?×s
(1) RRR
V
x2y2zdxdydz;V?z = x2+y2a ;z = x2+y2b ;xy = c;xy = d;y = fix;y =
6
flx??¥ ?8?0 < a < b;0 < c < d;0 < fi < beta
(2) RRR
V
x2yzdxdydz;V](1)
(3) RRR
V
y4dxdydz;V?x = az2;x = bz2;(z > 0;0 < a < b);x = fiy;x =
fly(0 < fi < fl)[#x = h(> 0)??
(4) RRR
V
e
q
x2
a2+
y2
b2 +
z2
c2 dxdydz;V?x
2
a2 +
y2
b2 +
z2
c2 = 1??
(5) R10 dxR
p1?x2
0 dy
R2?x2?y2p
x2+y2 z
2dz:
10p/
òw
?
?? ?8-8
(1) z = x2 +y2;z = 2(x2 +y2);y = x;y = x2
(2) (xa + yb)2 +(zc)2 = 1(x > 0;y > 0;z > 0;a > 0;b > 0;c > 0):
x4w
?
?
1.p/
w
?¥
?
(1) z = axyc??x2 +y2 = a2=¥?s
(2)
?x2 +y2 = 13z2Dü
?x+y +z = 2a(a > 0)
???s¥V
?
(3)
?z = px2 +y2$?
?z2 = 2x
???s
(4)w
?z = p2xy$ü
?x+y = 1;x = 1#y = 1
??/¥?s
2.
?è
?x = rcos’;y = rsin’;z = h’(0 < r < a;0 < ’ < 2…)¥
?
3.pì
?x = (b + acos?)cos’;y = (b + acos?)sin’;z = asin?(0 < a 6
b)$
HüL’ = ’1;’ = ’2?
H?L? = ?1;? = ?2
????s¥
?
ip??ì
?¥
?
x5×s¥t ??¨
7
1.p/
(
á¥ü
?
e¥é?
(1)???x2a2 + y2b2 6 1;y > 0
(2)ú1h?sY1a?b¥?%0?
(3) r = a(1+cos’)(0 6 ’ 6 …)
??¥
e
(4) ay = x2;x+y = 2a(a > 0)
??¥
e
2.p/
á (¥t8¥é?
(1) z 6 1?x2 ?y2:z > 0
(2)?US
?#ü
?x+2y ?z = 1
???¥
1
?8
(3) z = x2 +y2;x+y = a;x = 0;y = 0;z = 0??¥ ?8
(4) z2 = x2 +y2(z > 0)?ü
?z = h??¥ ?8
(5)?o Ta2 6 x2 +y2 +z2 6 b2;z > 0.
3.p/
á (¥ü
?
e¥?8
(1)Hé1a?bOC?1’¥ü?
1H?1??Hb¥?8
(2) y = x2;y = 1
??ü
?m?1?°Ly = ?1¥?8
4.p?/
w
?
?? (8¥?8
(1) z = x2 +y2;x+y = §1;x?y = §1;z = 01?zà¥?8
(2)éZ81?
?¥B í¥?8
(3)?ca2 6 x2 +y2 6 b2;?h 6 z 6 h1?xà?zà¥?8
8
5.
!o8x2 + y2 + z2 6 2x
ò?¥
á?????USe?¥
?p?o¥é
6.p (
?x2 +y2 6 R2;z = 0xà
B?(0;0;c)(c > 0))?êé
?¥? ?
7.p (?8x2 + y2 6 a2;0 6 z 6 h?(0;0;c)(c > h))?êé?¥
? ?
9